1
|
Claridge SE, Nath S, Baum A, Farias R, Cavallo J, Rizvi NM, De Boni L, Park E, Granados GL, Hauesgen M, Fernandez‐Rodriguez R, Kozan EN, Kanshin E, Huynh KQ, Chen P, Wu K, Ueberheide B, Mosquera JM, Hirsch FR, DeVita RJ, Elemento O, Pauli C, Pan Z, Hopkins BD. Functional genomics pipeline identifies CRL4 inhibition for the treatment of ovarian cancer. Clin Transl Med 2025; 15:e70078. [PMID: 39856363 PMCID: PMC11761363 DOI: 10.1002/ctm2.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The goal of precision oncology is to find effective therapeutics for every patient. Through the inclusion of emerging therapeutics in a high-throughput drug screening platform, our functional genomics pipeline inverts the common paradigm to identify patient populations that are likely to benefit from novel therapeutic strategies. APPROACH Utilizing drug screening data across a panel of 46 cancer cell lines from 11 tumor lineages, we identified an ovarian cancer-specific sensitivity to the first-in-class CRL4 inhibitors KH-4-43 and 33-11. CRL4 (i.e., Cullin-4 RING E3 ubiquitin ligase) is known to be dysregulated in a variety of cancer contexts, making it an attractive therapeutic target. Unlike proteasome inhibitors that are associated with broad toxicity, CRL4 inhibition offers the potential for tumor-specific effects. RESULTS We observed that CRL4 inhibition negatively regulates core gene signatures that are upregulated in ovarian tumors and significantly slowed tumor growth as compared to the standard of care, cisplatin, in OVCAR8 xenografts. Building on this, we performed combination drug screening in conjunction with proteomic and transcriptomic profiling to identify ways to improve the antitumor effects of CRL4 inhibition in ovarian cancer models. CRL4 inhibition consistently resulted in activation of the mitogen-activated protein kinase (MAPK) signaling cascade at both the transcriptomic and protein levels, suggesting that survival signaling is induced in response to CRL4 inhibition. These observations were concordant with the results of the combination drug screens in seven ovarian cancer cell lines that showed CRL4 inhibition cooperates with MEK inhibition. Preclinical studies in OVCAR8 and A2780 xenografts confirmed the therapeutic potential of the combination of KH-4-43 and trametinib, which extended overall survival and slowed tumor progression relative to either single agent or the standard of care. CONCLUSIONS Together, these data demonstrate the prospective utility of functional modeling pipelines for therapeutic development and underscore the clinical potential of CRL4 inhibition in the ovarian cancer context. HIGHLIGHTS A precision medicine pipeline identifies ovarian cancer sensitivity to CRL4 inhibitors. CRL4 inhibition induces activation of MAPK signalling as identified by RNA sequencing, proteomics, and phosphoproteomics. Inhibitor combinations that target both CRL4 and this CRL4 inhibitor-induced survival signalling enhance ovarian cancer sensitivity to treatment.
Collapse
Affiliation(s)
- Sally E. Claridge
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Shalini Nath
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Anneliese Baum
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Richard Farias
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Julie‐Ann Cavallo
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Nile M. Rizvi
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Lamberto De Boni
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Eric Park
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Genesis Lara Granados
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Matthew Hauesgen
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ruben Fernandez‐Rodriguez
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Eda Nur Kozan
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNew YorkUSA
| | - Evgeny Kanshin
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkNew YorkUSA
- Proteomics LaboratoryNew York University School of MedicineNew YorkNew YorkUSA
| | - Khoi Q. Huynh
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Drug Discovery Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Peng‐Jen Chen
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Drug Discovery Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Kenneth Wu
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkNew YorkUSA
- Proteomics LaboratoryNew York University School of MedicineNew YorkNew YorkUSA
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Juan Miguel Mosquera
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNew YorkUSA
| | - Fred R. Hirsch
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Medicine, Hematology, and Medical OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Robert J. DeVita
- Proteomics LaboratoryNew York University School of MedicineNew YorkNew YorkUSA
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Institute for Computational Biomedicine, Weill Cornell MedicineNew YorkNew YorkUSA
- Clinical and Translational Science Center, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Chantal Pauli
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Zhen‐Qiang Pan
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Benjamin D. Hopkins
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
| |
Collapse
|
2
|
Dey Bhowmik A, Shaw P, Gopinatha Pillai MS, Rao G, Dwivedi SKD. Evolving landscape of detection and targeting miRNA/epigenetics for therapeutic strategies in ovarian cancer. Cancer Lett 2024; 611:217357. [PMID: 39615646 DOI: 10.1016/j.canlet.2024.217357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Ovarian cancer (OC) accounts for the highest mortality rates among all gynecologic malignancies. The high mortality of OC is often associated with delayed detection, prolonged latency, enhanced metastatic potential, acquired drug resistance, and frequent recurrence. This review comprehensively explores key aspects of OC, including cancer diagnosis, mechanisms of disease resistance, and the pivotal role of epigenetic regulation, particularly by microRNAs (miRs) in cancer progression. We highlight the intricate regulatory mechanisms governing miR expression within the context of OC and the current status of epigenetic advancement in the therapeutic development and clinical trial progression. Through network analysis we elucidate the regulatory interactions between dysregulated miRs in OC and their targets which are involved in different signaling pathways. By exploring these interconnected facets and critical analysis, we endeavor to provide a nuanced understanding of the molecular dynamics underlying OC, its detection and shedding light on potential avenues for miRs and epigenetics-based therapeutic intervention and management strategies.
Collapse
Affiliation(s)
- Arpan Dey Bhowmik
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Mohan Shankar Gopinatha Pillai
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
3
|
Machuca A, Peñalver GA, Garcia RAF, Martinez-Lopez A, Castillo-Lluva S, Garcia-Calvo E, Luque-Garcia JL. Advancing rhodium nanoparticle-based photodynamic cancer therapy: quantitative proteomics and in vivo assessment reveal mechanisms targeting tumor metabolism, progression and drug resistance. J Mater Chem B 2024; 12:12073-12086. [PMID: 39453320 DOI: 10.1039/d4tb01631a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Rhodium nanoparticles have been recently discovered as good photosensitizers with great potential in cancer photodynamic therapy by effectively inducing cytotoxicity in cancer cells under near-infrared laser. This study evaluates the molecular mechanisms underlying such antitumoral effect through quantitative proteomics. The results revealed that rhodium nanoparticle-based photodynamic therapy disrupts tumor metabolism by downregulating key proteins involved in ATP synthesis and mitochondrial function, leading to compromised energy production. The treatment also induces oxidative stress and apoptosis while targeting the invasion capacity of cancer cells. Additionally, key proteins involved in drug resistance are also affected, demonstrating the efficacy of the treatment in a multi-drug resistant cell line. In vivo evaluation using a chicken embryo model also confirmed the effectiveness of the proposed therapy in reducing tumor growth without affecting embryo viability.
Collapse
Affiliation(s)
- Andres Machuca
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Gabriel A Peñalver
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| | | | - Angelica Martinez-Lopez
- Department Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Sonia Castillo-Lluva
- Department Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Estefania Garcia-Calvo
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Jose L Luque-Garcia
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
4
|
Tang ZY, Wang XM, Xu CW, Sun QQ, Hua YX, Zhou QY, Hu HY, Liu SB, Guo YJ, Ao L, Che X, Zhang XC, Heger M, Zheng X, Liu AJ, Wang Q, Zhan ZJ, Cheng SQ, Pan WW. DCAF13 promotes ovarian cancer progression by activating FRAS1-mediated FAK signaling pathway. Cell Mol Life Sci 2024; 81:421. [PMID: 39367995 PMCID: PMC11455852 DOI: 10.1007/s00018-024-05446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/09/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Cullin-RING ubiquitin ligase 4 (CRL4) is closely correlated with the incidence and progression of ovarian cancer. DDB1- and CUL4-associated factor 13 (DCAF13), a substrate-recognition protein in the CRL4 E3 ubiquitin ligase complex, is involved in the occurrence and development of ovarian cancer. However, its precise function and the underlying molecular mechanism in this disease remain unclear. In this study, we confirmed that DCAF13 is highly expressed in human ovarian cancer and its expression is negatively correlated with the overall survival rate of patients with ovarian cancer. We then used CRISPR/Cas9 to knockout DCAF13 and found that its deletion significantly inhibited the proliferation, colony formation, and migration of human ovarian cancer cells. In addition, DCAF13 deficiency inhibited tumor proliferation in nude mice. Mechanistically, CRL4-DCAF13 targeted Fraser extracellular matrix complex subunit 1 (FRAS1) for polyubiquitination and proteasomal degradation. FRAS1 influenced the proliferation and migration of ovarian cancer cell through induction of the focal adhesion kinase (FAK) signaling pathway. These findings collectively show that DCAF13 is an important oncogene that promotes tumorigenesis in ovarian cancer cells by mediating FRAS1/FAK signaling. Our findings provide a foundation for the development of targeted therapeutics for ovarian cancer.
