1
|
Rahman MS, Ghorai S, Panda K, Santiago MJ, Aggarwal S, Wang T, Rahman I, Chinnapaiyan S, Unwalla HJ. Dr. Jekyll or Mr. Hyde: The multifaceted roles of miR-145-5p in human health and disease. Noncoding RNA Res 2025; 11:22-37. [PMID: 39736851 PMCID: PMC11683234 DOI: 10.1016/j.ncrna.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 11/09/2024] [Indexed: 01/01/2025] Open
Abstract
MicroRNAs (miRNAs) are classified as small, non-coding RNAs that play crucial roles in diverse biological processes, including cellular development, differentiation, growth, and metabolism. MiRNAs regulate gene expression by recognizing complementary sequences within messenger RNA (mRNA) molecules. Recent studies have revealed that miR-145-5p functions as a tumor suppressor in several cancers, including lung, liver, and breast cancers. Notably, miR-145-5p plays a vital role in the pathophysiology underlying HIV and chronic obstructive pulmonary diseases associated with cigarette smoke. This miRNA is abundant in biofluids and shows potential as a biomarker for the diagnosis and prognosis of several infectious diseases, such as hepatitis B, tuberculosis, and influenza. Additionally, numerous studies have indicated that other non-coding RNAs, including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), can regulate miR-145-5p. Given the significance of miR-145-5p, a comprehensive overview focusing on its roles in health and disease is essential. This review discusses the dual role of miR-145-5p as a protagonist and antagonist in important human diseases, with particular emphasis on disorders of the respiratory, digestive, nervous, reproductive, endocrine, and urinary systems.
Collapse
Affiliation(s)
- Md. Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Suvankar Ghorai
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Maria J. Santiago
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Saurabh Aggarwal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Ting Wang
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Hoshang J. Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| |
Collapse
|
2
|
Chen Z, Qin Y. Role of miRNA‑145‑5p in cancer (Review). Oncol Rep 2025; 53:39. [PMID: 39886965 PMCID: PMC11800069 DOI: 10.3892/or.2025.8872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
MicroRNA‑145‑5p (miRNA‑145‑5p) is a short non‑coding RNA located at chromosome 5q33.1, which has gained significant attention in several aspects of cellular regulation and biological functions. In malignant tumours, miRNA‑145‑5p may function as either a tumour suppressor or an oncogene, affecting tumour progression by targeting downstream genes or modulating their expression through upstream regulators. However, the full extent of miRNA‑145‑5p's role in cancer has remained to be determined. This review provides an overview of the role of miRNA‑145‑5p in cancer, investigates its potential as a biomarker for diagnosis, prognosis and treatment response, and evaluates its influence on cancer chemotherapy and radiotherapy. Finally, current strategies for systemic delivery of miRNA‑145‑5p in cancer therapies are summarized.
Collapse
Affiliation(s)
- Zeshan Chen
- Department of Traditional Chinese Medicine, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, Guangxi 530016, P.R. China
| | - Yijue Qin
- Department of Traditional Chinese Medicine, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, Guangxi 530016, P.R. China
| |
Collapse
|
3
|
Lingling G, Qingxing Y, Jianbo X, Weijie W, Dan L. MiR-145-5p regulates granulosa cell proliferation by targeting the SET gene in KGN cells. J Reprod Dev 2024; 70:372-378. [PMID: 39313372 DOI: 10.1262/jrd.2024-053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
MiR-145-5p has been implicated in the development and progression of various disorders, and it is primarily recognized as a tumor suppressor in numerous cancers types. Its expression has been reported to decrease in the granulosa cells of patients with polycystic ovarian syndrome (PCOS). This study aimed to investigate whether miR-145-5p plays a role in granulosa cell proliferation and to shed light on the underlying pathological mechanisms of follicular development in patients with PCOS. Follicular fluid samples were collected from patients with PCOS and healthy individuals. The Cell Counting Kit-8 and bromodeoxyuridine assays were performed to assess KGN cell proliferation. The expression of miR-145-5p was significantly decreased in PCOS granulosa cells than in control cells, whereas the expression of SET was increased. Furthermore, miR-145-5p suppressed the proliferation of KGN cells. SET was identified as a direct target of miR-145-5p. Additionally, SET promoted the proliferation of KGN cells, and knockdown of SET counteracted the effect of the miR-145-5p inhibitor. Therefore, miR-145-5p regulates granulosa cell proliferation by targeting the SET in KGN cells; this process may be a potential pathological pathway that contributes to follicular developmental disorders in PCOS.
Collapse
Affiliation(s)
- Gao Lingling
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225001, China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Jiangsu 225001, China
| | - Yang Qingxing
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225001, China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Jiangsu 225001, China
| | - Xu Jianbo
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225001, China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Jiangsu 225001, China
| | - Wang Weijie
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225001, China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Jiangsu 225001, China
| | - Lu Dan
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225001, China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Jiangsu 225001, China
| |
Collapse
|
4
|
Zhang C, Wang J, Wang H, Li J. Interference of the Circular RNA Sperm Antigen With Calponin Homology and Coiled-Coil Domains 1 Suppresses Growth and Promotes Apoptosis of Breast Cancer Cells Partially Through Targeting miR-1236-3p/Chromobox 8 Pathway. Clin Breast Cancer 2024; 24:e138-e151.e2. [PMID: 38341369 DOI: 10.1016/j.clbc.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 02/12/2024]
Abstract
Noncoding RNAs and RNA modifiers are implicated in cancer radiotherapy. Here, we aimed to investigate the role of sperm antigen with calponin homology and coiled-coil domains 1 (SPECC1)-derived circular RNA (circSPECC1; hsa_circ_0000745) in breast cancer (BC) cells under radiation treatment. Based on quantitative real-time PCR, circSPECC1 was highly upregulated in BC patients' tumors and cells, and circSPECC1 expression was further increased with the dosage of radiation in BC cells. Moreover, circSPECC1 upregulation was found to be concomitant with higher chromobox 8 (CBX8) and lower microRNA (miR)-1236-3p expression. Functionally, 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU) and colony formation assays showed that circSPECC1 interference suppressed cell proliferation and long-term survival in BC cells and irradiated BC cells. Xenograft tumor model experiments showed that circSPECC1 knockdown restrained BC tumor growth in vivo. Meanwhile, flow cytometry assay and western blotting revealed an enhanced apoptosis by silencing circSPECC1. Moreover, miR-1236-3p overexpression, similar to circSPECC1 silencing, displayed anti-growth and proapoptosis roles in irradiated BC cells. Mechanistically, dual-luciferase reporter assay and RNA immunoprecipitation assay identified a target relationship between miR-1236-3p and circSPECC1 or CBX8. Also, CBX8 expression could be modulated by circSPECC1 via miR-1236-3p regulation. Collectively, we indicated that inhibiting circSPECC1 could suppress growth and promote apoptosis of BC cells in both irradiated and nonirradiated conditions at least partially via miR-1236-3p/CBX8 axis, confirming that circSPECC1 might be target to develop anticancer drug in BC.
