1
|
Wu Y, Hu X, Wei Z, Lin Q. Cellular Regulation of Macropinocytosis. Int J Mol Sci 2024; 25:6963. [PMID: 39000072 PMCID: PMC11241348 DOI: 10.3390/ijms25136963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Interest in macropinocytosis has risen in recent years owing to its function in tumorigenesis, immune reaction, and viral infection. Cancer cells utilize macropinocytosis to acquire nutrients to support their uncontrolled proliferation and energy consumption. Macropinocytosis, a highly dynamic endocytic and vesicular process, is regulated by a series of cellular signaling pathways. The activation of small GTPases in conjunction with phosphoinositide signaling pivotally regulates the process of macropinocytosis. In this review, we summarize important findings about the regulation of macropinocytosis and provide information to increase our understanding of the regulatory mechanism underlying it.
Collapse
Affiliation(s)
| | | | | | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.W.); (X.H.); (Z.W.)
| |
Collapse
|
2
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, Liu B. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B 2024; 14:953-1008. [PMID: 38487001 PMCID: PMC10935242 DOI: 10.1016/j.apsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer reprogramming is an important facilitator of cancer development and survival, with tumor cells exhibiting a preference for aerobic glycolysis beyond oxidative phosphorylation, even under sufficient oxygen supply condition. This metabolic alteration, known as the Warburg effect, serves as a significant indicator of malignant tumor transformation. The Warburg effect primarily impacts cancer occurrence by influencing the aerobic glycolysis pathway in cancer cells. Key enzymes involved in this process include glucose transporters (GLUTs), HKs, PFKs, LDHs, and PKM2. Moreover, the expression of transcriptional regulatory factors and proteins, such as FOXM1, p53, NF-κB, HIF1α, and c-Myc, can also influence cancer progression. Furthermore, lncRNAs, miRNAs, and circular RNAs play a vital role in directly regulating the Warburg effect. Additionally, gene mutations, tumor microenvironment remodeling, and immune system interactions are closely associated with the Warburg effect. Notably, the development of drugs targeting the Warburg effect has exhibited promising potential in tumor treatment. This comprehensive review presents novel directions and approaches for the early diagnosis and treatment of cancer patients by conducting in-depth research and summarizing the bright prospects of targeting the Warburg effect in cancer.
Collapse
Affiliation(s)
- Minru Liao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaodan Luo
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiwen Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Bi H, Ma L, Zhong X, Long G. Multiple-microarray analysis for identification of key genes involved in diabetic nephropathy. Medicine (Baltimore) 2023; 102:e35985. [PMID: 37986381 PMCID: PMC10659630 DOI: 10.1097/md.0000000000035985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
The purpose of our study was to discover genes with significantly aberrant expression in diabetic nephropathy (DN) and to determine their potential mechanism. We acquired renal tubules, glomerulus and blood samples data from DN patients and controls from the GEO database. The differentially expressed genes (DEGs) in renal tubules, glomerulus and blood samples between DN patients and controls were studied. Based on these DEGs, we carried out the functional annotation and constructed protein-protein interaction (PPI) network. By comparing DN patients and controls of DEGs, we acquired the shared DGEs in renal tubules, glomerulus and blood samples of DN patients and controls. DN patients compared to controls, we obtained 3000 DEGs, 3064 DEGs, and 2296 DEGs in renal tubules, glomerulus and blood samples, respectively. The PPI networks of top 40 DEGs in renal tubules, glomerulus and blood samples was consisted of 229 nodes and 229 edges, 540 nodes and 606 edges, and 132 nodes and 124 edges, respectively. In total, 21 shared genes were finally found, including CASP3, DHCR24, CXCL1, GYPC, INHBA, LTF, MT1G, MUC1, NINJ1, PFKFB3, PPP1R3C, CCL5, SRSF7, PHLDA2, RBM39, WTAP, BASP1, PLK2, PDK2, PNPLA4, and SNED1. These genes may be associated with the DN process. Our study provides a basis to explore the potential mechanism and identify novel therapeutic targets for DN.
Collapse
Affiliation(s)
- Hui Bi
- Department of Internal Medicine, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liang Ma
- Department of Nephrology, Tianjin Union Medical Center, Tianjin, China
| | - Xu Zhong
- Department of Nephrology, Tianjin Union Medical Center, Tianjin, China
| | - Gang Long
- Department of Nephrology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
4
|
Jalil AT, Abdulhadi MA, Alkubaisy SA, Thejeel SH, Essa IM, Merza MS, Zabibah RS, Al-Tamimi R. The role of endoplasmic reticulum stress in promoting aerobic glycolysis in cancer cells: An overview. Pathol Res Pract 2023; 251:154905. [PMID: 37925820 DOI: 10.1016/j.prp.2023.154905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Aerobic glycolysis, also known as the Warburg effect, is a metabolic phenomenon frequently observed in cancer cells, characterized by the preferential utilization of glucose through glycolysis, even under normal oxygen conditions. This metabolic shift provides cancer cells with a proliferative advantage and supports their survival and growth. While the Warburg effect has been extensively studied, the underlying mechanisms driving this metabolic adaptation in cancer cells remain incompletely understood. In recent years, emerging evidence has suggested a potential link between endoplasmic reticulum (ER) stress and the promotion of aerobic glycolysis in cancer cells. The ER is a vital organelle involved in protein folding, calcium homeostasis, and lipid synthesis. Various cellular stresses, such as hypoxia, nutrient deprivation, and accumulation of misfolded proteins, can lead to ER stress. In response, cells activate the unfolded protein response (UPR) to restore ER homeostasis. However, prolonged or severe ER stress can activate alternative signaling pathways that modulate cellular metabolism, including the promotion of aerobic glycolysis. This review aims to provide an overview of the current understanding regarding the influence of ER stress on aerobic glycolysis in cancer cells to shed light on the complex interplay between ER stress and metabolic alterations in cancer cells. Understanding the intricate relationship between ER stress and the promotion of aerobic glycolysis in cancer cells may provide valuable insights for developing novel therapeutic strategies targeting metabolic vulnerabilities in cancer.