Collapse
Affiliation(s)
- Ze-Yi Tang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Xiao-Min Wang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China
| | - Chun-Wei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 Banshan East Street, Gongshu District, Hangzhou, 310022, China
| | - Qing-Qing Sun
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yu-Xin Hua
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China
- Zhejiang Chinese Medicine University and Jiaxing University Master Degree Cultivation Base, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China
| | - Qi-Yin Zhou
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China
- Zhejiang Chinese Medicine University and Jiaxing University Master Degree Cultivation Base, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China
| | - Han-Yin Hu
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China
- Zhejiang Chinese Medicine University and Jiaxing University Master Degree Cultivation Base, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China
| | - Sheng-Bing Liu
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China
| | - Yan-Jun Guo
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China
| | - Lei Ao
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China
| | - Xuan Che
- Department of Anesthesiology, Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children Hospital, Jiaxing University, Jiaxing, 314001, P. R. China
| | - Xian-Chao Zhang
- Institute of Information Network and Artificial Intelligence, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Xin Zheng
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, P. R. China
| | - Ai-Jun Liu
- Department of Pathology, The 7th Medical Center, General Hospital of PLA, Beijing, 100700, P. R. China
| | - Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, P. R. China
| | - Zha-Jun Zhan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Shu-Qun Cheng
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438, P. R. China.
| | - Wei-Wei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
- G60 STI Valley Industry & Innovation Institute, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| |
Collapse
|
5
|
Cheng J, Bin X, Tang Z. Cullin-RING Ligase 4 in Cancer: Structure, Functions, and Mechanisms. Biochim Biophys Acta Rev Cancer 2024; 1879:189169. [PMID: 39117093 DOI: 10.1016/j.bbcan.2024.189169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Cullin-RING ligase 4 (CRL4) has attracted enormous attentions because of its extensive regulatory roles in a wide variety of biological and pathological events, especially cancer-associated events. CRL4 exerts pleiotropic effects by targeting various substrates for proteasomal degradation or changes in activity through different internal compositions to regulate diverse events in cancer progression. In this review, we summarize the structure of CRL4 with manifold compositional modes and clarify the emerging functions and molecular mechanisms of CRL4 in a series of cancer-associated events.
Collapse
Affiliation(s)
- Jingyi Cheng
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China
| | - Xin Bin
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China.
| | - Zhangui Tang
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
6
|
Huang F, Jin L, Zhang X, Wang M, Zhou C. Integrated pan-cancer analysis reveals the immunological and prognostic potential of RBFOX2 in human tumors. Front Pharmacol 2024; 15:1302134. [PMID: 38881877 PMCID: PMC11176534 DOI: 10.3389/fphar.2024.1302134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Background The role of RNA-binding fox one homolog 2 (RBFOX2) in the progression of multiple tumors is increasingly supported by evidence. However, the unclearness pertaining to the expression of RBFOX2, its prognostic potential, and its correlation with the tumor microenvironment (TME) in pan-cancer persists. This study aims to comprehensively investigate the immunological prognostic value of RBFOX2. Methods The Cancer Genome Atlas Gene Expression Omnibus Genotype-Tissue Expression (GTEx), TIMER2.0, Kaplan-Meier (K-M) Plotter, University of Alabama at Birmingham Cancer data analysis Portal (UALCAN), cbioportal, and Gene Expression Profiling Interactive Analysis 2 (GEPIA2) were utilized for a systematic analysis of RBFOX2. This analysis included studying its expression, prognostic value, DNA methylation, enrichment analysis, immune infiltration cells, and immune-related genes. Additionally, qRT-PCR, CCK-8, colony formation, transwell assays, and immunohistochemistry were employed to analyze the expression and biological function of RBFOX2 in liver cancer. Results Variations in RBFOX2 expression have been observed across diverse tumors and have been identified as indicators of unfavorable prognosis. It is closely linked to immune infiltration cells, immune checkpoints, chemokines, and chemokine receptors in the TME. Higher levels of RBFOX2 have been significantly associated with low response and poor prognosis in patients with non-small cell lung cancer (NSCLC) and melanoma who receive immunotherapy. Furthermore, the DNA methylation of RBFOX2 varies across different types of cancer and has shown better prognosis in patients with BLCA, BRCA, CESC, COAD, DLBC, HNSC, LAML, LGG, LUAD, PAAD, SKCM and THYM. Interestingly, RBFOX2 expression was found to be lower in hepatocellular carcinoma (HCC) patients' tumor tissues compared to their paired adjacent tissues. In vitro studies have shown that knockdown of RBFOX2 significantly promotes the growth and metastasis of liver cancer cells. Conclusion This study investigates the correlation between DNA methylation, prognostic value, and immune cell infiltration with the expression of RBFOX2 in pan-cancer and indicates its potential role to inhibit metastasis of liver cancer.
Collapse
Affiliation(s)
- Fengxian Huang
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Long Jin
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xinyue Zhang
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Wang
- Department of Science and Education, Xi'an Children's Hospital Affiliated of Xi'an Jiaotong University, Xi'an, China
| | - Congya Zhou
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
7
|
Lin X, Zheng M, Xiong K, Wang F, Chen Y, Ji L, Chao H. Two-Photon Photodegradation of E3 Ubiquitin Ligase Cereblon by a Ru(II) Complex: Inducing Ferroptosis in Cisplatin-Resistant Tumor Cells. J Med Chem 2024; 67:8372-8382. [PMID: 38745549 DOI: 10.1021/acs.jmedchem.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Using photodynamic therapy (PDT) to trigger nonconventional cell death pathways has provided a new scheme for highly efficient and non-side effects to drug-resistant cancer therapies. Nonetheless, the unclear targets of available photosensitizers leave the manner of PDT-induced tumor cell death relatively unpredictable. Herein, we developed a novel Ru(II)-based photosensitizer, Ru-Poma. Possessing the E3 ubiquitin ligase CRBN-targeting moiety and high singlet oxygen yield of 0.96, Ru-Poma was demonstrated to specifically photodegrade endogenous CRBN, increase lipid peroxide, downregulate GPX4 and GAPDH expression, and consequently induce ferroptosis in cisplatin-resistant cancerous cells. Furthermore, with the deep penetration of two-photon excitation, Ru-Poma achieved drug-resistant circumvention in a 3D tumor cell model. Thus, we describe the first sample of the CRBN-targeting Ru(II) complex active in PDT.
Collapse
Affiliation(s)
- Xinlin Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Mengsi Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Fa Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
8
|
Yu L, Chen Z, Wu Y, Xu M, Zhong D, Xu H, Zhu W. Unraveling role of ubiquitination in drug resistance of gynecological cancer. Am J Cancer Res 2024; 14:2523-2537. [PMID: 38859858 PMCID: PMC11162667 DOI: 10.62347/wykz9784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
Chemotherapy is the principal treatment for advanced cancer patients. However, chemotherapeutic resistance, an important hallmark of cancer, is considered as a key impediment to effective therapy in cancer patients. Multiple signaling pathways and factors have been underscored to participate in governing drug resistance. Posttranslational modifications, including ubiquitination, glycosylation, acetylation and phosphorylation, have emerged as key players in modulating drug resistance in gynecological tumors, such as ovarian cancer, cervical cancer and endometrial cancer. In this review article, we summarize the role of ubiquitination in governing drug sensitivity in gynecological cancers. Moreover, we describe the numerous compounds that target ubiquitination in gynecological cancers to reverse chemotherapeutic resistance. In addition, we provide the future perspectives to fully elucidate the mechanisms by which ubiquitination controls drug resistance in gynecological tumors, contributing to restoring drug sensitivity. This review highlights the complex interplay between ubiquitination and drug resistance in gynecological tumors, providing novel insights into potential therapeutic targets and personalized treatment strategies to overcome the bottleneck of drug resistance.
