1
|
Zhang Y, Chen S, You L, He Z, Xu P, Huang W. LINC00161 upregulated by M2-like tumor-associated macrophages promotes hepatocellular carcinoma progression by methylating HACE1 promoters. Cytotechnology 2024; 76:777-793. [PMID: 39435425 PMCID: PMC11490593 DOI: 10.1007/s10616-024-00653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/10/2024] [Indexed: 10/23/2024] Open
Abstract
M2-like tumor-associated macrophages (M2-TAM) played an essential part in hepatocellular carcinoma (HCC) progression. Long intergenic noncoding RNA 00161 (LINC00161), is a long non-coding RNA, that was related to HCC development. However, the relationship between LINC00161 and TAM remains indistinct. HCC cells were cocultured with an M2-like conditioned medium (M2-CM). cell counting kit-8 (CCK-8), plate cloning, cell scratch, and transwell assay evaluated cell biological activities of HCC cells. The interactions among molecules were analyzed by chromatin immunoprecipitation (CHIP), dual-luciferase reporter, and RNA immunoprecipitation (RIP). The methylation status of HECT domain and ankyrin repeat-containing, E3 ubiquitin protein ligase 1 (HACE1) was evaluated using methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP). The xenograft model was established in vivo using subcutaneous nude mice. Histological analyses were performed using hematoxylin-eosin (HE) staining. The expression of molecules was determined using immunohistochemistry (IHC), western blot and quantitative real-time PCR (qPCR). LINC00161 expression was promoted in HCC. LINC00161 knockdown significantly reduced HCC cell proliferation, migration, and invasion. Additionally, M2-TAM stimulated LINC00161 transcription and expression in HCC cells by secreting hepatocyte growth factor (HGF) to activate the Met/NFκB pathway. LINC00161 suppressed HACE1 expression, and knockdown of LINC00161 decreased the methylation on the HACE1 promoter. Meanwhile, a binding relationship between the enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) and HACE1 was observed. LINC00161 overexpression increased the binding of EZH2 on the HACE1 promoter region. Furthermore, LINC00161 knockdown suppressed tumor growth in vivo and induced HACE1 expression by inhibiting its methylation. LINC00161, induced by M2-TAM, played a pivotal role in contributing to HCC development by recruiting EZH2 to promote the methylation of HACE1. This underscores the significant involvement of LINC00161 in mediating the progression of HCC.
Collapse
Affiliation(s)
- Yujunya Zhang
- Third Clinical Medical College of Xinjiang Medical University (Affiliated Cancer Hospital), Urumqi, 830011 Xinjiang Uygur China
| | - Shuying Chen
- Third Clinical Medical College of Xinjiang Medical University (Affiliated Cancer Hospital), Urumqi, 830011 Xinjiang Uygur China
| | - Lina You
- Traditional Chinese Medicine Oncology Department, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011 Xinjiang Uygur China
| | - Zhanao He
- Interventional Diagnosis and Treatment Department, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Xinshi District, Urumqi, 830011 Xinjiang Uygur China
| | - Peidong Xu
- Interventional Diagnosis and Treatment Department, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Xinshi District, Urumqi, 830011 Xinjiang Uygur China
| | - Wukui Huang
- Interventional Diagnosis and Treatment Department, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Xinshi District, Urumqi, 830011 Xinjiang Uygur China
| |
Collapse
|
2
|
Shen J, Lai Y, Wu Y, Lin X, Zhang C, Liu H. Ubiquitination in osteosarcoma: unveiling the impact on cell biology and therapeutic strategies. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0231. [PMID: 39475222 PMCID: PMC11523277 DOI: 10.20892/j.issn.2095-3941.2024.0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/30/2024] [Indexed: 11/02/2024] Open
Abstract
Ubiquitination, a multifaceted post-translational modification, regulates protein function, degradation, and gene expression. The pivotal role of ubiquitination in the pathogenesis and progression of cancer, including colorectal, breast, and liver cancer, is well-established. Osteosarcoma, an aggressive bone tumor predominantly affecting adolescents, also exhibits dysregulation of the ubiquitination system, encompassing both ubiquitination and deubiquitination processes. This dysregulation is now recognized as a key driver of osteosarcoma development, progression, and chemoresistance. This review highlights recent progress in elucidating how ubiquitination modulates tumor behavior across signaling pathways. We then focus on the mechanisms by which ubiquitination influences osteosarcoma cell function. Finally, we discuss the potential for targeting the ubiquitin-proteasome system in osteosarcoma therapy. By unraveling the impact of ubiquitination on osteosarcoma cell physiology, we aim to facilitate the development of novel strategies for prognosis, staging, treatment, and overcoming chemoresistance.
Collapse
Affiliation(s)
- Jianlin Shen
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian 351100, China
- Central Laboratory, Affiliated Hospital of Putian University, Putian 351100, China
| | - Yue Lai
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Yanjiao Wu
- Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan 528000, China
| | - Xuan Lin
- Department of Environmental and Biological Engineering, Putian University, Putian 351100, China
| | - Cheng Zhang
- Department of Trauma Center, Zhongda Hospital, Southeast University, Nanjing 210000, China
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
3
|
Usmani MA, Ghaffar A, Shahzad M, Akram J, Majeed AI, Malik K, Fatima K, Khan AA, Ahmed ZM, Riazuddin S, Riazuddin S. A Missense Variant in HACE1 Is Associated with Intellectual Disability, Epilepsy, Spasticity, and Psychomotor Impairment in a Pakistani Kindred. Genes (Basel) 2024; 15:580. [PMID: 38790209 PMCID: PMC11121239 DOI: 10.3390/genes15050580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Intellectual disability (ID), which affects around 2% to 3% of the population, accounts for 0.63% of the overall prevalence of neurodevelopmental disorders (NDD). ID is characterized by limitations in a person's intellectual and adaptive functioning, and is caused by pathogenic variants in more than 1000 genes. Here, we report a rare missense variant (c.350T>C; p.(Leu117Ser)) in HACE1 segregating with NDD syndrome with clinical features including ID, epilepsy, spasticity, global developmental delay, and psychomotor impairment in two siblings of a consanguineous Pakistani kindred. HACE1 encodes a HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1 (HACE1), which is involved in protein ubiquitination, localization, and cell division. HACE1 is also predicted to interact with several proteins that have been previously implicated in the ID phenotype in humans. The p.(Leu117Ser) variant replaces an evolutionarily conserved residue of HACE1 and is predicted to be deleterious by various in silico algorithms. Previously, eleven protein truncating variants of HACE1 have been reported in individuals with NDD. However, to our knowledge, p.(Leu117Ser) is the second missense variant in HACE1 found in an individual with NDD.