Collapse
Affiliation(s)
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Sara Hamed Thejeel
- National University of Science and Technology, Al-Nasiriyah, Thi-Qar, Iraq
| | - Israa M Essa
- Department of Veterinary Parasitology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal, University College, Hillah, Babylon, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University of Najaf, Najaf, Iraq
| | - Raad Al-Tamimi
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
5
|
Liu D, Wang H, Li X, Liu J, Zhang Y, Hu J. Small molecule inhibitors for cancer metabolism: promising prospects to be explored. J Cancer Res Clin Oncol 2023; 149:8051-8076. [PMID: 37002510 DOI: 10.1007/s00432-022-04501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 04/03/2023]
Abstract
BACKGROUND Abnormal metabolism is the main hallmark of cancer, and cancer metabolism plays an important role in tumorigenesis, metastasis, and drug resistance. Therefore, studying the changes of tumor metabolic pathways is beneficial to find targets for the treatment of cancer diseases. The success of metabolism-targeted chemotherapy suggests that cancer metabolism research will provide potential new targets for the treatment of malignant tumors. PURPOSE The aim of this study was to systemically review recent research findings on targeted inhibitors of tumor metabolism. In addition, we summarized new insights into tumor metabolic reprogramming and discussed how to guide the exploration of new strategies for cancer-targeted therapy. CONCLUSION Cancer cells have shown various altered metabolic pathways, providing sufficient fuel for their survival. The combination of these pathways is considered to be a more useful method for screening multilateral pathways. Better understanding of the clinical research progress of small molecule inhibitors of potential targets of tumor metabolism will help to explore more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - HongPing Wang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - XingXing Li
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - JiFang Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - YanLing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
6
|
Zheng Y, Xiao J, Wang J, Dong B, Guo D, Ji H, Sun H, Peng L, Jiang S, Gao X. V-ATPase V0 subunit activation mediates maduramicin-induced methuosis through blocking endolysosomal trafficking in vitro and in vivo. Food Chem Toxicol 2023:113922. [PMID: 37394175 DOI: 10.1016/j.fct.2023.113922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
Methuosis, a novel cell death phenotype, is characterized by accumulation of cytoplasmic vacuolization upon external stimulus. Methuosis plays a critical role in maduramicin-induced cardiotoxicity despite the underlying mechanism is largely unknown. Herein, we aimed to investigate the origin and intracellular trafficking of cytoplasmic vacuoles, as well as the molecular mechanism of methuosis caused by maduramicin (1 μg/mL) in myocardial cells. H9c2 cells and broiler chicken were used and were exposed to maduramicin at doses of 1 μg/mL in vitro and 5 ppm-30 ppm in vivo. Morphological observation and dextran-Alexa Fluor 488 tracer experiment showed that endosomal compartments swelling and excessive macropinocytosis contributed to madurdamcin-induced methuosis. Cell counting kit-8 assay and morphology indicated pharmacological inhibition of macropinocytosis largely prevent H9c2 cells from maduramicin-triggered methuosis. In addition, late endosomal marker Rab7 and lysosomal associated membrane protein 1 (LAMP1) increased in a time-dependent manner after maduramicin treatment, and the recycling endosome marker Rab11 and ADP-ribosylation factor 6 (Arf6) were decreased by maduramicin. Vacuolar-H+-ATPase (V-ATPase) was activated by maduramicin, and pharmacological inhibition and genetic knockdown V0 subunit of V-ATPase restore endosomal-lysosomal trafficking and prevent H9c2 cells methuosis. Animal experiment showed that severe cardiac injury included the increase of creatine kinase (CK) and creatine kinase-MB (CK-MB), and vacuolar degeneration resembled methuosis in vivo after maduramicin treatment. Taken together, these findings demonstrate that targeting the inhibition of V-ATPase V0 subunit will prevent myocardial cells methuosis by restoring endosomal-lysosomal trafficking.
Collapse
Affiliation(s)
- Yuling Zheng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China; Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Jing Xiao
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China; Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Junqi Wang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China; Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Bin Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China; Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Dawei Guo
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China; Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Hui Ji
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China; Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Haifeng Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Peng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China; Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Shanxiang Jiang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China; Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Xiuge Gao
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China; Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China.
| |
Collapse
|
7
|
Inhibition of Macropinocytosis Enhances the Sensitivity of Osteosarcoma Cells to Benzethonium Chloride. Cancers (Basel) 2023; 15:cancers15030961. [PMID: 36765917 PMCID: PMC9913482 DOI: 10.3390/cancers15030961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant tumor of bone. Chemotherapy is one of the crucial approaches to prevent its metastasis and improve prognosis. Despite continuous improvements in the clinical treatment of OS, tumor resistance and metastasis remain dominant clinical challenges. Macropinocytosis, a form of non-selective nutrient endocytosis, has received increasing attention as a novel target for cancer therapy, yet its role in OS cells remains obscure. Benzethonium chloride (BZN) is an FDA-approved antiseptic and bactericide with broad-spectrum anticancer effects. Here, we described that BZN suppressed the proliferation, migration, and invasion of OS cells in vitro and in vivo, but simultaneously promoted the massive accumulation of cytoplasmic vacuoles as well. Mechanistically, BZN repressed the ERK1/2 signaling pathway, and the ERK1/2 activator partially neutralized the inhibitory effect of BZN on OS cells. Subsequently, we demonstrated that vacuoles originated from macropinocytosis and indicated that OS cells might employ macropinocytosis as a compensatory survival mechanism in response to BZN. Remarkably, macropinocytosis inhibitors enhanced the anti-OS effect of BZN in vitro and in vivo. In conclusion, our results suggest that BZN may inhibit OS cells by repressing the ERK1/2 signaling pathway and propose a potential strategy to enhance the BZN-induced inhibitory effect by suppressing macropinocytosis.
Collapse
|
8
|
Qin S, Zhang Z, Huang Z, Luo Y, Weng N, Li B, Tang Y, Zhou L, Jiang J, Lu Y, Shao J, Xie N, Nice EC, Chen ZS, Zhang J, Huang C. CCT251545 enhances drug delivery and potentiates chemotherapy in multidrug-resistant cancers by Rac1-mediated macropinocytosis. Drug Resist Updat 2023; 66:100906. [PMID: 36565657 DOI: 10.1016/j.drup.2022.100906] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
It was well known that P-glycoprotein (P-gp/ABCB1) is a master regulator of multidrug resistance (MDR) in cancers. However, the clinical benefit from blocking this pathway remains inconclusive, which motivates a paradigm shift towards alternative strategies for enhancing drug influx. Using a patient-derived organoid (PDO)-based drug screening platform, we report that the combined use of chemotherapy and CCT251545 (CCT) displays robust synergistic effect against PDOs and reduces proliferation of MDR cancer cells in vitro, and results in regression of xenograft tumors, reductions in metastatic dissemination and recurrence rate in vivo. The synergistic activity mediated by CCT can be mainly attributed to the intense uptake of chemotherapeutic agents into the cells, accompanied by alterations in cell phenotypes defined as a mesenchymal epithelial transformation (MET). Mechanistically, analysis of the transcriptome coupled with validation in cellular and animal models demonstrate that the chemosensitizing effect of CCT is profoundly affected by Rac1-dependent macropinocytosis. Furthermore, CCT binds to NAMPT directly, resulting in elevated NAD levels within MDR cancer cells. This effect promotes the assembly of adherents junction (AJ) components with cytoskeleton, which is required for continuous induction of macropinocytosis and consequent drug internalization. Overall, our results illustrate the potential use of CCT as a combination partner for the commonly used chemotherapeutic drugs in the management of MDR cancers.
Collapse
Affiliation(s)
- Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yinheng Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ningna Weng
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yongquan Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, China
| | - Jichun Shao
- Department of Urology, Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, Sichuan, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Institute for Biotechnology, St. John's University, Queens, NY 11439, USA
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
9
|
Sarkar Bhattacharya S, Thirusangu P, Jin L, Staub J, Shridhar V, Molina JR. PFKFB3 works on the FAK-STAT3-SOX2 axis to regulate the stemness in MPM. Br J Cancer 2022; 127:1352-1364. [PMID: 35794237 PMCID: PMC9519537 DOI: 10.1038/s41416-022-01867-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is an aggressive neoplasm and often acquires chemoresistance by increasing stemness in tumour tissue, thereby generating cancer stem cells (CSCs). CSCs escape treatment by deploying metabolic pathways to trigger dormancy or proliferation, also gaining the ability to exit and re-enter the cell cycle to hide their cellular identity. METHODS We employed various cellular and biochemical assays to identify the role of the glycolytic enzyme PFKFB3, by knocking it down and pharmacologically inhibiting it with PFK158, to determine its anticancer effects in vitro and in vivo by targeting the CSC population in MPM. RESULTS Here, we have identified PFKFB3 as a strategic player to target the CSC population in MPM and demonstrated that both pharmacologic (PFK158) and genetic inhibition of PFKFB3 destroy the FAK-Stat3-SOX2 nexus resulting in a decline in conspicuous stem cell markers viz. ALDH, CD133, CD44, SOX2. Inhibition of PFKFB3 accumulates p21 and p27 in the nucleus by decreasing SKP2. Lastly, PFK158 diminishes tumour-initiating cells (TICs) mediated MPM xenograft in vivo. CONCLUSIONS This study confers a comprehensive and mechanistic function of PFKFB3 in CSC maintenance that may foster exceptional opportunities for targeted small molecule blockade of the TICs in MPM.