Collapse
Affiliation(s)
- Cuipeng Zhang
- Department of Oncology, Second Affiliated Hospital of Guizhou Medical University, Guizhou Province, China.
| | - Jing Wang
- Department of Oncology, The Second People's Hospital of Liaocheng, Linqing, Shandong Province, China
| | - Hongwei Wang
- Department of Oncology, Lianyungang No. 2 Hospital of Jiangsu Province, China
| | - Jing Li
- Department of Oncology, Shandong Energy Zaozhuang Mining Group Central Hospital, China
| |
Collapse
|
5
|
Wang Z, Zhou X, Deng X, Ye D, Liu D, Zhou B, Zheng W, Wang X, Wang Y, Borkhuu O, Fang L. miR-186-ANXA9 signaling inhibits tumorigenesis in breast cancer. Front Oncol 2023; 13:1166666. [PMID: 37841425 PMCID: PMC10570552 DOI: 10.3389/fonc.2023.1166666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Breast cancer (BC) ranks as the highest incidence among cancer types in women all over the world. MicroRNAs (miRNAs) are a class of short endogenous non-coding RNA in cells mostly functioning to silence the target mRNAs. In the current study, a miRNA screening analysis identified miR-186-5p to be downregulated in human breast cancer tumors. Functional studies in vitro demonstrated that overexpression of miR-186-5p inhibited cellular proliferation and induced cell apoptosis in multiple breast cancer cell lines including MDA-MB-231, MCF-7, and BT549 cells. Transplantation of the miR-186-5p-overexpressing MDA-MB-231 cells into nude mice significantly inhibited mammary tumor growth in vivo. Sequence blast analysis predicted annexin A9 (ANXA9) as a target gene of miR-186-5p, which was validated by luciferase reporter assay, QRT-PCR analysis, and western blot. Additional gene expression analysis of clinical tumor samples indicated a negative correlation between miR-186-5p and ANXA9 in human breast cancer. Knockdown of ANXA9 mimicked the phenotype of miR-186-5p overexpression. Reintroduction of ANXA9 back rescued the miR-186-5p-induced cell apoptosis. In addition, miR-186-5p decreased the expression of Bcl-2 and increased the expression of p53, suggesting a mechanism regulating miR-186-5p-induced cellular apoptosis. In summary, our study is the first to demonstrate miR-186-5p-ANXA9 signaling in suppressing human breast cancer. It provided a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Zhongrui Wang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People’s Hospital, Shanghai Tenth People’s Hospital of Nanjing Medical University, Shanghai, China
- Department of Breast and Thyroid Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiqian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaochong Deng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danrong Ye
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Diya Liu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenfang Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuehui Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuying Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Oyungerel Borkhuu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Fang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People’s Hospital, Shanghai Tenth People’s Hospital of Nanjing Medical University, Shanghai, China
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Di Agostino S, Canu V, Donzelli S, Pulito C, Sacconi A, Ganci F, Valenti F, Goeman F, Scalera S, Rollo F, Bagnato A, Diodoro MG, Vizza E, Carosi M, Rufini B, Federici O, Giofrè M, Carboni F, Muti P, Ciliberto G, Strano S, Valle M, Blandino G. HSF-1/miR-145-5p transcriptional axis enhances hyperthermic intraperitoneal chemotherapy efficacy on peritoneal ovarian carcinosis. Cell Death Dis 2023; 14:535. [PMID: 37598177 PMCID: PMC10439938 DOI: 10.1038/s41419-023-06064-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Hyperthermic intraperitoneal administration of chemotherapy (HIPEC) increases local drug concentrations and reduces systemic side effects associated with prolonged adjuvant intraperitoneal exposure in patients affected by either peritoneal malignancies or metastatic diseases originating from gastric, colon, kidney, and ovarian primary tumors. Mechanistically, the anticancer effects of HIPEC have been poorly explored. Herein we documented that HIPEC treatment promoted miR-145-5p expression paired with a significant downregulation of its oncogenic target genes c-MYC, EGFR, OCT4, and MUC1 in a pilot cohort of patients with ovarian peritoneal metastatic lesions. RNA sequencing analyses of ovarian peritoneal metastatic nodules from HIPEC treated patients unveils HSF-1 as a transcriptional regulator factor of miR-145-5p expression. Notably, either depletion of HSF-1 expression or chemical inhibition of its transcriptional activity impaired miR-145-5p tumor suppressor activity and the response to cisplatin in ovarian cancer cell lines incubated at 42 °C. In aggregate, our findings highlight a novel transcriptional network involving HSF-1, miR145-5p, MYC, EGFR, MUC1, and OCT4 whose proper activity contributes to HIPEC anticancer efficacy in the treatment of ovarian metastatic peritoneal lesions.
Collapse
Affiliation(s)
- Silvia Di Agostino
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| | - Valeria Canu
- Translational Oncology Research Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- Translational Oncology Research Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- Translational Oncology Research Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Federica Ganci
- Translational Oncology Research Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabio Valenti
- Translational Oncology Research Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Frauke Goeman
- SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Scalera
- SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Rollo
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Grazia Diodoro
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Enrico Vizza
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mariantonia Carosi
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Beatrice Rufini
- Translational Oncology Research Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Orietta Federici
- Department of Digestive Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Manuel Giofrè
- Department of Digestive Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabio Carboni
- Department of Digestive Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Muti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Sabrina Strano
- SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mario Valle
- Department of Digestive Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
7
|
Qu H, Li X, Chen F, Zhang M, Lu X, Gu Y, Lv M, Lu C. LncRNA PVT1 influences breast cancer cells glycolysis through sponging miR-145-5p. Genes Genomics 2023; 45:581-592. [PMID: 36941464 PMCID: PMC10113361 DOI: 10.1007/s13258-023-01368-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/27/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Long-non-coding RNA PVT1 (lncRNA PVT1) can be used as an oncogenic regulatory non-coding RNA (ncRNA) for many cancers. However, its function and mechanism in breast cancer (BRCA) are still not clearly elucidated. OBJECTIVE We attempt to explain the mechanism of PVT1's role in breast cancer from different perspectives. METHODS We analyzed the expression of PVT1 and its correlation with the breast cancer related clinical data in the The Cancer Genome Atlas (TCGA) database. We used PVT1 overexpression and knockdown lentivirus to infect breast cancer MDA-MB-231 cell line for cell function verification, in vitro using CCK-8 to measure proliferation, flow cytometry to measure apoptosis, transwell test to measure invasion and migration ability, detecting cell extracellular acidification rate (ECAR) to assess glycolysis metabolism and explore the biological functions of PVT1 in breast cancer cells. Transcriptome sequencing was used to analyze the changes of related genes in cells after overexpression of PVT1. In vivo we used a xenograft model to study the effect of PVT1 on breast cancer. RESULTS PVT1 was up-regulated in breast cancer tissues and was positively correlated with the clinical stage of breast cancer patients. Overexpression of PVT1 in vitro promoted cell proliferation, migration and invasion, and promoted tumor growth in vivo. Knockdown of PVT1 led to the opposite biological consequence. Further bioinformatics analysis showed that PVT1 changes the glycolysis metabolism of tumors through regulation of glycolysis-related genes. In addition, the expression of miR-145-5p is negatively correlated with PVT1. We consider the possibility of PVT1 promoting cell proliferation and metastasis by regulating the aerobic glucose metabolism in breast cancer cells through sponging the miR-145-5p. CONCLUSION Our results reveal a potential pathway for competing endogenous RNA to regulate breast cancer glucose metabolism. PVT1 regulates glycolysis related genes expression by competitively binding to endogenous miR-145-5p in breast cancer cells to change the metabolic phenotype. This may Provide new ideas for precise molecular therapy targets for breast cancer.