Collapse
Affiliation(s)
- Muhammad A. Usmani
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (M.A.U.); (A.G.)
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan; (M.S.); (J.A.); (S.R.)
- Jinnah Burn and Reconstructive Surgery Center, Allama Iqbal Medical College, University of Health Sciences, Lahore 54550, Pakistan
| | - Amama Ghaffar
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (M.A.U.); (A.G.)
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - Mohsin Shahzad
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan; (M.S.); (J.A.); (S.R.)
| | - Javed Akram
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan; (M.S.); (J.A.); (S.R.)
| | - Aisha I. Majeed
- Department of Radiology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan;
| | - Kausar Malik
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - Khushbakht Fatima
- Department of Applied Health Sciences, University of Management and Technology, Lahore 54500, Pakistan;
| | - Asma A. Khan
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - Zubair M. Ahmed
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (M.A.U.); (A.G.)
- Department of Molecular Biology and Biochemistry, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Sheikh Riazuddin
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan; (M.S.); (J.A.); (S.R.)
- Jinnah Burn and Reconstructive Surgery Center, Allama Iqbal Medical College, University of Health Sciences, Lahore 54550, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (M.A.U.); (A.G.)
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
- Department of Molecular Biology and Biochemistry, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Hu Y, Zhu Z, Xu Y, Zaman MF, Ge Y, Hu J, Tang X. Inhibition of esophageal cancer progression through HACE1-TRIP12 interaction and associated RAC1 ubiquitination and degradation. J Cancer 2024; 15:3114-3127. [PMID: 38706891 PMCID: PMC11064264 DOI: 10.7150/jca.93833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/09/2024] [Indexed: 05/07/2024] Open
Abstract
Objective: This study investigated the significance of HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1 (HACE1) in esophageal cancer (ESCA) and its underlying mechanism in ESCA regulation through the induction of RAC1 ubiquitination and degradation. Methods: Characterization studies of HACE1 in ESCA clinical tissues and cell lines were performed. Next, the effects of HACE1 on the biological behavior of ESCA cells were examined by silencing and overexpressing HACE1. Protein-protein interactions (PPIs) involving HACE1 were analyzed using data from the String website. The function of HACE1 in RAC1 protein ubiquitination was validated using the proteasome inhibitor MG132. The effects of HACE1 on ESCA cells through RAC1 were elucidated by applying the RAC1 inhibitor EHop-016 in a tumor-bearing nude mouse model. To establish the relationship between HACE1 and TRIP12, rescue experiments were conducted, mainly to evaluate the effect of TRIP12 silencing on HACE1-mediated RAC1 regulation in vitro and in vivo. The PPI between HACE1 and TRIP12 and their subcellular localization were further characterized through co-immunoprecipitation and immunofluorescence staining assays, respectively. Results: HACE1 protein expression was notably diminished in ESCA cells but upregulated in normal tissues. HACE1 overexpression inhibited the malignant biological behavior of ESCA cells, leading to restrained tumor growth in mice. This effect was coupled with the promotion of RAC1 protein ubiquitination and subsequent degradation. Conversely, silencing HACE1 exhibited contrasting results. PPI existed between HACE1 and TRIP12, compounded by their similar subcellular localization. Intriguingly, TRIP12 inhibition blocked HACE1-driven RAC1 ubiquitination and mitigated the inhibitory effects of HACE1 on ESCA cells, alleviating tumor growth in the tumor-bearing nude mouse model. Conclusion: HACE1 expression was downregulated in ESCA cells, suggesting that it curbs ESCA progression by inducing RAC1 protein degradation through TRIP12-mediated ubiquitination.