Collapse
Affiliation(s)
- Sayantani Sarkar Bhattacharya
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Prabhu Thirusangu
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ling Jin
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Julie Staub
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Viji Shridhar
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Julian R Molina
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
A miR-34a-guided, tRNA iMet-derived, piR_019752-like fragment (tRiMetF31) suppresses migration and angiogenesis of breast cancer cells via targeting PFKFB3. Cell Death Dis 2022; 8:355. [PMID: 35961977 PMCID: PMC9374763 DOI: 10.1038/s41420-022-01054-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 12/01/2022]
Abstract
Although we recently demonstrated that miR-34a directly targets tRNAiMet precursors via Argonaute 2 (AGO2)-mediated cleavage, consequently attenuating the proliferation of breast cancer cells, whether tRNAiMet fragments derived from this cleavage influence breast tumor angiogenesis remains unknown. Here, using small-RNA-Seq, we identified a tRNAiMet-derived, piR_019752-like 31-nt fragment tRiMetF31 in breast cancer cells expressing miR-34a. Bioinformatic analysis predicted 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) as a potential target of tRiMrtF31, which was validated by luciferase assay. tRiMetF31 was downregulated, whereas PFKFB3 was overexpressed in cancer cell lines. Overexpression of tRiMetF31 profoundly inhibited the migration and angiogenesis of two breast cancer cell lines while slightly inducing apoptosis. Conversely, knockdown of tRiMetF31 restored PFKFB3-driven angiogenesis. miR-34a was downregulated, whereas tRNAiMet and PFKFB3 were upregulated in breast cancer, and elevated PFKFB3 significantly correlated with metastasis. Our findings demonstrate that tRiMetF31 profoundly suppresses angiogenesis by silencing PFKFB3, presenting a novel target for therapeutic intervention in breast cancer.
Collapse
|
11
|
PFKFB3 regulates cancer stemness through the hippo pathway in small cell lung carcinoma. Oncogene 2022; 41:4003-4017. [PMID: 35804016 PMCID: PMC9374593 DOI: 10.1038/s41388-022-02391-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/16/2022]
Abstract
PFKFB3 (6-phosphofructo-2-kinase) is the rate-limiting enzyme of glycolysis and is overexpressed in several human cancers that are associated with poor prognosis. High PFKFB3 expression in cancer stem cells promotes glycolysis and survival in the tumor microenvironment. Inhibition of PFKFB3 by the glycolytic inhibitor PFK158 and by shRNA stable knockdown in small cell lung carcinoma (SCLC) cell lines inhibited glycolysis, proliferation, spheroid formation, and the expression of cancer stem cell markers CD133, Aldh1, CD44, Sox2, and ABCG2. These factors are also associated with chemotherapy resistance. We found that PFK158 treatment and PFKFB3 knockdown enhanced the ABCG2-interacting drugs doxorubicin, etoposide, and 5-fluorouracil in reducing cell viability under conditions of enriched cancer stem cells (CSC). Additionally, PFKFB3 inhibition attenuated the invasion/migration of SCLC cells by downregulating YAP/TAZ signaling while increasing pLATS1 via activation of pMST1 and NF2 and by reducing the mesenchymal protein expression. PFKFB3 knockdown and PFK158 treatment in a H1048 SCLC cancer stem cell-enriched mouse xenograft model showed significant reduction in tumor growth and weight with reduced expression of cancer stem cell markers, ABCG2, and YAP/TAZ. Our findings identify that PFKFB3 is a novel target to regulate cancer stem cells and its associated therapeutic resistance markers YAP/TAZ and ABCG2 in SCLC models.
Collapse
|
12
|
Yan S, Li Q, Li S, Ai Z, Yuan D. The role of PFKFB3 in maintaining colorectal cancer cell proliferation and stemness. Mol Biol Rep 2022; 49:9877-9891. [PMID: 35553342 DOI: 10.1007/s11033-022-07513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
Since generally confronting with the hypoxic and stressful microenvironment, cancer cells alter their glucose metabolism pattern to glycolysis to sustain the continuous proliferation and vigorous biological activities. Bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) isoform 3 (PFKFB3) functions as an effectively modulator of glycolysis and also participates in regulating angiogenesis, cell death and cell stemness. Meanwhile, PFKFB3 is highly expressed in a variety of cancer cells, and can be activated by several regulatory factors, such as hypoxia, inflammation and cellular signals. In colorectal cancer (CRC) cells, PFKFB3 not only has the property of high expression, but also probably relate to inflammation-cancer transformation. Recent studies indicate that PFKFB3 is involved in chemoradiotherapy resistance as well, such as breast cancer, endometrial cancer and CRC. Cancer stem cells (CSCs) are self-renewable cell types that contribute to oncogenesis, metastasis and relapse. Several studies indicate that CSCs utilize glycolysis to fulfill their energetic and biosynthetic demands in order to maintain rapid proliferation and adapt to the tumor microenvironment changes. In addition, elevated PFKFB3 has been reported to correlate with self-renewal and metastatic outgrowth in numerous kinds of CSCs. This review summarizes our current understanding of PFKFB3 roles in modulating cancer metabolism to maintain cell proliferation and stemness, and discusses its feasibility as a potential target for the discovery of antineoplastic agents, especially in CRC.
Collapse
Affiliation(s)
- Siyuan Yan
- Key Laboratory of Precision Oncology in Universities of Shandong, Jining Medical University, Jining, 272067, China.
| | - Qianqian Li
- Key Laboratory of Precision Oncology in Universities of Shandong, Jining Medical University, Jining, 272067, China
| | - Shi Li
- Key Laboratory of Precision Oncology in Universities of Shandong, Jining Medical University, Jining, 272067, China
| | - Zhiying Ai
- Key Laboratory of Precision Oncology in Universities of Shandong, Jining Medical University, Jining, 272067, China
| | - Dongdong Yuan
- Shandong Academy of Pharmaceutical Sciences, Ji'nan, 250101, China
| |
Collapse
|
13
|
Ray U, Jung DB, Jin L, Xiao Y, Dasari S, Bhattacharya SS, Thirusangu P, Staub JK, Roy D, Roy B, Weroha SJ, Hou X, Purcell JW, Bakkum-Gamez JN, Kaufmann SH, Kannan N, Mitra AK, Shridhar V. Targeting LRRC15 Inhibits Metastatic Dissemination of Ovarian Cancer. Cancer Res 2022; 82:1038-1054. [PMID: 34654724 PMCID: PMC8930558 DOI: 10.1158/0008-5472.can-21-0622] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/21/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
Dissemination of ovarian cancer cells can lead to inoperable metastatic lesions in the bowel and omentum that cause patient death. Here we show that LRRC15, a type-I 15-leucine-rich repeat-containing membrane protein, highly overexpressed in ovarian cancer bowel metastases compared with matched primary tumors and acts as a potent promoter of omental metastasis. Complementary models of ovarian cancer demonstrated that LRRC15 expression leads to inhibition of anoikis-induced cell death and promotes adhesion and invasion through matrices that mimic omentum. Mechanistically, LRRC15 interacted with β1-integrin to stimulate activation of focal adhesion kinase (FAK) signaling. As a therapeutic proof of concept, targeting LRRC15 with the specific antibody-drug conjugate ABBV-085 in both early and late metastatic ovarian cancer cell line xenograft models prevented metastatic dissemination, and these results were corroborated in metastatic patient-derived ovarian cancer xenograft models. Furthermore, treatment of 3D-spheroid cultures of LRRC15-positive patient-derived ascites with ABBV-085 reduced cell viability. Overall, these data uncover a role for LRRC15 in promoting ovarian cancer metastasis and suggest a novel and promising therapy to target ovarian cancer metastases. Significance: This study identifies that LRRC15 activates β1-integrin/FAK signaling to promote ovarian cancer metastasis and shows that the LRRC15-targeted antibody-drug conjugate ABBV-085 suppresses ovarian cancer metastasis in preclinical models.