Collapse
Affiliation(s)
- Huan Qu
- Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
- Department of Health Management Centre, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Xingxing Li
- Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Fei Chen
- Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Min Zhang
- Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Xun Lu
- School of Public Health, Yale University, New Haven, CT, 06520, USA
| | - Yun Gu
- Department of Pathology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Mingming Lv
- Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China.
| | - Cheng Lu
- Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China.
| |
Collapse
|
8
|
Mozammel N, Amini M, Baradaran B, Mahdavi SZB, Hosseini SS, Mokhtarzadeh A. The function of miR-145 in colorectal cancer progression; an updated review on related signaling pathways. Pathol Res Pract 2023; 242:154290. [PMID: 36621158 DOI: 10.1016/j.prp.2022.154290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNA) are a broad class of small, highly conserved non-coding RNAs that largely influence gene expression after transcription through binding to various target mRNAs. miRNAs are frequently dysregulated in a wide array of human cancers, possessing great value as diagnostic and therapeutic targets. miR-145, as promising tumor suppressor miRNA, also exhibits deregulated expression levels in human malignancies and participates in various processes, including cell proliferation, apoptosis, migration and differentiation. In particular, miR-145 has been shown to be downregulated in colorectal cancer (CRC), which in turn leads to cell growth, invasion, metastasis and drug resistance. Furthermore, miR-145 is involved in the regulation of multiple tumor specific signaling pathways, such as KRAS and P53 signaling by targeting various genes through colorectal tumorigenesis. Therefore, considering its diagnostic and therapeutic potential, it was aimed to present the recent finding focusing on miR-145 functions to better understand its involvement in CRC incidence and progression through interplay with various signaling pathways. This study is based on articles indexed in PubMed and Google scholar until 2021.
Collapse
Affiliation(s)
- Nazila Mozammel
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Qiao Y, Wang B, Yan Y, Niu L. Long noncoding RNA ST8SIA6-AS1 promotes cell proliferation and metastasis in triple-negative breast cancer by targeting miR-145-5p/CDCA3 to inactivate the p53/p21 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2398-2411. [PMID: 35730485 DOI: 10.1002/tox.23605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/08/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer, always exhibits a poor prognosis due to high risk of early recurrence and distant metastasis. Long noncoding RNAs (lncRNAs) have been reported as crucial regulators in breast cancer. However, the functions and action mechanisms of lncRNA ST8SIA6-AS1 in TNBC are largely unknown. METHODS Quantitative real-time PCR and western blot assays were used to measure the expression levels of different genes and proteins. Cell proliferation ability was monitored by CCK-8, colony forming and flow cytometry assays. Wound healing and transwell assays were performed to evaluate cell migration and invasion. The regulatory mechanisms of ST8SIA6-AS1 in TNBC were confirmed by dual luciferase reporter and RIP assays. A mouse xenograft model was established to investigate the role of ST8SIA6-AS1 in TNBC tumor growth. RESULTS ST8SIA6-AS1 displayed a higher expression in TNBC cells. Silencing ST8SIA6-AS1 impaired cell proliferation, cell cycle progression, migration, and invasion in vitro, and slowed tumor growth in vivo. Mechanistically, ST8SIA6-AS1 could facilitate the expression of its target CDCA3 (cell division cycle associated protein 3) and inactivate the p53/p21 signaling by inhibiting miR-145-5p. Moreover, miR-145-5p exerted a tumor-suppressive activity by targeting CDCA3. The tumor-suppressive effects induced by ST8SIA6-AS1 knockdown were abated by the down-regulation of miR-145-5p or the up-regulation of CDCA3. CONCLUSION ST8SIA6-AS1 exerts an oncogenic role in TNBC by interacting with miR-145-5p to up-regulate CDCA3 expression and inactivate the p53/p21 signaling, highlighting ST8SIA6-AS1 as a promising molecular target to combat TNBC.
Collapse
Affiliation(s)
- Yan Qiao
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bin Wang
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Yan
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ligang Niu
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Non-Coding RNAs in the Crosstalk between Breast Cancer Cells and Tumor-Associated Macrophages. Noncoding RNA 2022; 8:ncrna8010016. [PMID: 35202089 PMCID: PMC8874851 DOI: 10.3390/ncrna8010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play a pivotal role in regulating the tumor microenvironment (TME) by controlling gene expression at multiple levels. In tumors, ncRNAs can mediate the crosstalk between cancer cells and other cells in the TME, such as immune cells, stromal cells, and endothelial cells, influencing tumor development and progression. Tumor-associated macrophages (TAMs) are among the most abundant inflammatory cells infiltrating solid cancers that promote tumorigenesis, and their infiltration correlates with a poor prognosis in many tumors. Cancer cells produce different ncRNAs that orchestrate TAM recruitment and polarization toward a tumor-promoting phenotype. Tumor-reprogrammed macrophages shape the TME by promoting angiogenesis and tissue remodeling, and suppressing the anti-tumor activity of adaptive immune cells. TAMs can also produce ncRNA molecules that boost cancer cell proliferation and direct their phenotype and metabolic changes facilitating cancer progression and metastasis. This review will focus on the crosstalk between cancer cells and TAMs mediated by microRNAs and long non-coding RNAs during breast cancer (BC) initiation and progression.