Collapse
Affiliation(s)
- Ya Hu
- Health Science Center, Yangtze University, Jingzhou City, Hubei Province, China, 434023
| | - Ziyi Zhu
- Health Science Center, Yangtze University, Jingzhou City, Hubei Province, China, 434023
| | - Yanhua Xu
- Department of Oncology, Jingzhou Central Hospital, Jingzhou City, Hubei Province, China, 434020
| | - Muhammad Fakhar Zaman
- Health Science Center, Yangtze University, Jingzhou City, Hubei Province, China, 434023
| | - Yuxuan Ge
- Health Science Center, Yangtze University, Jingzhou City, Hubei Province, China, 434023
| | - Jinming Hu
- Health Science Center, Yangtze University, Jingzhou City, Hubei Province, China, 434023
| | - Xi Tang
- Department of Oncology, Jingzhou Central Hospital, Jingzhou City, Hubei Province, China, 434020
| |
Collapse
|
5
|
Turgu B, El‐Naggar A, Kogler M, Tortola L, Zhang H, Hassan M, Lizardo MM, Kung SHY, Lam W, Penninger JM, Sorensen PH. The HACE1 E3 ligase mediates RAC1-dependent control of mTOR signaling complexes. EMBO Rep 2023; 24:e56815. [PMID: 37846480 PMCID: PMC10702814 DOI: 10.15252/embr.202356815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
HACE1 is a HECT family E3 ubiquitin-protein ligase with broad but incompletely understood tumor suppressor activity. Here, we report a previously unrecognized link between HACE1 and signaling complexes containing mammalian target of rapamycin (mTOR). HACE1 blocks mTORC1 and mTORC2 activities by reducing mTOR stability in an E3 ligase-dependent manner. Mechanistically, HACE1 binds to and ubiquitylates Ras-related C3 botulinum toxin substrate 1 (RAC1) when RAC1 is associated with mTOR complexes, including at focal adhesions, leading to proteasomal degradation of RAC1. This in turn decreases the stability of mTOR to reduce mTORC1 and mTORC2 activity. HACE1 deficient cells show enhanced mTORC1/2 activity, which is reversed by chemical or genetic RAC1 inactivation but not in cells expressing the HACE1-insensitive mutant, RAC1K147R . In vivo, Rac1 deletion reverses enhanced mTOR expression in KRasG12D -driven lung tumors of Hace1-/- mice. HACE1 co-localizes with mTOR and RAC1, resulting in RAC1-dependent loss of mTOR protein stability. Together, our data demonstrate that HACE1 destabilizes mTOR by targeting RAC1 within mTOR-associated complexes, revealing a unique ubiquitin-dependent process to control the activity of mTOR signaling complexes.
Collapse
Affiliation(s)
- Busra Turgu
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
- Faculty of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Amal El‐Naggar
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Pathology, Faculty of MedicineMenoufia UniversityShibin El KomEgypt
| | - Melanie Kogler
- Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Luigi Tortola
- Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Department of Biology, Institute of Molecular Health SciencesETH ZurichZurichSwitzerland
| | - Hai‐Feng Zhang
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Mariam Hassan
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Michael M Lizardo
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Sonia HY Kung
- Department of Urological Sciences, Vancouver Prostate CentreUniversity of British ColumbiaVancouverBCCanada
| | - Wan Lam
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Department of Medical Genetics, Life Sciences InstituteUniversity of British ColumbiaVancouverBCCanada
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
- Helmholtz Centre for Infection ResearchBraunschweigGermany
| | - Poul H Sorensen
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
6
|
Yin P, Wu Y, Long X, Zhu S, Chen S, Lu F, Lin K, Xu J. HACE1 expression in heart failure patients might promote mitochondrial oxidative stress and ferroptosis by targeting NRF2. Aging (Albany NY) 2023; 15:13888-13900. [PMID: 38070140 PMCID: PMC10756096 DOI: 10.18632/aging.205272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/17/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Heart failure is a prevalent and life-threatening medical condition characterized by abnormal atrial electrical activity, contributing to a higher risk of ischemic stroke. Atrial remodelling, driven by oxidative stress and structural changes, plays a central role in heart failure progression. Recent studies suggest that HACE1, a regulatory gene, may be involved in cardiac protection against heart failure. METHODS Clinical data analysis involved heart failure patients, while an animal model utilized C57BL/6J mice. RT-PCR, microarray analysis, histological examination, ELISA, and Western blot assays were employed to assess gene and protein expression, oxidative stress, and cardiac function. Cell transfection and culture of mouse atrial fibroblasts were performed for in-vitro experiments. RESULTS HACE1 expression was reduced in heart failure patients and correlated negatively with collagen levels. In mouse models, HACE1 up-regulation reduced oxidative stress, mitigated fibrosis, and improved cardiac function. Conversely, HACE1 knockdown exacerbated oxidative stress, fibrosis, and cardiac dysfunction. HACE1 also protected against ferroptosis and mitochondrial damage. NRF2, a transcription factor implicated in oxidative stress, was identified as a target of HACE1, with HACE1 promoting NRF2 activity through ubiquitination. CONCLUSIONS HACE1 emerges as a potential therapeutic target and diagnostic marker for heart failure. It regulates oxidative stress, mitigates cardiac fibrosis, and protects against ferroptosis and mitochondrial damage. The study reveals that HACE1 achieves these effects, at least in part, through NRF2 activation via ubiquitination, offering insights into novel mechanisms for heart failure pathogenesis and potential interventions.
Collapse
Affiliation(s)
- Peiyi Yin
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yongbin Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiang Long
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shuqiang Zhu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shiwei Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Feng Lu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Kun Lin
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jianjun Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
7
|
Pan Q, Lou J, Yan P, Kang X, Li P, Huang Z. WTAP contributes to the tumorigenesis of osteosarcoma via modulating ALB in an m6A-dependent manner. ENVIRONMENTAL TOXICOLOGY 2023; 38:1455-1465. [PMID: 36988233 DOI: 10.1002/tox.23780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/22/2023] [Accepted: 03/05/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE Osteosarcoma (OS) is a prevalent bone malignancy mainly occurred in adolescents. WTAP/N6-methyladenosine (m6A) modification is confirmed to be involved in OS progression. This study is conducted to bring some novel insights to the action mechanism of WTAP/m6A under the hidden pathogenesis of OS. METHODS qRT-PCR was executed to evaluate the expression levels of WTAP and ALB. ALB protein level in OS cells was measured by western blotting. The content of m6A in total RNA was assessed by m6A quantification assay. Me-RIP, dual luciferase reporter, and mRNA stability assays confirmed the target relationship of WTAP with ALB. With the use of the wound healing, CCK-8, and transwell invasion assays, the functional relationship between WTAP and ALB in OS cells was confirmed. The influences of WTAP on tumor growth in vivo were performed in the xenograft model of mouse. RESULTS WTAP was increased but ALB was diminished in OS tissues and/or cell lines. WTAP modulated ALB expression in an m6A-dependent manner. Silencing of WTAP retarded the development of OS via inhibiting cell viability, migration, invasion, and tumor growth. Knockdown of ALB exerted the opposite effects on OS progression. Additionally, ALB deficiency partially eliminated the inhibiting effects of WTAP silencing on cellular processes in OS. CONCLUSIONS This is the first report to clarify the interaction of WTAP/m6A with ALB in OS progression. These experimental data to some extent broadened the horizons of WTAP/m6A in the development of OS.