Collapse
Affiliation(s)
- Li Yu
- Cancer Center, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical CollegeHangzhou, Zhejiang, China
| | - Zheling Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical CollegeHangzhou, Zhejiang, China
| | - Ying Wu
- Cancer Center, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical CollegeHangzhou, Zhejiang, China
| | - Meiliang Xu
- Cancer Center, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical CollegeHangzhou, Zhejiang, China
| | - Difei Zhong
- Cancer Center, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical CollegeHangzhou, Zhejiang, China
| | - Hongen Xu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical CollegeHangzhou, Zhejiang, China
| | - Wei Zhu
- Cancer Center, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical CollegeHangzhou, Zhejiang, China
| |
Collapse
|
9
|
Atri Y, Bharti H, Sahani N, Sarkar DP, Nag A. CUL4A silencing attenuates cervical carcinogenesis and improves Cisplatin sensitivity. Mol Cell Biochem 2024; 479:1041-1058. [PMID: 37285039 DOI: 10.1007/s11010-023-04776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/21/2023] [Indexed: 06/08/2023]
Abstract
CUL4A is an ubiquitin ligase deregulated in numerous pathologies including cancer and even hijacked by viruses for facilitating their survival and propagation. However, its role in Human papilloma virus (HPV)-mediated cervical carcinogenesis remains elusive. The UALCAN and GEPIA datasets were analyzed to ascertain the transcript levels of CUL4A in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) patients. Subsequently, various biochemical assays were employed to explore the functional contribution of CUL4A in cervical carcinogenesis and to shed some light on its involvement in Cisplatin resistance in cervical cancer. Our UALCAN and GEPIA datasets analyses reveal elevated CUL4A transcript levels in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) patients that correlate with adverse clinicopathological parameters such as tumor stage and lymph node metastasis. Kaplan-Meier plot and GEPIA assessment depict poor prognosis of CESC patients having high CUL4A expression. Varied biochemical assays illustrate that CUL4A inhibition severely curtails hallmark malignant properties such as cellular proliferation, migration, and invasion of cervical cancer cells. We also show that CUL4A knockdown in HeLa cells causes increased susceptibility and better apoptotic induction toward Cisplatin, a mainstay drug used in cervical cancer treatment. More interestingly, we find reversion of Cisplatin-resistant phenotype of HeLa cells and an augmented cytotoxicity towards the platinum compound upon CUL4A downregulation. Taken together, our study underscores CUL4A as a cervical cancer oncogene and illustrates its potential as a prognosis indicator. Our investigation provides a novel avenue in improving current anti-cervical cancer therapy and overcoming the bottle-neck of Cisplatin resistance.
Collapse
Affiliation(s)
- Yama Atri
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Hina Bharti
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Nandini Sahani
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Debi P Sarkar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
10
|
Al-Faze R, Ahmed HA, El-Atawy MA, Zagloul H, Alshammari EM, Jaremko M, Emwas AH, Nabil GM, Hanna DH. Mitochondrial dysfunction route as a possible biomarker and therapy target for human cancer. Biomed J 2024; 48:100714. [PMID: 38452973 PMCID: PMC11743316 DOI: 10.1016/j.bj.2024.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Mitochondria are vital organelles found within living cells and have signalling, biosynthetic, and bioenergetic functions. Mitochondria play a crucial role in metabolic reprogramming, which is a characteristic of cancer cells and allows them to ensure a steady supply of proteins, nucleotides, and lipids to enable rapid proliferation and development. Their dysregulated activities have been associated with the growth and metastasis of different kinds of human cancer, particularly ovarian carcinoma. In this review, we briefly demonstrated the modified mitochondrial function in cancer, including mutations in mitochondrial DNA (mtDNA), reactive oxygen species (ROS) production, dynamics, apoptosis of cells, autophagy, and calcium excess to maintain cancer genesis, progression, and metastasis. Furthermore, the mitochondrial dysfunction pathway for some genomic, proteomic, and metabolomics modifications in ovarian cancer has been studied. Additionally, ovarian cancer has been linked to targeted therapies and biomarkers found through various alteration processes underlying mitochondrial dysfunction, notably targeting (ROS), metabolites, rewind metabolic pathways, and chemo-resistant ovarian carcinoma cells.
Collapse
Affiliation(s)
- Rawan Al-Faze
- Department of Chemistry, Faculty of Science, Taibah University, Almadinah Almunawarah, Saudi Arabia
| | - Hoda A Ahmed
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed A El-Atawy
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, Ibrahemia, Alexandria, Egypt
| | - Hayat Zagloul
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu, Saudi Arabia
| | - Eida M Alshammari
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs., King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Gehan M Nabil
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Demiana H Hanna
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
11
|
Zhou C, Jin L, Yu J, Gao Z. Integrated analysis identifies cuproptosis-related gene DLAT and its competing endogenous RNAs network to predict the prognosis of pancreatic adenocarcinoma patients. Medicine (Baltimore) 2024; 103:e37322. [PMID: 38428843 PMCID: PMC10913044 DOI: 10.1097/md.0000000000037322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/30/2024] [Indexed: 03/03/2024] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor with poor prognosis. However, the relationship between cuproptosis-related genes (CRGs) and its competing endogenous RNA (ceRNA) network with the prognosis of PAAD patients remains unclear. To investigate this relationship, we calculated the difference in CRGs between PAAD tissues and normal tissues using the 'limma' R package. Additionally, we employed least absolute shrinkage and selection operator (LASSO) Cox regression analysis to construct a prognostic signature for CRGs. Survival analysis of patients with PAAD was performed using Kaplan-Meier analysis. Furthermore, we used bioinformatics tools to screen for CRGs-related MicroRNA (miRNA) and lncRNAs. To validate these findings, we conducted real-time quantitative polymerase chain reaction (RT-qPCR), CCK-8, colony formation, and Transwell assays to assess the effect of DLAT in vitro. Our results revealed a cuproptosis-related prognostic signature consisting of 3 prognostic genes (DLAT, LIAS, and LIPT1). Notably, patients with a high-risk score for the CRGs signature exhibited poor prognosis in terms of overall survival (OS) (P < .05). The receiver operating characteristic (ROC) curve was used to evaluate the prognostic signature of CRGs. The results showed that the 1-year, 3-year, and 5-year area under the curve values for predicting OS were 0.62, 0.66, and 0.79, respectively. Additionally, the CRGs-related ceRNA network revealed the regulatory axis of LINC00857/has-miR-1179/DLAT in PAAD. In vitro experiments demonstrated that knockdown of LINC00857 and DLAT inhibited the growth and invasion of PAAD cells. This study identified a CRG-related prognostic signature consisting of 3 biomarkers (DLAT, LIAS, and LIPT1) for PAAD. Furthermore, ceRNA network analysis suggested the involvement of the LINC00857/has-miR-1179/DLAT axis in the development of PAAD. Overall, this study provides theoretical support for the investigation of diagnostic and prognostic biomarkers as well as potential therapeutic targets in PAAD.