Collapse
|
11
|
Machado-Pereira M, Saraiva C, Bernardino L, Cristóvão AC, Ferreira R. Argonaute-2 protects the neurovascular unit from damage caused by systemic inflammation. J Neuroinflammation 2022; 19:11. [PMID: 34991639 PMCID: PMC8740421 DOI: 10.1186/s12974-021-02324-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The brain vasculature plays a pivotal role in the inflammatory process by modulating the interaction between blood cells and the neurovascular unit. Argonaute-2 (Ago2) has been suggested as essential for endothelial survival but its role in the brain vasculature or in the endothelial-glial crosstalk has not been addressed. Thus, our aim was to clarify the significance of Ago2 in the inflammatory responses elicited by these cell types. METHODS Mouse primary cultures of brain endothelial cells, astrocytes and microglia were used to evaluate cellular responses to the modulation of Ago2. Exposure of microglia to endothelial cell-conditioned media was used to assess the potential for in vivo studies. Adult mice were injected intraperitoneally with lipopolysaccharide (LPS) (2 mg/kg) followed by three daily intraperitoneal injections of Ago2 (0.4 nM) to assess markers of endothelial disruption, glial reactivity and neuronal function. RESULTS Herein, we demonstrated that LPS activation disturbed the integrity of adherens junctions and downregulated Ago2 in primary brain endothelial cells. Exogenous treatment recovered intracellular Ago2 above control levels and recuperated vascular endothelial-cadherin expression, while downregulating LPS-induced nitric oxide release. Primary astrocytes did not show a significant change in Ago2 levels or response to the modulation of the Ago2 system, although endogenous Ago2 was shown to be critical in the maintenance of tumor necrosis factor-α basal levels. LPS-activated primary microglia overexpressed Ago2, and Ago2 silencing contained the inflammatory response to some extent, preventing interleukin-6 and nitric oxide release. Moreover, the secretome of Ago2-modulated brain endothelial cells had a protective effect over microglia. The intraperitoneal injection of LPS impaired blood-brain barrier and neuronal function, while triggering inflammation, and the subsequent systemic administration of Ago2 reduced or normalized endothelial, glial and neuronal markers of LPS damage. This outcome likely resulted from the direct action of Ago2 over the brain endothelium, which reestablished glial and neuronal function. CONCLUSIONS Ago2 could be regarded as a putative therapeutic agent, or target, in the recuperation of the neurovascular unit in inflammatory conditions.
Collapse
Affiliation(s)
- Marta Machado-Pereira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Cláudia Saraiva
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
- Present Address: Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Ana C. Cristóvão
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
- NeuroSoV, UBImedical, EM506, University of Beira Interior, Covilhã, Portugal
| | - Raquel Ferreira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
- CEDOC, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| |
Collapse
|
12
|
Function of miRNA-145-5p in the pathogenesis of human disorders. Pathol Res Pract 2022; 231:153780. [DOI: 10.1016/j.prp.2022.153780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/08/2022] [Accepted: 01/22/2022] [Indexed: 01/09/2023]
|
13
|
Tito C, De Falco E, Rosa P, Iaiza A, Fazi F, Petrozza V, Calogero A. Circulating microRNAs from the Molecular Mechanisms to Clinical Biomarkers: A Focus on the Clear Cell Renal Cell Carcinoma. Genes (Basel) 2021; 12:1154. [PMID: 34440329 PMCID: PMC8391131 DOI: 10.3390/genes12081154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
microRNAs (miRNAs) are emerging as relevant molecules in cancer development and progression. MiRNAs add a post-transcriptional level of control to the regulation of gene expression. The deregulation of miRNA expression results in changing the molecular circuitry in which miRNAs are involved, leading to alterations of cell fate determination. In this review, we describe the miRNAs that are emerging as innovative molecular biomarkers from liquid biopsies, not only for diagnosis, but also for post-surgery management in cancer. We focus our attention on renal cell carcinoma, in particular highlighting the crucial role of circulating miRNAs in clear cell renal cell carcinoma (ccRCC) management. In addition, the functional deregulation of miRNA expression in ccRCC is also discussed, to underline the contribution of miRNAs to ccRCC development and progression, which may be relevant for the identification and design of innovative clinical strategies against this tumor.
Collapse
Affiliation(s)
- Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (C.T.); (A.I.); (F.F.)
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (P.R.); (V.P.)
- Mediterranea Cardiocentro, 80122 Naples, Italy
| | - Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (P.R.); (V.P.)
| | - Alessia Iaiza
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (C.T.); (A.I.); (F.F.)
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (C.T.); (A.I.); (F.F.)
| | - Vincenzo Petrozza
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (P.R.); (V.P.)
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (P.R.); (V.P.)
| |
Collapse
|
14
|
Wang Y, Pan W, Bai X, Wang X, Wang Y, Yin Y. microRNA-454-mediated NEDD4-2/TrkA/cAMP axis in heart failure: Mechanisms and cardioprotective implications. J Cell Mol Med 2021; 25:5082-5098. [PMID: 33949117 PMCID: PMC8178253 DOI: 10.1111/jcmm.16491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
The current study aimed to investigate the mechanism by which miR-454 influences the progression of heart failure (HF) in relation to the neural precursor cell expressed, developmentally downregulated 4-2 (NEDD4-2)/tropomyosin receptor kinase A (TrkA)/cyclic adenosine 3',5'-monophosphate (cAMP) axis. Sprague-Dawley rats were used to establish a HF animal model via ligation of the left anterior descending branch of the coronary artery. The cardiomyocyte H9c2 cells were treated with H2 O2 to stimulate oxidative stress injury in vitro. RT-qPCR and Western blot assay were subsequently performed to determine the expression patterns of miR-454, NEDD4-2, TrkA, apoptosis-related proteins and cAMP pathway markers. Dual-luciferase reporter gene assay coupled with co-immunoprecipitation was performed to elucidate the relationship between miR-454, NEDD4-2 and TrkA. Gain- or loss-of-function experiments as well as rescue experiments were conducted via transient transfection (in vitro) and adenovirus infection (in vivo) to examine their respective functions on H9c2 cell apoptosis and myocardial damage. Our results suggested that miR-454 was aberrantly downregulated in the context of HF, while evidence was obtained suggesting that it targeted NEDD4-2 to downregulate NEDD4-2 in cardiomyocytes. miR-454 exerted anti-apoptotic and protective effects on cardiomyocytes through inhibition of NEDD4-2, while NEDD4-2 stimulated ubiquitination and degradation of TrkA protein. Furthermore, miR-454 activated the cAMP pathway via the NEDD4-2/TrkA axis, which ultimately suppressed cardiomyocyte apoptosis and attenuated myocardial damage. Taken together, the key findings of the current study highlight the cardioprotective role of miR-454, which is achieved through activation of the cAMP pathway by impairing NEDD4-2-induced TrkA ubiquitination.