Collapse
Affiliation(s)
- Upasana Ray
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Deok-Beom Jung
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA,ASAN Biomedical Research Center, Seoul, S. Korea
| | - Ling Jin
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yinan Xiao
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Subramanyam Dasari
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Prabhu Thirusangu
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Julie K. Staub
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Debarshi Roy
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA,Alcorn State University, Lorman, MS, USA
| | - Bhaskar Roy
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - James W. Purcell
- Department of Oncology Drug Discovery, AbbVie, South San Francisco, CA, USA
| | | | - Scott H. Kaufmann
- Division of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Nagarajan Kannan
- Division of Experimental Pathology, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Anirban K. Mitra
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA,Correspondence and requests for materials should be addressed to V.S. , Address: 200 First Street SW, 2-46 Stabile, Rochester, MN55905, Contact: 507-266-2775
| | - Viji Shridhar
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA,Correspondence and requests for materials should be addressed to V.S. , Address: 200 First Street SW, 2-46 Stabile, Rochester, MN55905, Contact: 507-266-2775
| |
Collapse
|
14
|
Jiang YX, Siu MKY, Wang JJ, Leung THY, Chan DW, Cheung ANY, Ngan HYS, Chan KKL. PFKFB3 Regulates Chemoresistance, Metastasis and Stemness via IAP Proteins and the NF-κB Signaling Pathway in Ovarian Cancer. Front Oncol 2022; 12:748403. [PMID: 35155224 PMCID: PMC8837381 DOI: 10.3389/fonc.2022.748403] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/03/2022] [Indexed: 12/31/2022] Open
Abstract
Glycolysis has been reported to be critical for cancer stem cells (CSCs), which are associated with tumor chemoresistance, metastasis and recurrence. Thus, selectively targeting glycolytic enzymes may be a potential therapy for ovarian cancer. 6‐phosphofructo‐2‐kinase/fructose‐2,6‐biphosphatase 3 (PFKFB3), the main source of fructose-2,6-bisphosphate, controls the first committed step in glycolysis. We investigate the clinical significance and roles of PFKFB3 in ovarian cancer using in vitro and in vivo experiments. We demonstrate that PFKFB3 is widely overexpressed in ovarian cancer and correlates with advanced stage/grade and poor outcomes. Significant up-regulation of PFKFB3 was found in ascites and metastatic foci, as well as CSC-enriched tumorspheres and ALDH+CD44+ cells. 3PO, a PFKFB3 inhibitor, reduced lactate level and sensitized A2780CP cells to cisplatin treatment, along with the modulation of inhibitors of apoptosis proteins (c-IAP1, c-IAP2 and survivin) and an immune modulator CD70. Blockade of PFKFB3 by siRNA approach in the CSC-enriched subset led to decreases in glycolysis and CSC properties, and activation of the NF-κB cascade. PFK158, another potent inhibitor of PFKFB3, impaired the stemness of ALDH+CD44+ cells in vitro and in vivo, whereas ectopic expression of PFKFB3 had the opposite results. Overall, PFKFB3 was found to mediate metabolic reprogramming, chemoresistance, metastasis and stemness in ovarian cancer, possibly via the modulation of inhibitors of apoptosis proteins and the NF-κB signaling pathway; thus, suggesting that PFKFB3 may be a potential therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Yu-xin Jiang
- Department of Obstetrics and Gynaecology, University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Gynaecology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | - Michelle K. Y. Siu
- Department of Obstetrics and Gynaecology, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jing-jing Wang
- Department of Obstetrics and Gynaecology, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Thomas H. Y. Leung
- Department of Obstetrics and Gynaecology, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - David W. Chan
- Department of Obstetrics and Gynaecology, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Annie N. Y. Cheung
- Department of Pathology, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hextan Y. S. Ngan
- Department of Obstetrics and Gynaecology, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Karen K. L. Chan
- Department of Obstetrics and Gynaecology, University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Karen K. L. Chan,
| |
Collapse
|
15
|
Puccini J, Badgley MA, Bar-Sagi D. Exploiting cancer's drinking problem: regulation and therapeutic potential of macropinocytosis. Trends Cancer 2022; 8:54-64. [PMID: 34649835 PMCID: PMC8702483 DOI: 10.1016/j.trecan.2021.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023]
Abstract
Macropinocytosis, an evolutionarily conserved endocytic mechanism that mediates non-specific fluid-phase uptake, is potently upregulated by various oncogenic pathways. It is now well appreciated that high macropinocytic activity is a hallmark of many human tumors, which use this adaptation to scavenge extracellular nutrients for fueling cell growth. In the context of the nutrient-scarce tumor microenvironment, this process provides tumor cells with metabolic flexibility. However, dependence on this scavenging mechanism also illuminates a potential metabolic vulnerability. As such, there is a great deal of interest in understanding the molecular underpinnings of macropinocytosis. In this review, we will discuss the most recent advances in characterizing macropinocytosis: the pathways that regulate it, its contribution to the metabolic fitness of cancer cells, and its therapeutic potential.
Collapse
Affiliation(s)
- Joseph Puccini
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Michael Alexander Badgley
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA,Correspondence: (D. Bar-Sagi)
| |
Collapse
|
16
|
Alvarez R, Mandal D, Chittiboina P. Canonical and Non-Canonical Roles of PFKFB3 in Brain Tumors. Cells 2021; 10:cells10112913. [PMID: 34831136 PMCID: PMC8616071 DOI: 10.3390/cells10112913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
PFKFB3 is a bifunctional enzyme that modulates and maintains the intracellular concentrations of fructose-2,6-bisphosphate (F2,6-P2), essentially controlling the rate of glycolysis. PFKFB3 is a known activator of glycolytic rewiring in neoplastic cells, including central nervous system (CNS) neoplastic cells. The pathologic regulation of PFKFB3 is invoked via various microenvironmental stimuli and oncogenic signals. Hypoxia is a primary inducer of PFKFB3 transcription via HIF-1alpha. In addition, translational modifications of PFKFB3 are driven by various intracellular signaling pathways that allow PFKFB3 to respond to varying stimuli. PFKFB3 synthesizes F2,6P2 through the phosphorylation of F6P with a donated PO4 group from ATP and has the highest kinase activity of all PFKFB isoenzymes. The intracellular concentration of F2,6P2 in cancers is maintained primarily by PFKFB3 allowing cancer cells to evade glycolytic suppression. PFKFB3 is a primary enzyme responsible for glycolytic tumor metabolic reprogramming. PFKFB3 protein levels are significantly higher in high-grade glioma than in non-pathologic brain tissue or lower grade gliomas, but without relative upregulation of transcript levels. High PFKFB3 expression is linked to poor survival in brain tumors. Solitary or concomitant PFKFB3 inhibition has additionally shown great potential in restoring chemosensitivity and radiosensitivity in treatment-resistant brain tumors. An improved understanding of canonical and non-canonical functions of PFKFB3 could allow for the development of effective combinatorial targeted therapies for brain tumors.