Collapse
Affiliation(s)
- Qiyong Pan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jigang Lou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaobiao Kang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengfei Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Song J, Yuan X, Piao L, Wang J, Wang P, Zhuang M, Liu J, Liu Z. Cellular functions and molecular mechanisms of ubiquitination in osteosarcoma. Front Oncol 2022; 12:1072701. [DOI: 10.3389/fonc.2022.1072701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Although some advances have been made in the treatment of osteosarcoma in recent years, surgical resection remains the mainstream treatment. Initial and early diagnosis of osteosarcoma could be very difficult to achieve due to the insufficient sensitivity for the means of examination. The distal metastasis of osteosarcoma also predicts the poor prognosis of osteosarcoma. In order to solve this series of problems, people begin to discover a new method of diagnosing and treating osteosarcoma. Ubiquitination, as an emerging posttranslational modification, has been shown to be closely related to osteosarcoma in studies over the past decades. In general, this review describes the cellular functions and molecular mechanisms of ubiquitination during the development of osteosarcoma.
Collapse
|
9
|
Hu Z, Wen S, Huo Z, Wang Q, Zhao J, Wang Z, Chen Y, Zhang L, Zhou F, Guo Z, Liu H, Zhou S. Current Status and Prospects of Targeted Therapy for Osteosarcoma. Cells 2022; 11:3507. [PMID: 36359903 PMCID: PMC9653755 DOI: 10.3390/cells11213507] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 09/26/2023] Open
Abstract
Osteosarcoma (OS) is a highly malignant tumor occurring in bone tissue with a high propensity to metastasize, and its underlying mechanisms remain largely elusive. The OS prognosis is poor, and improving the survival of OS patients remains a challenge. Current treatment methods such as surgical approaches, chemotherapeutic drugs, and immunotherapeutic drugs remain ineffective. As research progresses, targeted therapy is gradually becoming irreplaceable. In this review, several treatment modalities for osteosarcoma, such as surgery, chemotherapy, and immunotherapy, are briefly described, followed by a discussion of targeted therapy, the important targets, and new technologies for osteosarcoma treatment.
Collapse
Affiliation(s)
- Zunguo Hu
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Shuang Wen
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Zijun Huo
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Qing Wang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Jiantao Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Zihao Wang
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Yanchun Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Lingyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Fenghua Zhou
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Zhangyu Guo
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Huancai Liu
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Jiang H, Chen Y, Xu X, Li C, Chen Y, Li D, Zeng X, Gao H. Ubiquitylation of cyclin C by HACE1 regulates cisplatin-associated sensitivity in gastric cancer. Clin Transl Med 2022; 12:e770. [PMID: 35343092 PMCID: PMC8958351 DOI: 10.1002/ctm2.770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cyclin C (CCNC) was reported to take part in regulating mitochondria-derived oxidative stress under cisplatin stimulation. However, its effect in gastric cancer is unknown. This study aimed to investigate the role of cyclin C and its ubiquitylation in regulating cisplatin resistance in gastric cancer. METHODS The interaction between HECT domain and ankyrin repeat-containing E3 ubiquitin-protein ligase 1 (HACE1) and cyclin C was investigated by GST pull-down assay, co-immunoprecipitation and ubiquitylation assay. Mitochondria-derived oxidative stress was studied by MitoSOX Red assay, seahorse assay and mitochondrial membrane potential measurement. Cyclin C-associated cisplatin resistance was studied in vivo via xenograft. RESULTS HACE1 catalysed the ubiquitylation of cyclin C by adding Lys11-linked ubiquitin chains when cyclin C translocates to cytoplasm induced by cisplatin treatment. The ubiquitin-modified cyclin C then anchor at mitochondira, which induced mitochondrial fission and ROS synthesis. Depleting CCNC or mutation on the ubiquitylation sites decreased mitochondrial ROS production and reduced cell apoptosis under cisplatin treatment. Xenograft study showed that disrupting cyclin C ubiquitylation by HACE1 conferred impairing cell apoptosis response upon cisplatin administration. CONCLUSIONS Cyclin C is a newly identified substrate of HACE1 E3 ligase. HACE1-mediated ubiquitylation of cyclin C sheds light on a better understanding of cisplatin-associated resistance in gastric cancer patients. Ubiquitylation of cyclin C by HACE1 regulates cisplatin-associated sensitivity in gastric cancer. With cisplatin-induced nuclear-mitochondrial translocation of cyclin C, its ubiquitylation by HACE1 increased mitochondrial fission and mitochondrial-derived oxidative stress, leading to cell apoptosis.