Collapse
Affiliation(s)
- Yaowen Wang
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Pan
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Bai
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xukai Wang
- Department of Cardiology, Institute of Field Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yuehui Yin
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Liu X, Meng X, Peng X, Yao Q, Zhu F, Ding Z, Sun H, Liu X, Li D, Lu Y, Tang H, Li B, Peng Z. Impaired AGO2/miR-185-3p/NRP1 axis promotes colorectal cancer metastasis. Cell Death Dis 2021; 12:390. [PMID: 33846300 PMCID: PMC8042018 DOI: 10.1038/s41419-021-03672-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Increasing evidence suggests that global downregulation of miRNA expression is a hallmark of human cancer, potentially due to defects in the miRNA processing machinery. In this study, we found that the protein expression of Argonaute 2 (AGO2), a key regulator of miRNA processing, was downregulated in colorectal cancer (CRC) tissues, which was also consistent with the findings of the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Furthermore, the correlation between the levels of AGO2 and epithelial-mesenchymal transition (EMT) markers (E-cadherin and vimentin) indicated that reduced levels of AGO2 promoted EMT in CRC. Low expression of AGO2 was an indicator of a poor prognosis among CRC patients. Knockdown of AGO2 in CRC cells promoted migration, invasion and metastasis formation in vitro and in vivo but had no influence on proliferation. To provide detailed insight into the regulatory roles of AGO2, we performed integrated transcriptomic, quantitative proteomic and microRNA sequencing (miRNA-seq) analyses of AGO2 knockdown cells and the corresponding wild-type cells and identified neuropilin 1 (NRP1) as a new substrate of AGO2 via miR-185-3p. Our data provided evidence that knockdown of AGO2 resulted in a reduction of miR-185-3p expression, leading to the upregulation of the expression of NRP1, which is a direct target of miR-185-3p, and elevated CRC cell metastatic capacity. Inhibition of NRP1 or treatment with a miR-185-3p mimic successfully rescued the phenotypes of impaired AGO2, which suggested that therapeutically targeting the AGO2/miR-185-3p/NRP1 axis may be a potential treatment approach for CRC.
Collapse
Affiliation(s)
- Xisheng Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaole Meng
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao Peng
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Qianlan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fangming Zhu
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhongyi Ding
- Laboratory Animal Center, Institute Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai, China
| | - Hongze Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueni Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huamei Tang
- Department of Pathology, Xiang'an Hospital of Xiamen University, Xiamen, China.
| | - Bin Li
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhihai Peng
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China. .,Hepatobiliary and Pancreatic & Organ Transplantation Surgery Department, Xiang'an Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
16
|
Nowak I, Sarshad AA. Argonaute Proteins Take Center Stage in Cancers. Cancers (Basel) 2021; 13:cancers13040788. [PMID: 33668654 PMCID: PMC7918559 DOI: 10.3390/cancers13040788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The dysregulation of RNA interference (RNAi) has often been observed in cancers, where the main focus of research has been on the small RNA molecules directing RNAi. In this review, we focus on the activity of Argonaute proteins, central components of RNAi, in tumorigenesis, and also highlight their potential applications in grading tumors and anti-cancer therapies. Abstract Argonaute proteins (AGOs) play crucial roles in RNA-induced silencing complex (RISC) formation and activity. AGOs loaded with small RNA molecules (miRNA or siRNA) either catalyze endoribonucleolytic cleavage of target RNAs or recruit factors responsible for translational silencing and target destabilization. miRNAs are well characterized and broadly studied in tumorigenesis; nevertheless, the functions of the AGOs in cancers have lagged behind. Here, we discuss the current state of knowledge on the role of AGOs in tumorigenesis, highlighting canonical and non-canonical functions of AGOs in cancer cells, as well as the biomarker potential of AGO expression in different of tumor types. Furthermore, we point to the possible application of the AGOs in development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Iwona Nowak
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Aishe A. Sarshad
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
17
|
The role of RNA-binding and ribosomal proteins as specific RNA translation regulators in cellular differentiation and carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166046. [PMID: 33383105 DOI: 10.1016/j.bbadis.2020.166046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Tight control of mRNA expression is required for cell differentiation; imbalanced regulation may lead to developmental disorders and cancer. The activity of the translational machinery (including ribosomes and translation factors) regulates the rate (slow or fast) of translation of encoded proteins, and the quality of these proteins highly depends on which mRNAs are available for translation. Specific RNA-binding and ribosomal proteins seem to play a key role in controlling gene expression to determine the differentiation fate of the cell. This demonstrates the important role of RNA-binding proteins, specific ribosome-binding proteins and microRNAs as key molecules in controlling the specific proteins required for the differentiation or dedifferentiation of cells. This delicate balance between specific proteins (in terms of quality and availability) and post-translational modifications occurring in the cytoplasm is crucial for cell differentiation, dedifferentiation and oncogenic potential. In this review, we report how defects in the regulation of mRNA translation can be dependent on specific proteins and can induce an imbalance between differentiation and dedifferentiation in cell fate determination.
Collapse
|
18
|
He J, Wang J, Li S, Li T, Chen K, Zhang S. Hypoxia-inhibited miR-338-3p suppresses breast cancer progression by directly targeting ZEB2. Cancer Sci 2020; 111:3550-3563. [PMID: 32726486 PMCID: PMC7540984 DOI: 10.1111/cas.14589] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/11/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia plays an essential role in the development of various cancers. The biological function and underlying mechanism of microRNA-338-3p (miR-338-3p) under hypoxia remain unclarified in breast cancer (BC). Herein, we performed bioinformatics, gain and loss of function of miR-338-3p, a luciferase reporter assay, and chromatin immunoprecipitation (ChIP) in vitro and in a tumor xenograft model. We also explored the potential signaling pathways of miR-338-3p in BC. We detected the expression levels and prognostic significance of miR-338-3p in BC by qRT-PCR and in situ hybridization. MiR-338-3p was lowly expressed in BC tissues and cell lines, and BC patients with underexpression of miR-338-3p tend to have a dismal overall survival. Functional experiments showed that miR-338-3p overexpression inhibited BC cell proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) process, whereas miR-338-3p silencing abolished these biological behaviors. Zinc finger E-box-binding homeobox 2 (ZEB2) was validated as a direct target of miR-338-3p. ZEB2 overexpression promoted while ZEB2 knockdown abolished the promoted effects of miR-338-3p knockdown on cell biological behaviors through the NF-ĸB and PI3K/Akt signal pathways. HIF1A can transcriptionally downregulate miR-338-3p under hypoxia. In total, miR-338-3p counteracts hypoxia-induced BC cells growth, migration, invasion, and EMT via the ZEB2 and NF-ĸB/PI3K signal pathways, implicating miR-338-3p may be a promising target to treat patients with BC.