Collapse
Affiliation(s)
- Reinier Alvarez
- Department of Neurological Surgery, University of Colorado School of Medicine, Aurora, CO 80045, USA;
- Neurosurgery Unit for Pituitary and Inheritable Disorders, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA;
| | - Debjani Mandal
- Neurosurgery Unit for Pituitary and Inheritable Disorders, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA;
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Disorders, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA;
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA
- Correspondence:
| |
Collapse
|
17
|
Cargill KR, Hasken WL, Gay CM, Byers LA. Alternative Energy: Breaking Down the Diverse Metabolic Features of Lung Cancers. Front Oncol 2021; 11:757323. [PMID: 34745994 PMCID: PMC8566922 DOI: 10.3389/fonc.2021.757323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer initiation, progression, and relapse. From the initial observation that cancer cells preferentially ferment glucose to lactate, termed the Warburg effect, to emerging evidence indicating that metabolic heterogeneity and mitochondrial metabolism are also important for tumor growth, the complex mechanisms driving cancer metabolism remain vastly unknown. These unique shifts in metabolism must be further investigated in order to identify unique therapeutic targets for individuals afflicted by this aggressive disease. Although novel therapies have been developed to target metabolic vulnerabilities in a variety of cancer models, only limited efficacy has been achieved. In particular, lung cancer metabolism has remained relatively understudied and underutilized for the advancement of therapeutic strategies, however recent evidence suggests that lung cancers have unique metabolic preferences of their own. This review aims to provide an overview of essential metabolic mechanisms and potential therapeutic agents in order to increase evidence of targeted metabolic inhibition for the treatment of lung cancer, where novel therapeutics are desperately needed.
Collapse
Affiliation(s)
| | | | | | - Lauren A. Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
18
|
Oien DB, Sarkar Bhattacharya S, Chien J, Molina J, Shridhar V. Quinacrine Has Preferential Anticancer Effects on Mesothelioma Cells With Inactivating NF2 Mutations. Front Pharmacol 2021; 12:750352. [PMID: 34621176 PMCID: PMC8490927 DOI: 10.3389/fphar.2021.750352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Mesothelioma is a rare cancer with disproportionately higher death rates for shipping and mining populations. These patients have few treatment options, which can be partially attributed to limited chemotherapy responses for tumors. We initially hypothesized that quinacrine could be combined with cisplatin or pemetrexed to synergistically eliminate mesothelioma cells. The combination with cisplatin resulted in synergistic cell death and the combination with pemetrexed was not synergistic, although novel artificially-generated pemetrexed-resistant cells were more sensitive to quinacrine. Unexpectedly, we discovered cells with NF2 mutations were very sensitive to quinacrine. This change of quinacrine sensitivity was confirmed by NF2 ectopic expression and knockdown in NF2 mutant and wildtype cell lines, respectively. There are few common mutations in mesothelioma and inactivating NF2 mutations are present in up to 60% of these tumors. We found quinacrine alters the expression of over 3000 genes in NF2-mutated cells that were significantly different than quinacrine-induced changes in NF2 wildtype cells. Changes to NF2/hippo pathway biomarkers were validated at the mRNA and protein levels. Additionally, quinacrine induces a G1 phase cell cycle arrest in NF2-mutated cells versus the S phase arrest in NF2-wildtype cells. This study suggests quinacrine may have repurposing potential for a large subset of mesothelioma patients.
Collapse
Affiliation(s)
- Derek B Oien
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, University of California, Davis Health, Sacramento, CA, United States
| | - Julian Molina
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | - Viji Shridhar
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
19
|
Obacz J, Yung H, Shamseddin M, Linnane E, Liu X, Azad AA, Rassl DM, Fairen-Jimenez D, Rintoul RC, Nikolić MZ, Marciniak SJ. Biological basis for novel mesothelioma therapies. Br J Cancer 2021; 125:1039-1055. [PMID: 34226685 PMCID: PMC8505556 DOI: 10.1038/s41416-021-01462-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Mesothelioma is an aggressive cancer that is associated with exposure to asbestos. Although asbestos is banned in several countries, including the UK, an epidemic of mesothelioma is predicted to affect middle-income countries during this century owing to their heavy consumption of asbestos. The prognosis for patients with mesothelioma is poor, reflecting a failure of conventional chemotherapy that has ultimately resulted from an inadequate understanding of its biology. However, recent work has revolutionised the study of mesothelioma, identifying genetic and pathophysiological vulnerabilities, including the loss of tumour suppressors, epigenetic dysregulation and susceptibility to nutrient stress. We discuss how this knowledge, combined with advances in immunotherapy, is enabling the development of novel targeted therapies.
Collapse
Affiliation(s)
- Joanna Obacz
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Henry Yung
- UCL Respiratory, Division of Medicine Rayne Institute, University College London, London, UK
| | - Marie Shamseddin
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Saffron Walden, UK
| | - Emily Linnane
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Xiewen Liu
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Arsalan A Azad
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Doris M Rassl
- Department of Histopathology, Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - David Fairen-Jimenez
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Robert C Rintoul
- Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Thoracic Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine Rayne Institute, University College London, London, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
20
|
Cargill KR, Stewart CA, Park EM, Ramkumar K, Gay CM, Cardnell RJ, Wang Q, Diao L, Shen L, Fan YH, Chan WK, Lorenzi PL, Oliver TG, Wang J, Byers LA. Targeting MYC-enhanced glycolysis for the treatment of small cell lung cancer. Cancer Metab 2021; 9:33. [PMID: 34556188 PMCID: PMC8461854 DOI: 10.1186/s40170-021-00270-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
Introduction The transcription factor MYC is overexpressed in 30% of small cell lung cancer (SCLC) tumors and is known to modulate the balance between two major pathways of metabolism: glycolysis and mitochondrial respiration. This duality of MYC underscores the importance of further investigation into its role in SCLC metabolism and could lead to insights into metabolic targeting approaches. Methods We investigated differences in metabolic pathways in transcriptional and metabolomics datasets based on cMYC expression in patient and cell line samples. Metabolic pathway utilization was evaluated by flow cytometry and Seahorse extracellular flux methodology. Glycolysis inhibition was evaluated in vitro and in vivo using PFK158, a small molecular inhibitor of PFKFB3. Results MYC-overexpressing SCLC patient samples and cell lines exhibited increased glycolysis gene expression directly mediated by MYC. Further, MYC-overexpressing cell lines displayed enhanced glycolysis consistent with the Warburg effect, while cell lines with low MYC expression appeared more reliant on oxidative metabolism. Inhibition of glycolysis with PFK158 preferentially attenuated glucose uptake, ATP production, and lactate in MYC-overexpressing cell lines. Treatment with PFK158 in xenografts delayed tumor growth and decreased glycolysis gene expression. Conclusions Our study highlights an in-depth characterization of SCLC metabolic programming and presents glycolysis as a targetable mechanism downstream of MYC that could offer therapeutic benefit in a subset of SCLC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00270-9.