Collapse
Affiliation(s)
- Hong‐yue Jiang
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Ying‐ling Chen
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Xing‐xing Xu
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceInnovation Center for Cell Signaling NetworkShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
| | - Chuan‐yin Li
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceInnovation Center for Cell Signaling NetworkShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yun Chen
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Dong‐ping Li
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Xiao‐qing Zeng
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Hong Gao
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghaiChina
- Evidence‐based Medicine Center of Fudan UniversityShanghaiChina
| |
Collapse
|
11
|
Bui S, Mejia I, Díaz B, Wang Y. Adaptation of the Golgi Apparatus in Cancer Cell Invasion and Metastasis. Front Cell Dev Biol 2021; 9:806482. [PMID: 34957124 PMCID: PMC8703019 DOI: 10.3389/fcell.2021.806482] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
The Golgi apparatus plays a central role in normal cell physiology by promoting cell survival, facilitating proliferation, and enabling cell-cell communication and migration. These roles are partially mediated by well-known Golgi functions, including post-translational modifications, lipid biosynthesis, intracellular trafficking, and protein secretion. In addition, accumulating evidence indicates that the Golgi plays a critical role in sensing and integrating external and internal cues to promote cellular homeostasis. Indeed, the unique structure of the mammalian Golgi can be fine-tuned to adapt different Golgi functions to specific cellular needs. This is particularly relevant in the context of cancer, where unrestrained proliferation and aberrant survival and migration increase the demands in Golgi functions, as well as the need for Golgi-dependent sensing and adaptation to intrinsic and extrinsic stressors. Here, we review and discuss current understanding of how the structure and function of the Golgi apparatus is influenced by oncogenic transformation, and how this adaptation may facilitate cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Sarah Bui
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Isabel Mejia
- Department of Internal Medicine, Division of Medical Hematology and Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Begoña Díaz
- Department of Internal Medicine, Division of Medical Hematology and Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.,Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Abstract
Osteosarcoma is the most common primary bone malignancy in adolescents. Its high propensity to metastasize is the leading cause for treatment failure and poor prognosis. Although the research of osteosarcoma has greatly expanded in the past decades, the knowledge and new therapy strategies targeting metastatic progression remain sparse. The prognosis of patients with metastasis is still unsatisfactory. There is resonating urgency for a thorough and deeper understanding of molecular mechanisms underlying osteosarcoma to develop innovative therapies targeting metastasis. Toward the goal of elaborating the characteristics and biological behavior of metastatic osteosarcoma, it is essential to combine the diverse investigations that are performed at molecular, cellular, and animal levels from basic research to clinical translation spanning chemical, physical sciences, and biology. This review focuses on the metastatic process, regulatory networks involving key molecules and signaling pathways, the role of microenvironment, osteoclast, angiogenesis, metabolism, immunity, and noncoding RNAs in osteosarcoma metastasis. The aim of this review is to provide an overview of current research advances, with the hope to discovery druggable targets and promising therapy strategies for osteosarcoma metastasis and thus to overcome this clinical impasse.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Wang J, Yuan L, Xu X, Zhang Z, Ma Y, Hong L, Ma J. Rho-GEF Trio regulates osteosarcoma progression and osteogenic differentiation through Rac1 and RhoA. Cell Death Dis 2021; 12:1148. [PMID: 34893584 PMCID: PMC8664940 DOI: 10.1038/s41419-021-04448-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 11/08/2022]
Abstract
Osteosarcoma (OS) is the most common primary bone tumor. Its high mortality rate and metastasis rate seriously threaten human health. Currently, the treatment has reached a plateau, hence we urgently need to explore new therapeutic directions. In this paper, we found that Trio was highly expressed in osteosarcoma than normal tissues and promoted the proliferation, migration, and invasion of osteosarcoma cells. Furthermore, Trio inhibited osteosarcoma cells' osteogenic differentiation in vitro and accelerated the growth of osteosarcoma in vivo. Given Trio contains two GEF domains, which have been reported as the regulators of RhoGTPases, we further discovered that Trio could regulate osteosarcoma progression and osteogenic differentiation through activating RhoGTPases. In summary, all our preliminary results showed that Trio could be a potential target and prognostic marker of osteosarcoma.
Collapse
Affiliation(s)
- Junyi Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, 210029, Nanjing, China
| | - Lichan Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, 210029, Nanjing, China
| | - Xiaohong Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, 210029, Nanjing, China
| | - Zhongyin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, 210029, Nanjing, China
| | - Yuhuan Ma
- Nanjing Foreign Language School, 210008, Nanjing, Jiangsu, China
| | - Leilei Hong
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, 210029, Nanjing, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, 210029, Nanjing, China.
| |
Collapse
|
14
|
Rashid S, Song D, Yuan J, Mullin BH, Xu J. Molecular structure, expression, and the emerging role of Siglec-15 in skeletal biology and cancer. J Cell Physiol 2021; 237:1711-1719. [PMID: 34893976 DOI: 10.1002/jcp.30654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 12/25/2022]
Abstract
Siglec-15, a Siglec family member and type-1 transmembrane protein, is expressed mainly in human macrophages and dendritic cells. It is comprised of a lysine-containing transmembrane domain, two extracellular immunoglobulin (Ig)-like domains and a short cytoplasmic domain. Siglec-15 is highly conserved in vertebrates and acts as an immunoreceptor. It exerts diverse functions on osteoclast physiology as well as the tumor microenvironment. Siglec-15 interacts with adapter protein DAP12 - Syk signaling pathway to regulate the RANKL/RANK-mediated PI3K, AKT, and ERK signaling pathways during osteoclast formation in vitro. Consistently, the lack of the Siglec-15 gene in mice leads to impaired osteoclast activity and osteopetrosis in vivo. In addition, Siglec-15 is expressed by tumor-associated macrophages (TAMs) and regulates the tumor microenvironment by activating the SYK/MAPK signaling pathway. Interestingly, Siglec-15 shares sequence homology to programmed death-ligand 1 (PD-L1) and has a potential immune-regulatory role in cancer immunology. Thus, Siglec-15 might also represent an alternative target for the treatment of cancers that do not respond to anti-PD-L1/PD-1 immunotherapy. Understanding the role of Siglec-15 in osteoclastogenesis and the tumor microenvironment will help us to develop new treatments for bone disorders and cancer.