Collapse
Affiliation(s)
- Juanjuan He
- Department of Breast Surgerythe First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Jing Wang
- Department of Breast Surgerythe First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Songchao Li
- Department of Urology Surgerythe First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Teng Li
- Department of Urology Surgerythe First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Shaojin Zhang
- Department of Urology Surgerythe First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| |
Collapse
|
19
|
The critical impacts of small RNA biogenesis proteins on aging, longevity and age-related diseases. Ageing Res Rev 2020; 62:101087. [PMID: 32497728 DOI: 10.1016/j.arr.2020.101087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/01/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022]
Abstract
Small RNAs and enzymes that provide their biogenesis and functioning are involved in the organism development and coordination of biological processes, including metabolism, maintaining genome integrity, immune and stress responses. In this review, we focused on the role of small RNA biogenesis proteins in determining the aging and longevity of animals and human. A number of studies have revealed that changes in expression profiles of key enzymes, in particular proteins of the Drosha, Dicer and Argonaute families, are associated with the aging process, as well as with some age-related diseases and progeroid syndromes. Down-regulation of small RNA biogenesis proteins leads to global alterations in the expression of regulatory RNAs, disruption of key molecular, cellular and systemic processes, which leads to a lifespan shortening. In contrast, overexpression of Dicer prolongs lifespan and improves cellular defense. Additionally, the role of small RNA biogenesis proteins in the pathogenesis of age-related diseases, including cancer, inflammaging, neurodegeneration, cardiovascular, metabolic and immune disorders, has been conclusively evidenced. Recent advances in biomedicine allow using these proteins as diagnostic and prognostic biomarkers and therapeutic targets.
Collapse
|
20
|
Petrozza V, Costantini M, Tito C, Giammusso LM, Sorrentino V, Cacciotti J, Porta N, Iaiza A, Pastore AL, Di Carlo A, Simone G, Carbone A, Gallucci M, Fazi F. Emerging role of secreted miR-210-3p as potential biomarker for clear cell Renal Cell Carcinoma metastasis. Cancer Biomark 2020; 27:181-188. [PMID: 31771042 DOI: 10.3233/cbm-190242] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are emerging as promising molecules in the diagnosis, prognosis and treatment of urological tumours. Recently, our group performed two independent studies highlighting that miR-210-3p may be a useful biomarker not only for diagnosis but also for post-surgery clear cell Renal Cell Carcinoma (ccRCC) management. OBJECTIVE The aim of this study is to further explore the effectiveness of miRNA as non-invasive biomarker for clinical outcomes and ccRCC response to the treatment. METHODS We analyzed miR-210-3p levels in neoplastic and healthy tissue and in urine specimens collected at surgery and during follow-up of 21 ccRCC patients by RTqPCR. RESULTS Firstly, we confirmed that the expression of miR-210-3p was upregulated in tumor tissues and in urine samples of analyzed cohort. Of note is that miR-210-3p expression was significantly reduced in urine samples from disease-free patients during follow-up (from 3 to 12 months) compared to the baseline levels observed at the time of surgery. In a small subgroup of patients presenting metastatic progression (such as bone, intestinal or lung metastasis), the urine levels of miR-210-3p correlated with responsiveness to the therapy. CONCLUSIONS This pilot study highlights the relevance of secreted miR-210-3p as powerful non-invasive prognostic and predictive biomarker for the evaluation of clinical outcomes and treatment response during ccRCC follow up.
Collapse
Affiliation(s)
- Vincenzo Petrozza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy.,Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy
| | - Manuela Costantini
- Department of Urology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.,Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy
| | - Claudia Tito
- Department of Medico Surgical Sciences and Biotechnologies, Sapienza University of Rome, Urology Unit ICOT, Latina, Italy.,Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy
| | - Laura Maria Giammusso
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Veronica Sorrentino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy
| | - Jessica Cacciotti
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy
| | - Natale Porta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy
| | - Alessia Iaiza
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Antonio Luigi Pastore
- Department of Medico Surgical Sciences and Biotechnologies, Sapienza University of Rome, Urology Unit ICOT, Latina, Italy
| | - Angelina Di Carlo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Giuseppe Simone
- Department of Urology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Carbone
- Department of Medico Surgical Sciences and Biotechnologies, Sapienza University of Rome, Urology Unit ICOT, Latina, Italy.,Department of Urology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Michele Gallucci
- Department of Urology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.,Department of Urology, Sapienza University of Rome, Rome, Italy.,Department of Urology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Department of Urology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
21
|
Wong JS, Cheah YK. Potential miRNAs for miRNA-Based Therapeutics in Breast Cancer. Noncoding RNA 2020; 6:E29. [PMID: 32668603 PMCID: PMC7549352 DOI: 10.3390/ncrna6030029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can post-transcriptionally regulate the genes involved in critical cellular processes. The aberrant expressions of oncogenic or tumor suppressor miRNAs have been associated with cancer progression and malignancies. This resulted in the dysregulation of signaling pathways involved in cell proliferation, apoptosis and survival, metastasis, cancer recurrence and chemoresistance. In this review, we will first (i) provide an overview of the miRNA biogenesis pathways, and in vitro and in vivo models for research, (ii) summarize the most recent findings on the roles of microRNAs (miRNAs) that could potentially be used for miRNA-based therapy in the treatment of breast cancer and (iii) discuss the various therapeutic applications.
Collapse
Affiliation(s)
- Jun Sheng Wong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| |
Collapse
|
22
|
Ji M, Mei X, Jing X, Xu X, Chen X, Pan W. The cooperative complex of Argonaute-2 and microRNA-146a regulates hepatitis B virus replication through flap endonuclease 1. Life Sci 2020; 257:118089. [PMID: 32659369 DOI: 10.1016/j.lfs.2020.118089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
Abstract
AIM Hepatitis B virus (HBV) is a major cause of a variety of liver diseases. Existing antiviral drugs cannot eradicate HBV from our body, and the main reason is unclear on the molecular mechanism of HBV replication. Flap endonuclease 1 (FEN1) can repair relaxed circular DNA (HBV rcDNA) to covalently closed circular DNA (HBV cccDNA) that promotes HBV DNA replication, while its specific regulatory detail remains unclear. In addition, miR-146a is close related to regulation in HBV replication. This study aims to explore whether miR-146a regulates HBV cccDNA formation through FEN1. MAIN METHODS We investigated the expression of miR-146a, FEN1 and HBV copies in HBV stable replication cell line HepG2.2.15 and its parent cell line HepG2 transfected miR-146a and FEN1 plasmid by qRT-PCR and western blot, to identify the cooperation of Argonaute-2 (Ago2) and miR-146a by Ago2 siRNA and Ago2 RNA Binding Protein Immunoprecipitation (RIP). KEY FINDINGS Compared with the control group, we found that the expression of miR-146a was significantly up-regulated in HepG2.2.15, and the expression of FEN1 and HBV copies were also significantly up-regulated. On contrary, the expression of target gene of miR-146a, interleukin-1 receptor-associated kinase 1 (IRAK1) and tumor necrosis factor receptor-associated factor-6 (TRAF6), was significantly decreased in HepG2.2.15. With the use of Ago2 siRNA and then Ago2 RIP, we found that Ago2 performed as a carrier for miR-146a to promote HBV replication. SIGNIFICANCE The results suggest a novel miR-146a → FEN1 → HBV DNA regulatory axis in HBV replication life. Ago2 cooperates with miR-146a to regulate the transcription and expression level of FEN1 protein through the downstream target gene IRAK1/TRAF6, and to promote HBV replication.