Collapse
Affiliation(s)
- Kasey R Cargill
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C Allison Stewart
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth M Park
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kavya Ramkumar
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert J Cardnell
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Shen
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - You-Hong Fan
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wai Kin Chan
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
21
|
Zhu Z, Liu Q, Sun J, Bao Z, Wang W. Silencing of PFKFB3 protects podocytes against high glucose‑induced injury by inducing autophagy. Mol Med Rep 2021; 24:765. [PMID: 34490476 PMCID: PMC8430303 DOI: 10.3892/mmr.2021.12405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Diabetic nephropathy (DN) is a diabetic complication that threatens the health of patients with diabetes. In addition, podocyte injury can lead to the occurrence of DN. The protein 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) may be associated with diabetes; however, the effects of PFKFB3 knockdown by small interfering (si)RNA on the growth of podocytes remains unknown. To investigate the mechanism by which PFKFB3 mediates podocyte injury, MPC5 mouse podocyte cells were treated with high-glucose (HG), and cell viability and apoptosis were examined by Cell Counting Kit-8 assay and flow cytometry, respectively. In addition, the expression of autophagy-related proteins were measured using western blot analysis and immunofluorescence staining. Cell migration was investigated using a Transwell assay and phalloidin staining was performed to observe the cytoskeleton. The results revealed that silencing of PFKFB3 significantly promoted MPC5 cell viability and inhibited apoptosis. In addition, the migration of the MPC5 cells was notably downregulated by siPFKFB3. Moreover, PFKFB3 silencing notably reversed the HG-induced decrease in oxygen consumption rate, and the HG-induced increase in extracellular acidification rate was rescued by PFKFB3 siRNA. Furthermore, silencing of PFKFB3 induced autophagy in HG-treated podocytes through inactivating phosphorylated (p-)mTOR, p-AMPKα, LC3 and sirtuin 1, and activating p62. In conclusion, silencing of PFKFB3 may protect podocytes from HG-induced injury by inducing autophagy. Therefore, PFKFB3 may serve as a potential target for treatment of DN.
Collapse
Affiliation(s)
- Zhengming Zhu
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Qingsheng Liu
- Department of Geriatrics, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Jianshi Sun
- Department of Nephrology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Ziyang Bao
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Weiwei Wang
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| |
Collapse
|
22
|
PFKFB3 Inhibition Impairs Erlotinib-Induced Autophagy in NSCLCs. Cells 2021; 10:cells10071679. [PMID: 34359849 PMCID: PMC8307619 DOI: 10.3390/cells10071679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 01/18/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) targeting the kinase domain of the epidermal growth factor receptor (EGFR), such as erlotinib, have dramatically improved clinical outcomes of patients with EGFR-driven non-small cell lung carcinomas (NSCLCs). However, intrinsic or acquired resistance remains a clinical barrier to the success of FDA-approved EGFR TKIs. Multiple mechanisms of resistance have been identified, including the activation of prosurvival autophagy. We have previously shown that the expression and activity of PFKFB3—a known driver of glycolysis—is associated with resistance to erlotinib and that PFKFB3 inhibition improves the response of NSCLC cells to erlotinib. This study focuses on investigating the role of PFKFB3 in regulating erlotinib-driven autophagy to escape resistance to erlotinib. We evaluated the consequence of pharmacological inhibition of PFKFB3 on erlotinib-driven autophagy in NSCLC cells with different mutation statuses. Here, we identify PFKFB3 as a mediator of erlotinib-induced autophagy in NSCLCs. We demonstrate that PFKFB3 inhibition sensitizes NCSLCs to erlotinib via impairing autophagy flux. In summary, our studies uncovered a novel crosstalk between PFKFB3 and EGFR that regulates erlotinib-induced autophagy, thus contributing to erlotinib sensitivity in NSCLCs.
Collapse
|
23
|
Ritter M, Bresgen N, Kerschbaum HH. From Pinocytosis to Methuosis-Fluid Consumption as a Risk Factor for Cell Death. Front Cell Dev Biol 2021; 9:651982. [PMID: 34249909 PMCID: PMC8261248 DOI: 10.3389/fcell.2021.651982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
The volumes of a cell [cell volume (CV)] and its organelles are adjusted by osmoregulatory processes. During pinocytosis, extracellular fluid volume equivalent to its CV is incorporated within an hour and membrane area equivalent to the cell's surface within 30 min. Since neither fluid uptake nor membrane consumption leads to swelling or shrinkage, cells must be equipped with potent volume regulatory mechanisms. Normally, cells respond to outwardly or inwardly directed osmotic gradients by a volume decrease and increase, respectively, i.e., they shrink or swell but then try to recover their CV. However, when a cell death (CD) pathway is triggered, CV persistently decreases in isotonic conditions in apoptosis and it increases in necrosis. One type of CD associated with cell swelling is due to a dysfunctional pinocytosis. Methuosis, a non-apoptotic CD phenotype, occurs when cells accumulate too much fluid by macropinocytosis. In contrast to functional pinocytosis, in methuosis, macropinosomes neither recycle nor fuse with lysosomes but with each other to form giant vacuoles, which finally cause rupture of the plasma membrane (PM). Understanding methuosis longs for the understanding of the ionic mechanisms of cell volume regulation (CVR) and vesicular volume regulation (VVR). In nascent macropinosomes, ion channels and transporters are derived from the PM. Along trafficking from the PM to the perinuclear area, the equipment of channels and transporters of the vesicle membrane changes by retrieval, addition, and recycling from and back to the PM, causing profound changes in vesicular ion concentrations, acidification, and-most importantly-shrinkage of the macropinosome, which is indispensable for its proper targeting and cargo processing. In this review, we discuss ion and water transport mechanisms with respect to CVR and VVR and with special emphasis on pinocytosis and methuosis. We describe various aspects of the complex mutual interplay between extracellular and intracellular ions and ion gradients, the PM and vesicular membrane, phosphoinositides, monomeric G proteins and their targets, as well as the submembranous cytoskeleton. Our aim is to highlight important cellular mechanisms, components, and processes that may lead to methuotic CD upon their derangement.
Collapse
Affiliation(s)
- Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Institute for Physiology and Pathophysiology, Paracelsus Medical University, Nuremberg, Germany
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Salzburg, Austria
- Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Nikolaus Bresgen
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
24
|
Ray U, Roy D, Jin L, Thirusangu P, Staub J, Xiao Y, Kalogera E, Wahner Hendrickson AE, Cullen GD, Goergen K, Oberg AL, Shridhar V. Group III phospholipase A2 downregulation attenuated survival and metastasis in ovarian cancer and promotes chemo-sensitization. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:182. [PMID: 34082797 PMCID: PMC8173968 DOI: 10.1186/s13046-021-01985-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/16/2021] [Indexed: 11/13/2022]
Abstract
Background Aberrant lipogenicity and deregulated autophagy are common in most advanced human cancer and therapeutic strategies to exploit these pathways are currently under consideration. Group III Phospholipase A2 (sPLA2-III/PLA2G3), an atypical secretory PLA2, is recognized as a regulator of lipid metabolism associated with oncogenesis. Though recent studies reveal that high PLA2G3 expression significantly correlates with poor prognosis in several cancers, however, role of PLA2G3 in ovarian cancer (OC) pathogenesis is still undetermined. Methods CRISPR-Cas9 and shRNA mediated knockout and knockdown of PLA2G3 in OC cells were used to evaluate lipid droplet (LD) biogenesis by confocal and Transmission electron microscopy analysis, and the cell viability and sensitization of the cells to platinum-mediated cytotoxicity by MTT assay. Regulation of primary ciliation by PLA2G3 downregulation both genetically and by metabolic inhibitor PFK-158 induced autophagy was assessed by immunofluorescence-based confocal analysis and immunoblot. Transient transfection with GFP-RFP-LC3B and confocal analysis was used to assess the autophagic flux in OC cells. PLA2G3 knockout OVCAR5 xenograft in combination with carboplatin on tumor growth and metastasis was assessed in vivo. Efficacy of PFK158 alone and with platinum drugs was determined in patient-derived primary ascites cultures expressing PLA2G3 by MTT assay and immunoblot analysis. Results Downregulation of PLA2G3 in OVCAR8 and 5 cells inhibited LD biogenesis, decreased growth and sensitized cells to platinum drug mediated cytotoxicity in vitro and in in vivo OVCAR5 xenograft. PLA2G3 knockdown in HeyA8MDR-resistant cells showed sensitivity to carboplatin treatment. We found that both PFK158 inhibitor-mediated and genetic downregulation of PLA2G3 resulted in increased number of percent ciliated cells and inhibited cancer progression. Mechanistically, we found that PFK158-induced autophagy targeted PLA2G3 to restore primary cilia in OC cells. Of clinical relevance, PFK158 also induces percent ciliated cells in human-derived primary ascites cells and reduces cell viability with sensitization to chemotherapy. Conclusions Taken together, our study for the first time emphasizes the role of PLA2G3 in regulating the OC metastasis. This study further suggests the therapeutic potential of targeting phospholipases and/or restoration of PC for future OC treatment and the critical role of PLA2G3 in regulating ciliary function by coordinating interface between lipogenesis and metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01985-9.