Collapse
Affiliation(s)
- Sarah Rashid
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Dezhi Song
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinbo Yuan
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Benjamin H Mullin
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
15
|
Zhang G, Su L, Lv X, Yang Q. A novel tumor doubling time-related immune gene signature for prognosis prediction in hepatocellular carcinoma. Cancer Cell Int 2021; 21:522. [PMID: 34627241 PMCID: PMC8502295 DOI: 10.1186/s12935-021-02227-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) has become a global health issue of wide concern due to its high prevalence and poor therapeutic efficacy. Both tumor doubling time (TDT) and immune status are closely related to the prognosis of HCC patients. However, the association between TDT-related genes (TDTRGs) and immune-related genes (IRGs) and the value of their combination in predicting the prognosis of HCC patients remains unclear. The current study aimed to discover reliable biomarkers for anticipating the future prognosis of HCC patients based on the relationship between TDTRGs and IRGs. Methods Tumor doubling time-related genes (TDTRGs) were acquired from GSE54236 by using Pearson correlation test and immune-related genes (IRGs) were available from ImmPort. Prognostic TDTRGs and IRGs in TCGA-LIHC dataset were determined to create a prognostic model by the LASSO-Cox regression and stepwise Cox regression analysis. International Cancer Genome Consortium (ICGC) and another cohort of individual clinical samples acted as external validations. Additionally, significant impacts of the signature on HCC immune microenvironment and reaction to immune checkpoint inhibitors were observed. Results Among the 68 overlapping genes identified as TDTRG and IRG, a total of 29 genes had significant prognostic relevance and were further selected by performing a LASSO-Cox regression model based on the minimum value of λ. Subsequently, a prognostic three-gene signature including HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1 (HACE1), C-type lectin domain family 1 member B (CLEC1B), and Collectin sub-family member 12 (COLEC12) was finally identified by stepwise Cox proportional modeling. The signature exhibited superior accuracy in forecasting the survival outcomes of HCC patients in TCGA, ICGC and the independent clinical cohorts. Patients in high-risk subgroup had significantly increased levels of immune checkpoint molecules including PD-L1, CD276, CTLA4, CXCR4, IL1A, PD-L2, TGFB1, OX40 and CD137, and are therefore more sensitive to immune checkpoint inhibitors (ICIs) treatment. Finally, we first found that overexpression of CLEC1B inhibited the proliferation and migration ability of HuH7 cells. Conclusions In summary, the prognostic signature based on TDTRGs and IRGs could effectively help clinicians classify HCC patients for prognosis prediction and individualized immunotherapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02227-w.
Collapse
Affiliation(s)
- Genhao Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lisa Su
- Department of Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianping Lv
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiankun Yang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Goka ET, Mesa Lopez DT, Lippman ME. Hormone-Dependent Prostate Cancers are Dependent on Rac Signaling for Growth and Survival. Mol Cancer Ther 2021; 20:1052-1061. [PMID: 33722851 DOI: 10.1158/1535-7163.mct-20-0695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/20/2020] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
Prostate cancer remains a common cause of cancer mortality in men. Initially, cancers are dependent of androgens for growth and survival. First line therapies reduce levels of circulating androgens or target the androgen receptor (AR) directly. Although most patients show durable responses, many patients eventually progress to castration-resistant prostate cancer (CRPC) creating a need for alternative treatment options. The Rac1 signaling pathway has previously been implicated as a driver of cancer initiation and disease progression. We investigated the role of HACE1, the E3 ubiquitin ligase for Rac1, in prostate cancer and found that HACE1 is commonly lost resulting in hyperactive Rac signaling leading to enhanced cellular proliferation, motility and viability. Importantly, we show that a Rac inhibitor can attenuate the growth and survival of prostate cancer cells. Rac signaling was also found to be critical in prostate cancers that express the AR. Rac inhibition in androgen dependent cells resulted in reduction of AR target gene expression suggesting that targeting Rac1 may be an alternative method for blocking the AR signaling axis. Finally, when used in combination with AR antagonists, Rac inhibition enhanced the suppression of AR target gene expression. Therefore, targeting Rac in prostate cancer has the potential to enhance the efficacy of approved AR therapies.
Collapse
Affiliation(s)
| | | | - Marc E Lippman
- Department of Oncology, Georgetown University, Washington, District of Columbia.
| |
Collapse
|
17
|
Structural Insights into Ankyrin Repeat-Containing Proteins and Their Influence in Ubiquitylation. Int J Mol Sci 2021; 22:ijms22020609. [PMID: 33435370 PMCID: PMC7826745 DOI: 10.3390/ijms22020609] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Ankyrin repeat (AR) domains are considered the most abundant repeat motif found in eukaryotic proteins. AR domains are predominantly known to mediate specific protein-protein interactions (PPIs) without necessarily recognizing specific primary sequences, nor requiring strict conformity within its own primary sequence. This promiscuity allows for one AR domain to recognize and bind to a variety of intracellular substrates, suggesting that AR-containing proteins may be involved in a wide array of functions. Many AR-containing proteins serve a critical role in biological processes including the ubiquitylation signaling pathway (USP). There is also strong evidence that AR-containing protein malfunction are associated with several neurological diseases and disorders. In this review, the structure and mechanism of key AR-containing proteins are discussed to suggest and/or identify how each protein utilizes their AR domains to support ubiquitylation and the cascading pathways that follow upon substrate modification.
Collapse
|
18
|
HACE1 blocks HIF1α accumulation under hypoxia in a RAC1 dependent manner. Oncogene 2021; 40:1988-2001. [PMID: 33603169 PMCID: PMC7979542 DOI: 10.1038/s41388-021-01680-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/21/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023]
Abstract
Uncovering the mechanisms that underpin how tumor cells adapt to microenvironmental stress is essential to better understand cancer progression. The HACE1 (HECT domain and ankyrin repeat-containing E3 ubiquitin-protein ligase) gene is a tumor suppressor that inhibits the growth, invasive capacity, and metastasis of cancer cells. However, the direct regulatory pathways whereby HACE1 confers this tumor-suppressive effect remain to be fully elucidated. In this report, we establish a link between HACE1 and the major stress factor, hypoxia-inducible factor 1 alpha (HIF1α). We find that HACE1 blocks the accumulation of HIF1α during cellular hypoxia through decreased protein stability. This property is dependent on HACE1 E3 ligase activity and loss of Ras-related C3 botulinum toxin substrate 1 (RAC1), an established target of HACE1 mediated ubiquitinylation and degradation. In vivo, genetic deletion of Rac1 reversed the increased HIF1α expression observed in Hace1-/- mice in murine KRasG12D-driven lung tumors. An inverse relationship was observed between HACE1 and HIF1α levels in tumors compared to patient-matched normal kidney tissues, highlighting the potential pathophysiological significance of our findings. Together, our data uncover a previously unrecognized function for the HACE1 tumor suppressor in blocking HIF1α accumulation under hypoxia in a RAC1-dependent manner.