Collapse
Affiliation(s)
- Min Ji
- Experimental Teaching Center for Pathogen Biology and Immunology & Department of Microbiology and Immunology, North Sichuan Medical College, Nanchong 637000, China; Department of Infectious Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637100, China; People's Hospital of Jianyang, Chengdu, Sichuan 641400, China
| | - Xiaoping Mei
- Department of Infectious Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637100, China
| | - Xueming Jing
- Department of Infectious Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637100, China
| | - Xu Xu
- Experimental Teaching Center for Pathogen Biology and Immunology & Department of Microbiology and Immunology, North Sichuan Medical College, Nanchong 637000, China
| | - Xing Chen
- Department of Infectious Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637100, China
| | - Wanlong Pan
- Experimental Teaching Center for Pathogen Biology and Immunology & Department of Microbiology and Immunology, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
23
|
Li J, Song Y, Yu B, Yu Y. TNFAIP2 Promotes Non-Small Cell Lung Cancer Cells and Targeted by miR-145-5p. DNA Cell Biol 2020; 39:1256-1263. [PMID: 32456459 DOI: 10.1089/dna.2020.5415] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor-alpha (TNFα) is an inflammatory cytokine that regulates inflammation and tumor progression in non-small cell lung cancer (NSCLC). The higher levels of TNF α are known to induce expression of several genes such as TNFα-induced protein 2 (TNFAIP2) with a largely unknown role in NSCLC. We provide the preliminary evidence for the role of TNFAIP2 in NSCLC progression and its epigenetic regulation mediated by microRNA, miR-145-5p. The expression of TNFAIP2 was confirmed using quantitative real-time PCR, immunohistochemistry, and Western blot in NSCLC tissue and paired adjacent normal tissue. All in vitro assays were undertaken in A549 and H23 cells and chemoresistance assays were undertaken in A549/Cisplatin (DDP) and H23/DDP cell types. TNFAIP2 silencing was undertaken using lipofectamine transfection of specific siRNA. Cells were co-transfected with miR-145-5p, and TNFAIP2-3' untranslated region (UTR) or TNFAIP2 with mutated 3'UTR using the luciferase vector pGL. Cell viability, transwell migration, and invasion were assessed. The role of caspase 3 proteins in cell viability was ascertained using Western blot. The tumor tissues (and cisplatin-resistant cell lines A549/DDP and H23/DDP) expressed significantly higher levels of TNAIP2 mRNA and protein. Silencing of TNFAIP2 resulted in reduced cell viability, reduced invasion, and migration in vitro. Silencing of TNFAIP2 in A549/DDP and H23/DDP had higher expression of TNFAIP2, reduced cell viability, and increased induction of caspase 3. MiR-145-5p binds to the 3'UTR of TNFAIP2. Overexpression of MiR-145-5p reduced expression of TNFAIP2, decreased cell viability, reduced cell migration and invasion, and significantly reduced expression of caspase 3 protein. TNFAIP2 mediates tumorigenesis in NSCLC through, not completely known pathways. miR-145-5p negatively regulates TNFAIP2 expression. miR-145-5p-mediated therapies may be explored in NSCLC.
Collapse
Affiliation(s)
- Jianing Li
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongfeng Song
- Department of Respiratory, The 10th Hospital of Harbin, Harbin, China
| | - Baiquan Yu
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Yu
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
24
|
Fawzy MS, Toraih EA, Alelwani W, Kattan SW, Alnajeebi AM, Hassan R. The prognostic value of microRNA-biogenesis genes Argonaute 1 and 2 variants in breast cancer patients. Am J Transl Res 2020; 12:1994-2006. [PMID: 32509194 PMCID: PMC7270005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
MicroRNA machinery genes Argonaute 1 (AGO1) and 2 (AGO2) are associated with several hallmarks of cancer. They play a key role in transcriptomic silencing, regulation of the immune system, cell differentiation, and angiogenesis processes. The present pilot study aims to explore the impact of genetic variants rs636832 and rs2977490 of AGO1 and AGO2, respectively, on breast cancer (BC) risk in a sample of Mediterranean population. TaqMan genotyping assay of 93 consecutive breast cancer female patients and age- as well as ethnicity-matched controls, was done by Real-Time allele discrimination polymerase chain reaction. Association with the available clinical, histopathological and immunohistochemistry assessments was applied. In silico data analysis was also executed. Although allele and genotype frequencies distribution of both study variants were comparable in BC and healthy control cohorts, AGO1*G variant conferred a significant BC risk under recessive model [adjusted odds ratio (95% confidence interval); 4.90 (1.03-23.39), P = 0.024], and was significantly associated with lymph node infiltration (P = 0.037), distant metastasis (P = 0.019), advanced clinical stage (P < 0.001), recurrence (P = 0.032), and shorter overall survival (P = 0.001). Furthermore, AGO2*G/G genotype showed an association with poor pathological grade (P = 0.029). Our results suggested for the first time that rs636832 and rs2977490 variants of the miRNA-machinery genes AGO1 and 2, respectively, may impact susceptibility and/or clinical outcomes of BC patients in the study population.