Collapse
Affiliation(s)
- Congya Zhou
- Department of Radiation Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Long Jin
- Department of Radiation Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Jiao Yu
- Department of Radiation Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Zhengchao Gao
- Department of Orthopaedics, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
12
|
Alam S, Giri PK. Novel players in the development of chemoresistance in ovarian cancer: ovarian cancer stem cells, non-coding RNA and nuclear receptors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:6. [PMID: 38434767 PMCID: PMC10905178 DOI: 10.20517/cdr.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Ovarian cancer (OC) ranks as the fifth leading factor for female mortality globally, with a substantial burden of new cases and mortality recorded annually. Survival rates vary significantly based on the stage of diagnosis, with advanced stages posing significant challenges to treatment. OC is primarily categorized as epithelial, constituting approximately 90% of cases, and correct staging is essential for tailored treatment. The debulking followed by chemotherapy is the prevailing treatment, involving platinum-based drugs in combination with taxanes. However, the efficacy of chemotherapy is hindered by the development of chemoresistance, both acquired during treatment (acquired chemoresistance) and intrinsic to the patient (intrinsic chemoresistance). The emergence of chemoresistance leads to increased mortality rates, with many advanced patients experiencing disease relapse shortly after initial treatment. This review delves into the multifactorial nature of chemoresistance in OC, addressing mechanisms involving transport systems, apoptosis, DNA repair, and ovarian cancer stem cells (OCSCs). While previous research has identified genes associated with these mechanisms, the regulatory roles of non-coding RNA (ncRNA) and nuclear receptors in modulating gene expression to confer chemoresistance have remained poorly understood and underexplored. This comprehensive review aims to shed light on the genes linked to different chemoresistance mechanisms in OC and their intricate regulation by ncRNA and nuclear receptors. Specifically, we examine how these molecular players influence the chemoresistance mechanism. By exploring the interplay between these factors and gene expression regulation, this review seeks to provide a comprehensive mechanism driving chemoresistance in OC.
Collapse
Affiliation(s)
| | - Pankaj Kumar Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|
13
|
Li Y, Zhao Q, Yao J, Lv C, Gao Y, Sun D, Yang Y. MiR-96-5p Suppresses Progression of Arsenite-Induced Human Keratinocyte Proliferation and Malignant Transformation by Targeting Denticleless E3 Ubiquitin Protein Ligase Homolog. TOXICS 2023; 11:978. [PMID: 38133379 PMCID: PMC10747408 DOI: 10.3390/toxics11120978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Long-term exposure to arsenic has been linked to a variety of cancers, among which skin cancer is the most prevalent form. However, the mechanism underlying arsenic carcinogenesis is unclear, and there is still limited information on the role of miRNAs in arsenic-induced skin cancer. This study aims to explore the role of miR-96-5p in the arsenite-induced proliferation and malignant transformation of human HaCaT keratinocytes. The GEO database (accession numbers GSE97303, GSE97305, and GSE97306) was used to extract mRNA and miRNA expression profiles of HaCaT cells treated with or without 0.1 μmol/L sodium arsenite for 3 and 7 weeks. In this paper, according to the CCK8 assay result, HaCaT cells exposed to 0.1 μmol/L sodium arsenite for 48 h were finalized. CCK8, MTT, EdU incorporation, and colony formation assays were used to determine the viability and proliferation of HaCaT cells and transformed HaCaT (T-HaCaT) cells. The subcellular localization and relative expression levels of DTL, as well as miR-96-5p in HaCaT cells induced by arsenite, were determined via immunofluorescence, RT-qPCR, and Western blot. Dual-luciferase reporter assay was performed to identify miR-96-5p bound directly to DTL. Transfection of miR-96-5p mimics or DTL siRNA was conducted to verify the arsenite-induced viability of HaCaT cells and T-HaCaT cells. T-HaCaT cells and nude mice were used to construct arsenite-induced malignant transformation and an in vivo xenograft model to demonstrate the over-expressed effect of miR-96-5p. The results showed that DTL was the target gene of miR-96-5p. Meanwhile, we also found that 0.1 μmol/L sodium arsenite upregulated DTL by decreasing the miR-96-5p level, leading to the proliferation and malignant transformation of HaCaT cells. MiR-96-5p agomir treatment slowed the growth of transplanted HaCaT cells transformed by arsenite in a manner associated with DTL downregulation in the nude mice xenograft model. Taken together, we confirmed that miR-96-5p, as a potent regulator of DTL, suppressed arsenite-induced HaCaT cell proliferation and malignant transformation, which might provide a novel therapeutic target for the treatment of arsenic-induced skin cancer.
Collapse
Affiliation(s)
- Yan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Qiaoshi Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Jinyin Yao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Chunpeng Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
- Institution of Environmentally Related Diseases, Harbin Medical University, Harbin 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
14
|
Zhang Y, Wan X, Yang X, Liu X, Huang Q, Zhou L, Zhang S, Liu S, Xiong Q, Wei M, Qiu L, Zhang B, Han J. eIF3i promotes colorectal cancer cell survival via augmenting PHGDH translation. J Biol Chem 2023; 299:105177. [PMID: 37611825 PMCID: PMC10511817 DOI: 10.1016/j.jbc.2023.105177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023] Open
Abstract
Translational regulation is one of the decisive steps in gene expression, and its dysregulation is closely related to tumorigenesis. Eukaryotic translation initiation factor 3 subunit i (eIF3i) promotes tumor growth by selectively regulating gene translation, but the underlying mechanisms are largely unknown. Here, we show that eIF3i is significantly increased in colorectal cancer (CRC) and reinforces the proliferation of CRC cells. Using ribosome profiling and proteomics analysis, several genes regulated by eIF3i at the translation level were identified, including D-3-phosphoglycerate dehydrogenase (PHGDH), a rate-limiting enzyme in the de novo serine synthesis pathway that participates in metabolic reprogramming of tumor cells. PHGDH knockdown significantly represses CRC cell proliferation and partially attenuates the excessive growth induced by eIF3i overexpression. Mechanistically, METTL3-mediated N6-methyladenosine modification on PHGDH mRNA promotes its binding with eIF3i, ultimately leading to a higher translational rate. In addition, knocking down eIF3i and PHGDH impedes tumor growth in vivo. Collectively, this study not only uncovered a novel regulatory mechanism for PHGDH translation but also demonstrated that eIF3i is a critical metabolic regulator in human cancer.
Collapse
Affiliation(s)
- Yaguang Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowen Wan
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xuyang Yang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xueqin Liu
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Huang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Zhou
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Su Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Sicheng Liu
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qunli Xiong
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Mingtian Wei
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Qiu
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Zhang
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Sumiyoshi A, Fujii H, Okuma Y. Targeting microbiome, drug metabolism, and drug delivery in oncology. Adv Drug Deliv Rev 2023; 199:114902. [PMID: 37263544 DOI: 10.1016/j.addr.2023.114902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Recent emerging scientific evidence shows a relationship between gut microbiota (GM) and immunomodulation. In the recently published "Hallmarks of Cancer", the microbiome has been reported to play a crucial role in cancer research, and perspectives for its clinical implementation to improve the effectiveness of pharmacotherapy were explored. Several studies have shown that GM can affect the outcomes of pharmacotherapy in cancer, suggesting that GM may affect anti-tumor immunity. Thus, studies on GM that analyze big data using computer-based analytical methods are required. In order to successfully deliver GM to an environment conducive to the proliferation of immune cells both within and outside the tumor microenvironment (TME), it is crucial to address a variety of challenges associated with distinct delivery methods, specifically those pertaining to oral, endoscopic, and intravenous delivery. Clinical trials are in progress to evaluate the effects of targeting GM and whether it can enhance immunity or act on the TME, thereby to improve the clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Ai Sumiyoshi
- Department of Pharmacy, National Cancer Center Hospital 5-1-1 Tsukiji Chuo, Tokyo 104-0045, Japan
| | - Hiroyuki Fujii
- Department of Thoracic Oncology, National Cancer Center Hospital 5-1-1 Tsukiji Chuo, Tokyo 104-0045, Japan; Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology, National Cancer Center Hospital 5-1-1 Tsukiji Chuo, Tokyo 104-0045, Japan.
| |
Collapse
|
16
|
Funke K, Einsfelder U, Hansen A, Arévalo L, Schneider S, Nettersheim D, Stein V, Schorle H. Genome-scale CRISPR screen reveals neddylation to contribute to cisplatin resistance of testicular germ cell tumours. Br J Cancer 2023; 128:2270-2282. [PMID: 37024667 PMCID: PMC10241889 DOI: 10.1038/s41416-023-02247-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Type II testicular germ cell tumours (TGCT) are the most prevalent tumours in young men. Patients suffering from cisplatin-resistant TGCTs are facing very poor prognosis demanding novel therapeutic options. Neddylation is a known posttranslational modification mediating many important biological processes, including tumorigenesis. Overactivation of the neddylation pathway promotes carcinogenesis and tumour progression in various entities by inducing proteasomal degradation of tumour suppressors (e.g., p21, p27). METHODS We used a genome-scale CRISPR/Cas9 activation screen to identify cisplatin resistance factors. TGCT cell lines were treated with the neddylation inhibitor (MLN4924)/cisplatin/combination and investigated for changes in viability (XTT assay), apoptosis/cell cycle (flow cytometry) as well as in the transcriptome (3'mRNA sequencing). RESULTS NAE1 overexpression was detected in cisplatin-resistant colonies from the CRISPR screen. Inhibition of neddylation using MLN4924 increased cisplatin cytotoxicity in TGCT cell lines and sensitised cisplatin-resistant cells towards cisplatin. Apoptosis, G2/M-phase cell cycle arrest, γH2A.X/P27 accumulation and mesoderm/endoderm differentiation were observed in TGCT cells, while fibroblast cells were unaffected. CONCLUSIONS We identified overactivation of neddylation as a factor for cisplatin resistance in TGCTs and highlighted the additive effect of NAE1 inhibition by MLN4924 in combination with cisplatin as a novel treatment option for TGCTs.