Collapse
Affiliation(s)
- Upasana Ray
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Debarshi Roy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Alcorn State University, Lorman, MS, USA
| | - Ling Jin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Prabhu Thirusangu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Julie Staub
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Yinan Xiao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Grace D Cullen
- Department of Internal Medicine, Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Krista Goergen
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Ann L Oberg
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Viji Shridhar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
25
|
Possible roles of AMPK and macropinocytosis in the defense responses against Δ 9-THC toxicity on HL-1 cardiomyocytes. Toxicol Rep 2021; 8:980-987. [PMID: 34026562 PMCID: PMC8131391 DOI: 10.1016/j.toxrep.2021.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Cannabinoids are some of the most popular recreationally used illicit drugs, and are frequently consumed along with alcoholic beverages. Although the whole body effects of cannabinoids depend largely on their effects on the central nerve system, cannabinoids could harm the heart directly, due to the presence of the endocannabinoid system including cannabinoid receptor1 and 2 (CB-R1 and CB-R2) in the heart. The aim of this study is to examine the mechanism of direct cardiotoxicity of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive ingredient of cannabis. For this purpose, HL-1 murine atrial cardiac muscle cells were treated with 10 or 30 μM Δ9-THC, along with 100 mM ethanol to examine the possible synergistic effects of Δ9-THC and ethanol. Transcriptome analysis showed upregulation of the genes involved in the unfolded protein response (UPR), including Bip, CHOP, ATF4 and ATF6, in cells treated with Δ9-THC. Immunoblot analysis showed caspase3 activation, indicating apoptosis caused by ER stress in Δ9-THC-treated cells. Microscopic analysis showed that Δ9-THC enhances macropinocytosis, a process involved in the uptake of extracellular fluids including nutrients. Moreover Δ9-THC seemed to activate AMPK, a sensor of intracellular energy status and an activator of macropinocytosis. Finally, we found that compound C (AMPK inhibitor) aggravated cell death by Δ9-THC while AICAR (AMPK activator) ameliorated it. Collectively, these results indicate that the activation of AMPK is necessary for the survival of HL-1 cells against Δ9-THC toxicity. Macropinocytosis might serve as one of the survival pathways downstream of AMPK.
Collapse
|
26
|
Gao X, Ji C, Wang J, Song X, Zuo R, Zhang J, Chen X, Ji H, Peng L, Guo D, Jiang S. Maduramicin induces cardiotoxicity via Rac1 signaling-independent methuosis in H9c2 cells. J Appl Toxicol 2021; 41:1937-1951. [PMID: 33890316 DOI: 10.1002/jat.4175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 12/23/2022]
Abstract
Maduramicin frequently induces severe cardiotoxicity in target and nontarget animals in clinic. Apoptotic and non-apoptotic cell death mediate its cardiotoxicity; however, the underlying non-apoptotic cell death induced by maduramicin remains unclear. In current study, a recently described non-apoptotic cell death "methuosis" caused by maduramicin was defined in mammalian cells. Rat myocardial cell H9c2 was used as an in vitro model, showing excessively cytoplasmic vacuolization upon maduramicin (0.0625-5 μg/mL) exposure for 24 h. Maduramicin-induced reversible cytoplasmic vacuolization of H9c2 cells in a time- and concentration-dependent manner. The vacuoles induced by maduramicin were phase lucent with single membrane and were not derived from the swelling of organelles such as mitochondria, endoplasmic reticulum, lysosome, and Golgi apparatus. Furthermore, maduramicin-induced cytoplasmic vacuoles are generated from micropinocytosis, which was demonstrated by internalization of extracellular fluid-phase marker Dextran-Alexa Fluor 488 into H9c2 cells. Intriguingly, these cytoplasmic vacuoles acquired some characteristics of late endosomes and lysosomes rather than early endosomes and autophagosomes. Vacuolar H+ -ATPase inhibitor bafilomycin A1 efficiently prevented the generation of cytoplasmic vacuoles and decreased the cytotoxicity of H9c2 cells triggered by maduramicin. Mechanism studying indicated that maduramicin activated H-Ras-Rac1 signaling pathway at both mRNA and protein levels. However, the pharmacological inhibition and siRNA knockdown of Rac1 rescued maduramicin-induced cytotoxicity of H9c2 cells but did not alleviate cytoplasmic vacuolization. Based on these findings, maduramicin induces methuosis in H9c2 cells via Rac-1 signaling-independent seriously cytoplasmic vacuolization.
Collapse
Affiliation(s)
- Xiuge Gao
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chunlei Ji
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Junqi Wang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinhao Song
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Runan Zuo
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jingjing Zhang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaorong Chen
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hui Ji
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lin Peng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Dawei Guo
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shanxiang Jiang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
27
|
Kotowski K, Rosik J, Machaj F, Supplitt S, Wiczew D, Jabłońska K, Wiechec E, Ghavami S, Dzięgiel P. Role of PFKFB3 and PFKFB4 in Cancer: Genetic Basis, Impact on Disease Development/Progression, and Potential as Therapeutic Targets. Cancers (Basel) 2021; 13:909. [PMID: 33671514 PMCID: PMC7926708 DOI: 10.3390/cancers13040909] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Glycolysis is a crucial metabolic process in rapidly proliferating cells such as cancer cells. Phosphofructokinase-1 (PFK-1) is a key rate-limiting enzyme of glycolysis. Its efficiency is allosterically regulated by numerous substances occurring in the cytoplasm. However, the most potent regulator of PFK-1 is fructose-2,6-bisphosphate (F-2,6-BP), the level of which is strongly associated with 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase activity (PFK-2/FBPase-2, PFKFB). PFK-2/FBPase-2 is a bifunctional enzyme responsible for F-2,6-BP synthesis and degradation. Four isozymes of PFKFB (PFKFB1, PFKFB2, PFKFB3, and PFKFB4) have been identified. Alterations in the levels of all PFK-2/FBPase-2 isozymes have been reported in different diseases. However, most recent studies have focused on an increased expression of PFKFB3 and PFKFB4 in cancer tissues and their role in carcinogenesis. In this review, we summarize our current knowledge on all PFKFB genes and protein structures, and emphasize important differences between the isoenzymes, which likely affect their kinase/phosphatase activities. The main focus is on the latest reports in this field of cancer research, and in particular the impact of PFKFB3 and PFKFB4 on tumor progression, metastasis, angiogenesis, and autophagy. We also present the most recent achievements in the development of new drugs targeting these isozymes. Finally, we discuss potential combination therapies using PFKFB3 inhibitors, which may represent important future cancer treatment options.