Collapse
Affiliation(s)
- Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal UniversityIsmailia, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border UniversityArar, Saudi Arabia
| | - Eman A Toraih
- Department of Surgery, Tulane University, School of MedicineNew Orleans, Louisiana, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal UniversityIsmailia, Egypt
| | - Walla Alelwani
- Department of Biochemistry, College of Science, University of JeddahJeddah, Saudi Arabia
| | - Shahad W Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah UniversityYanbu, Saudi Arabia
| | - Afnan M Alnajeebi
- Department of Biochemistry, College of Science, University of JeddahJeddah, Saudi Arabia
| | - Ranya Hassan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal UniversityIsmailia, Egypt
| |
Collapse
|
25
|
Zhou J, Zhang X, Li W, Chen Y. MicroRNA-145-5p regulates the proliferation of epithelial ovarian cancer cells via targeting SMAD4. J Ovarian Res 2020; 13:54. [PMID: 32366274 PMCID: PMC7199349 DOI: 10.1186/s13048-020-00656-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is one of the most prevalent malignancies affecting females worldwide; however, its etiology mechanism remains unclear. In various malignancies, miR-145-5p is a widely accepted and versatile miRNA. Therefore, our research focused on exploring the activity and etiology of miR-145-5p in the modulation of metastasis, migration, and proliferation of EOC cells. The direct reactions between the 3'UTRs of SMAD4 mRNA and miR-145-5p were verified using dual luciferase reporter test. SKOV-3 cells were subsequently transfected using miR-145-5p mimics. Cell migration, death, and proliferation were evaluated using MTT, flow cytometry, and Transwell test. In addition, SMAD4 transcription and translation were evaluated using qRT-PCR and Western blot. RESULTS We found that miR-145-5p expression was repressed prevalently in EOC tissues, apart from SMAD4 upregulation. Excessive miR-145-5p expression remarkably reinforced EOC cell death and repressed EOC cell proliferation. Furthermore, upregulated miR-145-5p expression noticeably repressed migration via MMP-2 and MMP-9 downregulation. Moreover, SMAD4 was downregulated via miR-145-5p transfection. The dual luciferase test revealed that miR-145-5p directly targeted SMAD4. CONCLUSIONS Our research suggests that miR-145-5p serves as a malignancy repressor and exerts an essential impact on inhibiting malignancy generation and reinforcing EOC death via targeting SMAD4. MiR-145-5p application could serve as a promising strategy to treat EOC.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Obstetrics and Gynecology, Xi’an Gaoxin Hospital, No. 16 Tuanjie South Road, Xi’an, 710075 Shaanxi China
| | - Xiyi Zhang
- Department of Obstetrics and Gynecology, Xi’an Gaoxin Hospital, No. 16 Tuanjie South Road, Xi’an, 710075 Shaanxi China
| | - Weiling Li
- Department of Obstetrics and Gynecology, Xi’an Gaoxin Hospital, No. 16 Tuanjie South Road, Xi’an, 710075 Shaanxi China
| | - Yuanyuan Chen
- Department of Obstetrics and Gynecology, Xi’an Gaoxin Hospital, No. 16 Tuanjie South Road, Xi’an, 710075 Shaanxi China
| |
Collapse
|
26
|
Wu J, Yang J, Cho WC, Zheng Y. Argonaute proteins: Structural features, functions and emerging roles. J Adv Res 2020; 24:317-324. [PMID: 32455006 PMCID: PMC7235612 DOI: 10.1016/j.jare.2020.04.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/23/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023] Open
Abstract
Argonaute proteins are highly conserved in almost all organisms. They not only involve in the biogenesis of small regulatory RNAs, but also regulate gene expression and defend against foreign pathogen invasion via small RNA-mediated gene silencing pathways. As a key player in these pathways, the abnormal expression and/or mis-modifications of Argonaute proteins lead to the disorder of small RNA biogenesis and functions, thus influencing multiply biological processes and disease development, especially cancer. In this review, we focus on the post-translational modifications and novel functions of Argonaute proteins in alternative splicing, host defense and genome editing.
Collapse
Key Words
- AKT3, AKT serine/threonine kinase 3
- Argonaute protein
- CCR4-NOT, carbon catabolite repressor 4-negative on TATA
- CRISPR-Cas9, clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (cas9)
- DGCR8, DiGeorge syndrome critical region gene 8
- EGFR, epidermal growth factor receptor
- GW182 protein, glycine/tryptophan repeats-containing protein with molecular weight of 182 kDa
- H3K9, histone H3 lysine 9
- Hsp70/90, heat shock proteins 70/90
- JEV, Japanese encephalitis virus
- KRAS, Kirsten rat sarcoma oncogene
- P4H, prolyl 4-hydroxylase
- PAM, protospacer adjacent motif
- PAZ, PIWI-argonaute-zwille
- PIWI, P-element-induced wimpy testis
- Post-translational modification
- RISCs, small RNA-induced silencing complexes
- Small RNA
- TRBP, the transactivating response (TAR) RNA-binding protein
- TRIM71/LIN41, tripartite motif-containing 71, known as Lin41
- WSSV, white spot syndrome virus
- miRNAs
- piRNAs
Collapse
Affiliation(s)
- Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
27
|
Unearthing Regulatory Axes of Breast Cancer circRNAs Networks to Find Novel Targets and Fathom Pivotal Mechanisms. Interdiscip Sci 2019; 11:711-722. [PMID: 31187432 DOI: 10.1007/s12539-019-00339-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 01/20/2023]
Abstract
Circular RNAs (circRNAs) possess valuable characteristics for both diagnosis and treatment of several human cancers including breast cancer (BC). In this study, we combined several systems, biology tools and approaches to identify influential BC circRNAs, miRNAs, and related mRNAs as the members of competing endogenous RNAs (ceRNAs) networks and related RNA binding proteins (RBPs) to study and decipher the BC-triggering biological processes and pathways. Rooting from the identified total of 25 co-differentially expressed circRNAs (DECs) between triple negative (TN) and luminal A subtypes of BC from microarray analysis, five hub DECs (hsa_circ_0003227, hsa_circ_0001955, hsa_circ_0020080, hsa_circ_0001666, and hsa_circ_0065173) and top eleven RBPs (AGO1, AGO2, EIF4A3, FMRP, HuR (ELAVL1), IGF2BP1, IGF2BP2, IGF2BP3, EWSR1, FUS, and PTB) were explored to form the upper stream regulatory elements. All the hub circRNAs were regarded as a super sponge having multiple miRNA response elements (MREs). Then, three BC leading miRNAs (hsa-miR-149, hsa-miR-182, and hsa-miR-383) were also introduced from merging several established ceRNAs networks. The predicted 7- and 8-mer MREs matches between hub circRNAs and leading miRNAs ensured their enduring regulatory capability. The mined downstream mRNAs of the circRNAs-miRNAs network then were presented to STRING database to form the PPI network and to decipher the issue from another point of view. The BC interconnected enriched pathways and processes guarantee the merits of the ceRNAs network's members as targetable therapeutic elements. This study suggested extensive panels of novel therapeutic targets that are in charge of BC progression, hence their impressive role cannot be excluded and needs deeper empirical laboratory designs.
Collapse
|