Collapse
Affiliation(s)
- Kai Funke
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Ulf Einsfelder
- Institute of Physiology II, University Hospital Bonn, Bonn, Germany
| | - Aylin Hansen
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Simon Schneider
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Valentin Stein
- Institute of Physiology II, University Hospital Bonn, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
17
|
Elevated Levels of Lamin A Promote HR and NHEJ-Mediated Repair Mechanisms in High-Grade Ovarian Serous Carcinoma Cell Line. Cells 2023; 12:cells12050757. [PMID: 36899893 PMCID: PMC10001195 DOI: 10.3390/cells12050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Extensive research for the last two decades has significantly contributed to understanding the roles of lamins in the maintenance of nuclear architecture and genome organization which is drastically modified in neoplasia. It must be emphasized that alteration in lamin A/C expression and distribution is a consistent event during tumorigenesis of almost all tissues of human bodies. One of the important signatures of a cancer cell is its inability to repair DNA damage which befalls several genomic events that transform the cells to be sensitive to chemotherapeutic agents. This genomic and chromosomal instability is the most common feature found in cases of high-grade ovarian serous carcinoma. Here, we report elevated levels of lamins in OVCAR3 cells (high-grade ovarian serous carcinoma cell line) in comparison to IOSE (immortalised ovarian surface epithelial cells) and, consequently, altered damage repair machinery in OVCAR3. We have analysed the changes in global gene expression as a sequel to DNA damage induced by etoposide in ovarian carcinoma where lamin A is particularly elevated in expression and reported some differentially expressed genes associated with pathways conferring cellular proliferation and chemoresistance. We hereby establish the role of elevated lamin A in neoplastic transformation in the context of high-grade ovarian serous cancer through a combination of HR and NHEJ mechanisms.
Collapse
|
18
|
Ming H, Li B, Jiang J, Qin S, Nice EC, He W, Lang T, Huang C. Protein degradation: expanding the toolbox to restrain cancer drug resistance. J Hematol Oncol 2023; 16:6. [PMID: 36694209 PMCID: PMC9872387 DOI: 10.1186/s13045-023-01398-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/01/2023] [Indexed: 01/25/2023] Open
Abstract
Despite significant progress in clinical management, drug resistance remains a major obstacle. Recent research based on protein degradation to restrain drug resistance has attracted wide attention, and several therapeutic strategies such as inhibition of proteasome with bortezomib and proteolysis-targeting chimeric have been developed. Compared with intervention at the transcriptional level, targeting the degradation process seems to be a more rapid and direct strategy. Proteasomal proteolysis and lysosomal proteolysis are the most critical quality control systems responsible for the degradation of proteins or organelles. Although proteasomal and lysosomal inhibitors (e.g., bortezomib and chloroquine) have achieved certain improvements in some clinical application scenarios, their routine application in practice is still a long way off, which is due to the lack of precise targeting capabilities and inevitable side effects. In-depth studies on the regulatory mechanism of critical protein degradation regulators, including E3 ubiquitin ligases, deubiquitylating enzymes (DUBs), and chaperones, are expected to provide precise clues for developing targeting strategies and reducing side effects. Here, we discuss the underlying mechanisms of protein degradation in regulating drug efflux, drug metabolism, DNA repair, drug target alteration, downstream bypass signaling, sustaining of stemness, and tumor microenvironment remodeling to delineate the functional roles of protein degradation in drug resistance. We also highlight specific E3 ligases, DUBs, and chaperones, discussing possible strategies modulating protein degradation to target cancer drug resistance. A systematic summary of the molecular basis by which protein degradation regulates tumor drug resistance will help facilitate the development of appropriate clinical strategies.
Collapse
Affiliation(s)
- Hui Ming
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing, 400038, China.
| | - Tingyuan Lang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, People's Republic of China. .,Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People's Republic of China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
19
|
Meng Y, Qiu L, Zeng X, Hu X, Zhang Y, Wan X, Mao X, Wu J, Xu Y, Xiong Q, Chen Z, Zhang B, Han J. Targeting CRL4 suppresses chemoresistant ovarian cancer growth by inducing mitophagy. Signal Transduct Target Ther 2022; 7:388. [PMID: 36481655 PMCID: PMC9731993 DOI: 10.1038/s41392-022-01253-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
Chemoresistance has long been the bottleneck of ovarian cancer (OC) prognosis. It has been shown that mitochondria play a crucial role in cell response to chemotherapy and that dysregulated mitochondrial dynamics is intricately linked with diseases like OC, but the underlying mechanisms remain equivocal. Here, we demonstrate a new mechanism where CRL4CUL4A/DDB1 manipulates OC cell chemoresistance by regulating mitochondrial dynamics and mitophagy. CRL4CUL4A/DDB1 depletion enhanced mitochondrial fission by upregulating AMPKαThr172 and MFFSer172/Ser146 phosphorylation, which in turn recruited DRP1 to mitochondria. CRL4CUL4A/DDB1 loss stimulated mitophagy through the Parkin-PINK1 pathway to degrade the dysfunctional and fragmented mitochondria. Importantly, CRL4CUL4A/DDB1 loss inhibited OC cell proliferation, whereas inhibiting autophagy partially reversed this disruption. Our findings provide novel insight into the multifaceted function of the CRL4 E3 ubiquitin ligase complex in regulating mitochondrial fission, mitophagy, and OC chemoresistance. Disruption of CRL4CUL4A/DDB1 and mitophagy may be a promising therapeutic strategy to overcome chemoresistance in OC.
Collapse
Affiliation(s)
- Yang Meng
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Lei Qiu
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Xinyi Zeng
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China ,grid.26999.3d0000 0001 2151 536XDivision of Cancer Cell Biology, The Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan
| | - Xiaoyan Hu
- grid.224260.00000 0004 0458 8737Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA USA
| | - Yaguang Zhang
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Xiaowen Wan
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Xiaobing Mao
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jian Wu
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yongfeng Xu
- grid.412901.f0000 0004 1770 1022Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Qunli Xiong
- grid.412901.f0000 0004 1770 1022Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Zhixin Chen
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Bo Zhang
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Junhong Han
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
20
|
Zhang Y, Huang W, Chen D, Zhao Y, Sun F, Wang Z, Lou G. Identification of a Recurrence Gene Signature for Ovarian Cancer Prognosis by Integrating Single-Cell RNA Sequencing and Bulk Expression Datasets. Front Genet 2022; 13:823082. [PMID: 35754835 PMCID: PMC9214038 DOI: 10.3389/fgene.2022.823082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is one of the most common gynecological malignancies in women, with a poor prognosis and high mortality. With the expansion of single-cell RNA sequencing technologies, the inner biological mechanism involved in tumor recurrence should be explored at the single-cell level, and novel prognostic signatures derived from recurrence events were urgently identified. In this study, we identified recurrence-related genes for ovarian cancer by integrating two Gene Expression Omnibus datasets, including an ovarian cancer single-cell RNA sequencing dataset (GSE146026) and a bulk expression dataset (GSE44104). Based on these recurrence genes, we further utilized the merged expression dataset containing a total of 524 ovarian cancer samples to identify prognostic signatures and constructed a 13-gene risk model, named RMGS (recurrence marker gene signature). Based on the RMGS score, the samples were stratified into high-risk and low-risk groups, and these two groups displayed significant survival difference in two independent validation cohorts including The Cancer Genome Atlas (TCGA). Also, the RMGS score remained significantly independent in multivariate analysis after adjusting for clinical factors, including the tumor grade and stage. Furthermore, there existed close associations between the RMGS score and immune characterizations, including checkpoint inhibition, EMT signature, and T-cell infiltration. Finally, the associations between RMGS scores and molecular subtypes revealed that samples with mesenchymal subtypes displayed higher RMGS scores. In the meanwhile, the genomics characterization from these two risk groups was also identified. In conclusion, the recurrence-related RMGS model we identified could provide a new understanding of ovarian cancer prognosis at the single-cell level and offer a reference for therapy decisions for patient treatment.