Collapse
|
19
|
Wei D, Li C, Ye J, Xiang F, Liu J. Extracellular Collagen Mediates Osteosarcoma Progression Through an Integrin α2β1/JAK/STAT3 Signaling Pathway. Cancer Manag Res 2020; 12:12067-12075. [PMID: 33262655 PMCID: PMC7699996 DOI: 10.2147/cmar.s273466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Osteosarcoma development is a complex set which is determined by various factors. Many patients suffered from sustained osteosarcoma growth and revealed poor response to clinical interventions. However, the underlying mechanisms of osteosarcoma development still remain unclear. Methods In our study, we isolated osteosarcoma tissues from clinical patients, which were divided into high degree group (stage G1~G2) and low degree group (stage G0). The expression of type I collagen, integrin and STAT3 in tumor tissues were analyzed by immunohistochemistry or immunofluorescence. The collagen-induced cells proliferation was detected by CCK8 and colony formation analysis. The activation of JAK/STAT3 signal was examined by Western blotting and immunofluorescence. The anticancer effects of integrin α2β1 peptide were analyzed by Sao-2-bearing mice model. Results Our results implicated that type I collagen could facilitate malignant osteosarcoma development in patients. In vitro, 2D collagen culture also efficiently mediated the stemness up-regulation of osteosarcoma cells, resulting in the strengthened capability of cells proliferation and tumorigenesis. In mechanism, we found that type I collagen could facilitate the activation of JAK/STAT3 signals through integrin α2β1, which elicited tumor-sustained growth and cancer relapse. In tumor-bearing mice model, integrin α2β1 signals inhibitor significantly suppressed the osteosarcoma cells proliferation and their tumorigenic ability, which improved the outcome of chemotherapy/radiotherapy. Conclusion Our study demonstrated that type I collagen could mediate osteosarcoma development through an integrin α2β1/JAK/STAT3 signaling pathway. Blockade of integrin α2β1 by α2β1 inhibitor efficiently improved outcome of chemotherapy/radiotherapy, which provided new insights for eradicating tumors in clinic.
Collapse
Affiliation(s)
- Daiqing Wei
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, Sichuan, People's Republic of China
| | - Cui Li
- Department of Nosocomial Infection Control, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Junwu Ye
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, Sichuan, People's Republic of China
| | - Feifan Xiang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, Sichuan, People's Republic of China
| | - Juncai Liu
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
20
|
Chen S, Li Y, Zhi S, Ding Z, Wang W, Peng Y, Huang Y, Zheng R, Yu H, Wang J, Hu M, Miao J, Li J. WTAP promotes osteosarcoma tumorigenesis by repressing HMBOX1 expression in an m 6A-dependent manner. Cell Death Dis 2020; 11:659. [PMID: 32814762 PMCID: PMC7438489 DOI: 10.1038/s41419-020-02847-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
N6-methyladenosine (m6A) regulators are involved in the progression of various cancers via regulating m6A modification. However, the potential role and mechanism of the m6A modification in osteosarcoma remains obscure. In this study, WTAP was found to be highly expressed in osteosarcoma tissue and it was an independent prognostic factor for overall survival in osteosarcoma. Functionally, WTAP, as an oncogene, was involved in the proliferation and metastasis of osteosarcoma in vitro and vivo. Mechanistically, M6A dot blot, RNA-seq and MeRIP-seq, MeRIP-qRT-PCR and luciferase reporter assays showed that HMBOX1 was identified as the target gene of WTAP, which regulated HMBOX1 stability depending on m6A modification at the 3′UTR of HMBOX1 mRNA. In addition, HMBOX1 expression was downregulated in osteosarcoma and was an independent prognostic factor for overall survival in osteosarcoma patients. Silenced HMBOX1 evidently attenuated shWTAP-mediated suppression on osteosarcoma growth and metastasis in vivo and vitro. Finally, WTAP/HMBOX1 regulated osteosarcoma growth and metastasis via PI3K/AKT pathway. In conclusion, this study demonstrated the critical role of the WTAP-mediated m6A modification in the progression of osteosarcoma, which could provide novel insights into osteosarcoma treatment.
Collapse
Affiliation(s)
- Shijie Chen
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuezhan Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Shuang Zhi
- Four Gynecological Wards, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, 315000, China
| | - Zhiyu Ding
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Weiguo Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Yi Peng
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Yan Huang
- The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ruping Zheng
- School of Basic Medical Science, Central South University, Changsha, China
| | - Haiyang Yu
- School of Basic Medical Science, Central South University, Changsha, China
| | - Jianlong Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Minghua Hu
- Department of Anatomy, Histology and Embryology, Changsha Medical University, Changsha, China
| | - Jinglei Miao
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.
| | - Jinsong Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.