Collapse
Affiliation(s)
- Yongjian Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei Huang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dejia Chen
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yue Zhao
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fusheng Sun
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhiqiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
21
|
Jiao D, Chen Y, Wang Y, Sun H, Shi Q, Zhang L, Zhao X, Liu Y, He H, Lv Z, Liu C, Zhang P, Gao K, Huang Y, Li Y, Li L, Wang C. DCAF12 promotes apoptosis and inhibits NF-κB activation by acting as an endogenous antagonist of IAPs. Oncogene 2022; 41:3000-3010. [PMID: 35459779 DOI: 10.1038/s41388-022-02319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Abstract
Members of the Inhibitor of Apoptosis Protein (IAP) family are essential for cell survival and appear to neutralize the cell death machinery by binding pro-apoptotic caspases. dcaf12 was recently identified as an apoptosis regulator in Drosophila. However, the underlying molecular mechanisms are unknown. Here we revealed that human DCAF12 homolog binds multiple IAPs, including XIAP, cIAP1, cIAP2, and BRUCE, through recognition of BIR domains in IAPs. The pro-apoptotic function of DCAF12 is dependent on its capacity to bind IAPs. In response to apoptotic stimuli, DCAF12 translocates from the nucleus to the cytoplasm, where it blocks the interaction between XIAP and pro-apoptotic caspases to facilitate caspase activation and apoptosis execution. Similarly, DCAF12 suppresses NF-κB activation in an IAP binding-dependent manner. Moreover, DCAF12 acts as a tumor suppressor to restrict the malignant phenotypes of cancer cells. Together, our results suggest that DCAF12 is an evolutionarily conserved IAP antagonist.
Collapse
Affiliation(s)
- Dongyue Jiao
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yingji Chen
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yalan Wang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Huiru Sun
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qing Shi
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liang Zhang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaying Zhao
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yajuan Liu
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Huiying He
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zeheng Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chuan Liu
- Department of Thyroid and Breast Surgery, Zibo Central Hospital, Zibo, 255036, China
| | - Pingzhao Zhang
- Fudan University Shanghai Cancer Center and Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yan Huang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yao Li
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liang Li
- Department of Thyroid and Breast Surgery, Zibo Central Hospital, Zibo, 255036, China.
| | - Chenji Wang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
22
|
Ubiquitin-specific protease 35 (USP35) mediates cisplatin-induced apoptosis by stabilizing BIRC3 in non-small cell lung cancer. J Transl Med 2022; 102:524-533. [PMID: 35022505 DOI: 10.1038/s41374-021-00725-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Ubiquitin-specific protease 35 (USP35) is a member of the ubiquitin-specific protease family (USP), which influences the progression of multiple cancers by deubiquitinating a variety of substrates. In recent years, the specific role of USP35 was begun to be understood. In this study, we investigated the role and underlying molecular mechanisms of USP35 in chemoresistance of non-small cell lung cancer (NSCLC) to cisplatin. Depletion of USP35 increased the sensitivity of NSCLC to cisplatin-induced apoptosis. We screened and identified a potential substrate of USP35, baculoviral IAP repeat containing 3 (BIRC3). Overexpression of USP35 in H460 cells increased the abundance of BIRC3, while USP35 knockdown in Anip973 cells decreased BIRC3 abundance. Notably, USP35 directly interacted with and stabilized BIRC3 through lys48-mediated polyubiquitination via its deubiquitinating enzyme activity. USP35 alleviated cisplatin-induced cell apoptosis by regulating BIRC3 levels in NSCLC cells. Moreover, a significant positive correlation between USP35 and BIRC3 protein expression levels was observed in human NSCLC tissues. Taken together, USP35 plays a vital role in resistance to cisplatin-induced cell death through the overexpression of BIRC3. USP35 might be a potentially novel therapeutic target in human NSCLC.
Collapse
|
23
|
Gao W, Chen L, Lin L, Yang M, Li T, Wei H, Sha C, Xing J, Zhang M, Zhao S, Chen Q, Xu W, Li Y, Zhu X. SIAH1 reverses chemoresistance in epithelial ovarian cancer via ubiquitination of YBX-1. Oncogenesis 2022; 11:13. [PMID: 35273154 PMCID: PMC8913663 DOI: 10.1038/s41389-022-00387-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 01/20/2023] Open
Abstract
Chemoresistance is a severe outcome among patients with epithelial ovarian cancer (EOC) that leads to a poor prognosis. YBX-1 has been shown to cause treatment failure and cancer progression in EOC. However, strategies that directly target YBX-1 are not yet conceivable. Here, we identified that SIAH1 which was downregulated in chemoresistant EOC samples and cell lines functioned as novel E3 ligases to trigger degradation of YBX-1 at cytoplasm by RING finger domain. Mechanistic studies show that YBX-1 was ubiquitinated by SIAH1 at lys304 that lead to the instability of its target m5C-modified mRNAs, thus sensitized EOC cells to cDDP. Overexpression of SIAH1 enhanced the antitumor efficacy of cisplatin in vitro and in vivo, which were partially impaired by ectopic expression of YBX-1 or depletion of YBX-1 ubiquitination. In summary, our data identify the SIAH1/YBX-1 interaction as a therapeutic target for overcoming EOC chemoresistance.
Collapse
Affiliation(s)
- Wujiang Gao
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lu Chen
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Li Lin
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Meiling Yang
- The first people's hospital of Nantong, Nantong, China
| | - Taoqiong Li
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hong Wei
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chunli Sha
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Xing
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengxue Zhang
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shijie Zhao
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qi Chen
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenlin Xu
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuefeng Li
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China. .,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
24
|
E3 ligases: a potential multi-drug target for different types of cancers and neurological disorders. Future Med Chem 2022; 14:187-201. [DOI: 10.4155/fmc-2021-0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ubiquitylation is a posttranslational modification of proteins that is necessary for a variety of cellular processes. E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase are all involved in transferring ubiquitin to the target substrate to regulate cellular function. The objective of this review is to provide an overview of different aspects of E3 ubiquitin ligases that can lead to major biological system failure in several deadly diseases. The first part of this review covers the important characteristics of E3 ubiquitin ligases and their classification based on structural domains. Further, the authors provide some online resources that help researchers explore the data relevant to the enzyme. The following section delves into the involvement of E3 ubiquitin ligases in various diseases and biological processes, including different types of cancer and neurological disorders.
Collapse
|
25
|
Li S, Yang P, Xu L, Li M. Blocking of Birc3/TLR4/Myd88 signaling protects carbapenem-resistant klebsiella pneumoniae in a mouse model of infection. Transpl Immunol 2021; 69:101464. [PMID: 34500040 DOI: 10.1016/j.trim.2021.101464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Klebsiella pneumonia (KP) and carbapenem-resistant Klebsiella pneumonia (CRKP) lung infections significantly increase the morbidity and mortality of pneumonia. Recent studies have shown that baculoviral IAP repeat-containing 3 (Birc3) plays an important role in the prevention and treatment of pneumonia. However, the role of Birc3 in CRKP-induced pneumonia has not been widely reported. METHODS In vivo, we successfully established a mouse model of pneumonia induced by KP and CRKP. In vitro, we established a macrophage model treated with KP and CRKP. The phagocytosis of macrophages treated with CRKP was measured by Flow cytometry and coated plate counting. STRING and Co-IP assays were used to predict and verify the relationship between Birc3 and toll-like receptor 4 (TLR4) or myeloid differentiation factor 88 (Myd88). HE staining was used to detect the lung pathological changes of anti-Birc3 IgG inhibited CRKP-induced inflammatory cells. The levels of inflammatory factors and proteins were detected by ELISA and Western blot, respectively. RESULTS The phagocytic ability of macrophages was reduced, and the cytokine storm was enhanced in CRKP treated Raw264.7 cells. Macrophages treated with CRKP impaired phagocytosis. Birc3 could interact with TLR4 and MyD88. Anti-Birc3 IgG inhibited CRKP-induced inflammatory cell lung infiltration. In addition, mice treated with anti-Birc3 IgG improved the CRKP-induced inflammatory cell lung infiltration, bacterial spread, and cytokine storm by inhibiting the Birc3/TLR4/Myd88 signaling pathway. CONCLUSION The results suggest that Birc3 may serve as a target for the treatment of bacterial infection and lung inflammation in CRKP-induced pneumonia.