| |
Collapse
|
21
|
Kogler M, Tortola L, Negri GL, Leopoldi A, El-Naggar AM, Mereiter S, Gomez-Diaz C, Nitsch R, Tortora D, Kavirayani AM, Gapp BV, Rao S, Uribesalgo I, Hoffmann D, Cikes D, Novatchkova M, Williams DA, Trent JM, Ikeda F, Daugaard M, Hagelkruys A, Sorensen PH, Penninger JM. HACE1 Prevents Lung Carcinogenesis via Inhibition of RAC-Family GTPases. Cancer Res 2020; 80:3009-3022. [PMID: 32366477 PMCID: PMC7611202 DOI: 10.1158/0008-5472.can-19-2270] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 03/21/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
HACE1 is an E3 ubiquitin ligase with important roles in tumor biology and tissue homeostasis. Loss or mutation of HACE1 has been associated with the occurrence of a variety of neoplasms, but the underlying mechanisms have not been defined yet. Here, we report that HACE1 is frequently mutated in human lung cancer. In mice, loss of Hace1 led to enhanced progression of KRasG12D -driven lung tumors. Additional ablation of the oncogenic GTPase Rac1 partially reduced progression of Hace1-/- lung tumors. RAC2, a novel ubiquitylation target of HACE1, could compensate for the absence of its homolog RAC1 in Hace1-deficient, but not in HACE1-sufficient tumors. Accordingly, ablation of both Rac1 and Rac2 fully averted the increased progression of KRasG12D -driven lung tumors in Hace1-/- mice. In patients with lung cancer, increased expression of HACE1 correlated with reduced levels of RAC1 and RAC2 and prolonged survival, whereas elevated expression of RAC1 and RAC2 was associated with poor prognosis. This work defines HACE1 as a crucial regulator of the oncogenic activity of RAC-family GTPases in lung cancer development. SIGNIFICANCE: These findings reveal that mutation of the tumor suppressor HACE1 disrupts its role as a regulator of the oncogenic activity of RAC-family GTPases in human and murine lung cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/14/3009/F1.large.jpg.
Collapse
Affiliation(s)
- Melanie Kogler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCentre, Vienna, Austria
| | - Luigi Tortola
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCentre, Vienna, Austria.
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Switzerland
| | - Gian Luca Negri
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Alexandra Leopoldi
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCentre, Vienna, Austria
| | - Amal M El-Naggar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia Governorate, Egypt
| | - Stefan Mereiter
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCentre, Vienna, Austria
| | - Carlos Gomez-Diaz
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCentre, Vienna, Austria
| | - Roberto Nitsch
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCentre, Vienna, Austria
- Advanced Medicines Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Davide Tortora
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | | | - Bianca V Gapp
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCentre, Vienna, Austria
| | - Shuan Rao
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCentre, Vienna, Austria
| | - Iris Uribesalgo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCentre, Vienna, Austria
| | - David Hoffmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCentre, Vienna, Austria
| | - Domagoj Cikes
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCentre, Vienna, Austria
| | - Maria Novatchkova
- Research Institute of Molecular Pathology, Vienna BioCentre, Vienna, Austria
| | - David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | - Jeffrey M Trent
- Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Fumiyo Ikeda
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCentre, Vienna, Austria
| | - Mads Daugaard
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Astrid Hagelkruys
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCentre, Vienna, Austria
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCentre, Vienna, Austria.
- Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Tang Q, Hann SS. Biological Roles and Mechanisms of Circular RNA in Human Cancers. Onco Targets Ther 2020; 13:2067-2092. [PMID: 32210574 PMCID: PMC7069569 DOI: 10.2147/ott.s233672] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Circular RNA (circRNA) is an intriguing class of RNA with covalently closed-loop structure and is highly stable and conservative. As new members of the ncRNAs, the function, mechanism, potential diagnostic biomarker, and therapeutic target have raised increased attention. Most circRNAs are presented with characteristics of abundance, stability, conservatism, and often exhibiting tissue/developmental-stage-specific manner. Over 30,000 circRNAs have been identified with their unique structures to maintain stability more easily than linear RNAs. An increased numbers of circRNAs are dysregulated and involved in several biological processes of malignance, such as tumorigenesis, growth, invasion, metastasis, apoptosis, and vascularization. Emerging evidence suggests that circRNAs play important roles by acting as miRNA sponge or protein scaffolding, autophagy regulators, and interacting with RNA-binding protein (RBP), which may potentially serve as a novel promising biomarker for prevention, diagnosis and therapeutic target for treatment of human cancer with great significance either in scientific research or clinic arena. This review introduces concept, major features of circRNAs, and mainly describes the major biological functions and clinical relevance of circRNAs, as well as expressions and regulatory mechanisms in various types of human cancer, including pathogenesis, mode of action, potential target, signaling regulatory pathways, drug resistance, and therapeutic biomarkers. All of which provide evidence for the potential utilities of circRNAs in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Qing Tang
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, People's Republic of China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, People's Republic of China
| |
Collapse
|
23
|
The Role of Ubiquitination in Regulating Embryonic Stem Cell Maintenance and Cancer Development. Int J Mol Sci 2019; 20:ijms20112667. [PMID: 31151253 PMCID: PMC6600158 DOI: 10.3390/ijms20112667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/19/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
Ubiquitination regulates nearly every aspect of cellular events in eukaryotes. It modifies intracellular proteins with 76-amino acid polypeptide ubiquitin (Ub) and destines them for proteolysis or activity alteration. Ubiquitination is generally achieved by a tri-enzyme machinery involving ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3). E1 activates Ub and transfers it to the active cysteine site of E2 via a transesterification reaction. E3 coordinates with E2 to mediate isopeptide bond formation between Ub and substrate protein. The E1-E2-E3 cascade can create diverse types of Ub modifications, hence effecting distinct outcomes on the substrate proteins. Dysregulation of ubiquitination results in severe consequences and human diseases. There include cancers, developmental defects and immune disorders. In this review, we provide an overview of the ubiquitination machinery and discuss the recent progresses in the ubiquitination-mediated regulation of embryonic stem cell maintenance and cancer biology.
Collapse
|