Collapse
Affiliation(s)
- Sujuan Li
- Department of Clinical Laboratory, The Second People's Hospital of Lanzhou City, Lanzhou 730046, China
| | - Ping Yang
- Department of Infection Management, The Second People's Hospital of Lanzhou City, Lanzhou 730046, China.
| | - Lijuan Xu
- Department of Clinical Laboratory, The Second People's Hospital of Lanzhou City, Lanzhou 730046, China
| | - Minmin Li
- Department of Clinical Laboratory, The Second People's Hospital of Lanzhou City, Lanzhou 730046, China
| |
Collapse
|
26
|
Meng Y, Qiu L, Zhang S, Han J. The emerging roles of E3 ubiquitin ligases in ovarian cancer chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:365-381. [PMID: 35582023 PMCID: PMC9019267 DOI: 10.20517/cdr.2020.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/24/2022]
Abstract
Epithelial cancer of the ovary exhibits the highest mortality rate of all gynecological malignancies in women today, since the disease is often diagnosed in advanced stages. While the treatment of cancer with specific chemical agents or drugs is the favored treatment regimen, chemotherapy resistance greatly impedes successful ovarian cancer chemotherapy. Thus, chemoresistance becomes one of the most critical clinical issues confronted when treating patients with ovarian cancer. Convincing evidence hints that dysregulation of E3 ubiquitin ligases is a key factor in the development and maintenance of ovarian cancer chemoresistance. This review outlines recent advancement in our understanding of the emerging roles of E3 ubiquitin ligases in ovarian cancer chemoresistance. We also highlight currently available inhibitors targeting E3 ligase activities and discuss their potential for clinical applications in treating chemoresistant ovarian cancer patients.
Collapse
Affiliation(s)
- Yang Meng
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Yang Meng and Lei Qiu equally contributed to this manuscript
| | - Lei Qiu
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Yang Meng and Lei Qiu equally contributed to this manuscript
| | - Su Zhang
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
27
|
Wu T, Gu X, Cui H. Emerging Roles of SKP2 in Cancer Drug Resistance. Cells 2021; 10:cells10051147. [PMID: 34068643 PMCID: PMC8150781 DOI: 10.3390/cells10051147] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
More than half of all cancer patients receive chemotherapy, however, some of them easily acquire drug resistance. Resistance to chemotherapy has become a massive obstacle to achieve high rates of pathological complete response during cancer therapy. S-phase kinase-associated protein 2 (Skp2), as an E3 ligase, was found to be highly correlated with drug resistance and poor prognosis. In this review, we summarize the mechanisms that Skp2 confers to drug resistance, including the Akt-Skp2 feedback loop, Skp2-p27 pathway, cell cycle and mitosis regulation, EMT (epithelial-mesenchymal transition) property, enhanced DNA damage response and repair, etc. We also addressed novel molecules that either inhibit Skp2 expression or target Skp2-centered interactions, which might have vast potential for application in clinics and benefit cancer patients in the future.
Collapse
Affiliation(s)
- Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China;
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China;
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China;
- Correspondence:
| |
Collapse
|
28
|
Liu Y, Duan C, Zhang C. E3 Ubiquitin Ligase in Anticancer Drugdsla Resistance: Recent Advances and Future Potential. Front Pharmacol 2021; 12:645864. [PMID: 33935743 PMCID: PMC8082683 DOI: 10.3389/fphar.2021.645864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Drug therapy is the primary treatment for patients with advanced cancer. The use of anticancer drugs will inevitably lead to drug resistance, which manifests as tumor recurrence. Overcoming chemoresistance may enable cancer patients to have better therapeutic effects. However, the mechanisms underlying drug resistance are poorly understood. E3 ubiquitin ligases (E3s) are a large class of proteins, and there are over 800 putative functional E3s. E3s play a crucial role in substrate recognition and catalyze the final step of ubiquitin transfer to specific substrate proteins. The diversity of the set of substrates contributes to the diverse functions of E3s, indicating that E3s could be desirable drug targets. The E3s MDM2, FBWX7, and SKP2 have been well studied and have shown a relationship with drug resistance. Strategies targeting E3s to combat drug resistance include interfering with their activators, degrading the E3s themselves and influencing the interaction between E3s and their substrates. Research on E3s has led to the discovery of possible therapeutic methods to overcome the challenging clinical situation imposed by drug resistance. In this article, we summarize the role of E3s in cancer drug resistance from the perspective of drug class.
Collapse
Affiliation(s)
- Yuanqi Liu
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| |
Collapse
|
29
|
Akbari G. Emerging roles of microRNAs in intestinal ischemia/reperfusion-induced injury: a review. J Physiol Biochem 2020; 76:525-537. [PMID: 33140255 DOI: 10.1007/s13105-020-00772-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Intestinal ischemia/reperfusion (II/R) injury is a serious pathological phenomenon in underlying hemorrhagic shock, trauma, strangulated intestinal obstruction, and acute mesenteric ischemia which associated with high morbidity and mortality. MicroRNAs (miRNAs, miRs) are endogenous non-coding RNAs that regulate post-transcriptionally target mRNA translation via degrading it and/or suppressing protein synthesis. This review discusses on the role of some miRNAs in underlying II/R injury. Some of these miRNAs can have protective action through agomiR or specific antagomiR, and others can have destructive effects in the basal level of II/R insult. Based on these literature reviews, II/R injury affects several miRNAs and their specific target genes. Some miRNAs upregulate under condition of II/R injury, and multiple miRNAs downregulate following II/R damage. Data of this review have been collected from the scientific articles published in databases such as Science Direct, Scopus, PubMed, Web of Science, and Scientific Information Database from 2000 to 2020. It is shown a correlation between changes in the expression of miRNAs and autophagy, inflammation, oxidative stress, apoptosis, and epithelial barrier function. Taken together, agomiR or antagomiR of some miRNAs can be considered as one new target for the research and development of innovative drugs to the prevention or treatment of II/R damage.
Collapse
Affiliation(s)
- Ghaidafeh Akbari
- Medicinal Plants Research Center, Department of Physiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
30
|
Song H, Liu D, Dong S, Zeng L, Wu Z, Zhao P, Zhang L, Chen ZS, Zou C. Epitranscriptomics and epiproteomics in cancer drug resistance: therapeutic implications. Signal Transduct Target Ther 2020; 5:193. [PMID: 32900991 PMCID: PMC7479143 DOI: 10.1038/s41392-020-00300-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Drug resistance is a major hurdle in cancer treatment and a key cause of poor prognosis. Epitranscriptomics and epiproteomics are crucial in cell proliferation, migration, invasion, and epithelial–mesenchymal transition. In recent years, epitranscriptomic and epiproteomic modification has been investigated on their roles in overcoming drug resistance. In this review article, we summarized the recent progress in overcoming cancer drug resistance in three novel aspects: (i) mRNA modification, which includes alternative splicing, A-to-I modification and mRNA methylation; (ii) noncoding RNAs modification, which involves miRNAs, lncRNAs, and circRNAs; and (iii) posttranslational modification on molecules encompasses drug inactivation/efflux, drug target modifications, DNA damage repair, cell death resistance, EMT, and metastasis. In addition, we discussed the therapeutic implications of targeting some classical chemotherapeutic drugs such as cisplatin, 5-fluorouridine, and gefitinib via these modifications. Taken together, this review highlights the importance of epitranscriptomic and epiproteomic modification in cancer drug resistance and provides new insights on potential therapeutic targets to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Huibin Song
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Dongcheng Liu
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Shaowei Dong
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA.,Tomas Lindahl Nobel Laureate Laboratory, Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhuoxun Wu
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA
| | - Pan Zhao
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Litu Zhang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA.
| | - Chang Zou
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China. .,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, 518001, Guangdong, China.
| |
Collapse
|
31
|
Xing L, Mi W, Zhang Y, Tian S, Zhang Y, Qi R, Lou G, Zhang C. The identification of six risk genes for ovarian cancer platinum response based on global network algorithm and verification analysis. J Cell Mol Med 2020; 24:9839-9852. [PMID: 32762026 PMCID: PMC7520306 DOI: 10.1111/jcmm.15567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/31/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the most lethal gynaecological cancer, and resistance of platinum‐based chemotherapy is the main reason for treatment failure. The aim of the present study was to identify candidate genes involved in ovarian cancer platinum response by analysing genes from homologous recombination and Fanconi anaemia pathways. Associations between these two functional genes were explored in the study, and we performed a random walk algorithm based on reconstructed gene‐gene network, including protein‐protein interaction and co‐expression relations. Following the random walk, all genes were ranked and GSEA analysis showed that the biological functions focused primarily on autophagy, histone modification and gluconeogenesis. Based on three types of seed nodes, the top two genes were utilized as examples. We selected a total of six candidate genes (FANCA, FANCG, POLD1, KDM1A, BLM and BRCA1) for subsequent verification. The validation results of the six candidate genes have significance in three independent ovarian cancer data sets with platinum‐resistant and platinum‐sensitive information. To explore the correlation between biomarkers and clinical prognostic factors, we performed differential analysis and multivariate clinical subgroup analysis for six candidate genes at both mRNA and protein levels. And each of the six candidate genes and their neighbouring genes with a mutation rate greater than 10% were also analysed by network construction and functional enrichment analysis. In the meanwhile, the survival analysis for platinum‐treated patients was performed in the current study. Finally, the RT‐qPCR assay was used to determine the performance of candidate genes in ovarian cancer platinum response. Taken together, this research demonstrated that comprehensive bioinformatics methods could help to understand the molecular mechanism of platinum response and provide new strategies for overcoming platinum resistance in ovarian cancer treatment.
Collapse
Affiliation(s)
- Linan Xing
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wanqi Mi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongjian Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Songyu Tian
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yunyang Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Rui Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
32
|
Zhang Y, Lei Y, Xu J, Hua J, Zhang B, Liu J, Liang C, Meng Q, Yu X, Shi S. Role of Damage DNA-Binding Protein 1 in Pancreatic Cancer Progression and Chemoresistance. Cancers (Basel) 2019; 11:cancers11121998. [PMID: 31842285 PMCID: PMC6966444 DOI: 10.3390/cancers11121998] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Damaged DNA-binding protein 1 (DDB1) recruits nucleotide excision pathway proteins to form the UV-damaged DNA-binding protein complex and is required for DNA repair. DDB1 was reported to participate in apoptosis and chemoresistance regulation in several cancers. However, little is known about the function of DDB1 in pancreatic adenocarcinoma (PDAC). In this study, we reported that DDB1 functions as a tumor-promoting factor in PDAC by regulating cancer cell proliferation, epithelial-mesenchymal transition (EMT) and chemoresistance. Compared to normal pancreatic tissues, PDAC tissues had high expression levels of DDB1, and this high expression was positively correlated with poor prognosis. Furthermore, reductions in cell proliferation and EMT were observed in DDB1-deficient PDAC cell lines. Intriguingly, we also found that abrogation of DDB1 expression increased PDAC cell sensitivity to gemcitabine (GEM). Mechanistically, DDB1 knockdown was associated with an increase in deoxycytidine kinase expression in vivo and in vitro. In summary, our work demonstrated that DDB1 promotes PDAC progression and chemoresistance and may serve as a potential predictive marker and therapeutic target for PDAC treatment.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China; (Y.Z.); (Y.L.); (J.X.); (J.H.); (B.Z.); (J.L.); (C.L.); (Q.M.)
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong’An Road, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, No. 270 Dong’An Road, Shanghai 200032, China
| | - Yubin Lei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China; (Y.Z.); (Y.L.); (J.X.); (J.H.); (B.Z.); (J.L.); (C.L.); (Q.M.)
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong’An Road, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, No. 270 Dong’An Road, Shanghai 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China; (Y.Z.); (Y.L.); (J.X.); (J.H.); (B.Z.); (J.L.); (C.L.); (Q.M.)
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong’An Road, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, No. 270 Dong’An Road, Shanghai 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China; (Y.Z.); (Y.L.); (J.X.); (J.H.); (B.Z.); (J.L.); (C.L.); (Q.M.)
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong’An Road, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, No. 270 Dong’An Road, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China; (Y.Z.); (Y.L.); (J.X.); (J.H.); (B.Z.); (J.L.); (C.L.); (Q.M.)
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong’An Road, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, No. 270 Dong’An Road, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China; (Y.Z.); (Y.L.); (J.X.); (J.H.); (B.Z.); (J.L.); (C.L.); (Q.M.)
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong’An Road, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, No. 270 Dong’An Road, Shanghai 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China; (Y.Z.); (Y.L.); (J.X.); (J.H.); (B.Z.); (J.L.); (C.L.); (Q.M.)
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong’An Road, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, No. 270 Dong’An Road, Shanghai 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China; (Y.Z.); (Y.L.); (J.X.); (J.H.); (B.Z.); (J.L.); (C.L.); (Q.M.)
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong’An Road, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, No. 270 Dong’An Road, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China; (Y.Z.); (Y.L.); (J.X.); (J.H.); (B.Z.); (J.L.); (C.L.); (Q.M.)
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong’An Road, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, No. 270 Dong’An Road, Shanghai 200032, China
- Correspondence: (X.Y.); (S.S.); Tel.: +86-021-6417-5590 (X.Y.); +86-021-6403-1446 (S.S.)
| | - Si Shi
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Correspondence: (X.Y.); (S.S.); Tel.: +86-021-6417-5590 (X.Y.); +86-021-6403-1446 (S.S.)
| |
Collapse
|
33
|
Wang Z, Zhong M, Song Q, Pascal LE, Yang Z, Wu Z, Wang K, Wang Z. Anti-apoptotic factor Birc3 is up-regulated by ELL2 knockdown and stimulates proliferation in LNCaP cells. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2019; 7:223-231. [PMID: 31511829 PMCID: PMC6734035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
ELL2 is a potential tumor suppressor in prostate cancer. ELL2 knockout in mice induced mPIN, the putative precursor of prostate cancer and ELL2 knockdown enhanced proliferation in cultured prostate cancer cells. To explore the mechanism of ELL2 action in prostate cancer, we investigated the role of Birc3, an apoptosis inhibitor, in prostate cancer cells and the regulation of its expression by ELL2. ELL2 knockdown enhanced Birc3 expression in LNCaP and C4-2 cell line models. BrdU assay showed that Birc3 knockdown inhibited proliferation, ELL2 knockdown enhanced proliferation, and Birc3 knockdown counteracted ELL2 knockdown-induced proliferation in LNCaP cells. Trypan blue assay suggested that Birc3 knockout did not induce cell death in LNCaP cells. These findings suggested that Birc3 is a downstream gene of ELL2 and may play a role in driving prostate cancer proliferation.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Urology, Xiangya Hospital of Central South UniversityChangsha, China
- Department of Urology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Mingming Zhong
- Department of Urology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Qiong Song
- Department of Urology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
- Center for Translational Medicine, Guangxi Medical UniversityNanning, Guangxi, China
| | - Laura E Pascal
- Department of Urology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Zhenyu Yang
- Department of Urology, Xiangya Hospital of Central South UniversityChangsha, China
- Department of Urology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Zeyu Wu
- Department of Urology, Xiangya Hospital of Central South UniversityChangsha, China
- Department of Urology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Ke Wang
- Department of Urology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
- Department of Urology, First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, China
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of MedicinePittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of MedicinePittsburgh, PA, USA
| |
Collapse
|