Collapse
Affiliation(s)
- Krzysztof Kotowski
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.K.); (K.J.)
| | - Jakub Rosik
- Department of Pathology, Pomeranian Medical University, 71-252 Szczecin, Poland; (J.R.); (F.M.)
| | - Filip Machaj
- Department of Pathology, Pomeranian Medical University, 71-252 Szczecin, Poland; (J.R.); (F.M.)
| | - Stanisław Supplitt
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Daniel Wiczew
- Department of Biochemical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland;
- Laboratoire de physique et chimie théoriques, Université de Lorraine, F-54000 Nancy, France
| | - Karolina Jabłońska
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.K.); (K.J.)
| | - Emilia Wiechec
- Department of Biomedical and Clinical Sciences (BKV), Division of Cell Biology, Linköping University, Region Östergötland, 581 85 Linköping, Sweden;
- Department of Otorhinolaryngology in Linköping, Anesthetics, Operations and Specialty Surgery Center, Region Östergötland, 581 85 Linköping, Sweden
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.K.); (K.J.)
- Department of Physiotherapy, Wroclaw University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
28
|
Song S, Zhang Y, Ding T, Ji N, Zhao H. The Dual Role of Macropinocytosis in Cancers: Promoting Growth and Inducing Methuosis to Participate in Anticancer Therapies as Targets. Front Oncol 2021; 10:570108. [PMID: 33542897 PMCID: PMC7851083 DOI: 10.3389/fonc.2020.570108] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Macropinocytosis is an important mechanism of internalizing extracellular materials and dissolved molecules in eukaryotic cells. Macropinocytosis has a dual effect on cancer cells. On the one hand, cells expressing RAS genes (such as K-RAS, H-RAS) under the stress of nutrient deficiency can spontaneously produce constitutive macropinocytosis to promote the growth of cancer cells by internalization of extracellular nutrients (like proteins), receptors, and extracellular vesicles(EVs). On the other hand, abnormal expression of RAS genes and drug treatment (such as MOMIPP) can induce a novel cell death associated with hyperactivated macropinocytosis: methuosis. Based on the dual effect, there is immense potential for designing anticancer therapies that target macropinocytosis in cancer cells. In view of the fact that there has been little review of the dual effect of macropinocytosis in cancer cells, herein, we systematically review the general process of macropinocytosis, its specific manifestation in cancer cells, and its application in cancer treatment, including anticancer drug delivery and destruction of macropinocytosis. This review aims to serve as a reference for studying macropinocytosis in cancers and designing macropinocytosis-targeting anticancer drugs in the future.
Collapse
Affiliation(s)
- Shaojuan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tingting Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Xiao Y, Jin L, Deng C, Guan Y, Kalogera E, Ray U, Thirusangu P, Staub J, Sarkar Bhattacharya S, Xu H, Fang X, Shridhar V. Inhibition of PFKFB3 induces cell death and synergistically enhances chemosensitivity in endometrial cancer. Oncogene 2021; 40:1409-1424. [PMID: 33420377 PMCID: PMC7906909 DOI: 10.1038/s41388-020-01621-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/05/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
The advanced or recurrent endometrial cancer (EC) has a poor prognosis because of chemoresistance. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a glycolytic enzyme, is overexpressed in a variety of human cancers and plays important roles in promoting tumor cell growth. Here, we showed that high expression of PFKFB3 in EC cell lines is associated with chemoresistance. Pharmacological inhibition of PFKFB3 with PFK158 and or genetic downregulation of PFKFB3 dramatically suppressed cell proliferation and enhanced the sensitivity of EC cells to carboplatin (CBPt) and cisplatin (Cis). Moreover, PFKFB3 inhibition resulted in reduced glucose uptake, ATP production, and lactate release. Notably, we found that PFK158 with CBPt or Cis exerted strong synergistic antitumor activity in chemoresistant EC cell lines, HEC-1B and ARK-2 cells. We also found that the combination of PFK158 and CBPt/Cis induced apoptosis- and autophagy-mediated cell death through inhibition of the Akt/mTOR signaling pathway. Mechanistically, we found that PFK158 downregulated the CBPt/Cis-induced upregulation of RAD51 expression and enhanced CBPt/Cis-induced DNA damage as demonstrated by an increase in γ-H2AX levels in HEC-1B and ARK-2 cells, potentially revealing a means to enhance PFK158-induced chemosensitivity. More importantly, PFK158 treatment, either as monotherapy or in combination with CBPt, led to a marked reduction in tumor growth in two chemoresistant EC mouse xenograft models. These data suggest that PFKFB3 inhibition alone or in combination with standard chemotherapy may be used as a novel therapeutic strategy for improved therapeutic efficacy and outcomes of advanced and recurrent EC patients.
Collapse
Affiliation(s)
- Yinan Xiao
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA ,grid.452708.c0000 0004 1803 0208Department of Obstetrics and Gynecology, the Second Xiangya Hospital, Central South University, Changsha, Hunan P.R. China
| | - Ling Jin
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| | - Chaolin Deng
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Ye Guan
- grid.214458.e0000000086837370Department of Chemistry, University of Michigan, Ann Arbor, MI USA
| | - Eleftheria Kalogera
- grid.66875.3a0000 0004 0459 167XDivision of Gynecologic Oncology, Mayo Clinic, Rochester, MN USA
| | - Upasana Ray
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| | - Prabhu Thirusangu
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| | - Julie Staub
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| | | | - Haotian Xu
- grid.254444.70000 0001 1456 7807Department of Computer Science, Wayne State University, Detroit, MI USA
| | - Xiaoling Fang
- grid.452708.c0000 0004 1803 0208Department of Obstetrics and Gynecology, the Second Xiangya Hospital, Central South University, Changsha, Hunan P.R. China
| | - Viji Shridhar
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
30
|
Sulfated glycolipid PG545 induces endoplasmic reticulum stress and augments autophagic flux by enhancing anticancer chemotherapy efficacy in endometrial cancer. Biochem Pharmacol 2020; 178:114003. [PMID: 32360360 DOI: 10.1016/j.bcp.2020.114003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022]
Abstract
The sulfated glycolipid PG545 shows promising antitumor activity in various cancers. This study was conducted to explore the effects and the mechanism of PG545 action in endometrial cancer (EC). PG545 exhibited strong synergy as assessed by the Chou-Talalay-Method in vitro when combined with cisplatin, or paclitaxel in both type I (Hec1B) and type II (ARK2) EC cell lines. While PG545 showed antitumor activity as monotherapy, a combination of PG545 with paclitaxel and cisplatin was highly effective in reducing the tumor burden and significantly prolonged survival of both Hec1B and ARK2 xenograft bearing mice. Mechanistically, PG545 elicits ER stress as an early response with resultant induction of autophagy. Our data demonstrated an increase in pERK, Bip/Grp78, IRE1α, Calnexin and CHOP/GADD153 within 6-24 hrs of PG545 treatment in EC cells. In parallel, PG545 also blocked FGF2 and HB-EGF mediated signaling in EC cells. Moreover, melatonin-mediated ER stress inhibition reduced PG545-mediated autophagy and PG545 in combination with cisplatin further heightened this stress response. Collectively these data indicate that PG545 exhibits strong synergistic effects with chemotherapeutics in vitro and showed promising antitumor activity in vivo. Our preclinical data indicates that in future studies PG545 can be a useful adjunct to chemotherapy in endometrial cancer.
Collapse
|
31
|
Yan S, Zhou N, Zhang D, Zhang K, Zheng W, Bao Y, Yang W. PFKFB3 Inhibition Attenuates Oxaliplatin-Induced Autophagy and Enhances Its Cytotoxicity in Colon Cancer Cells. Int J Mol Sci 2019; 20:ijms20215415. [PMID: 31671668 PMCID: PMC6862230 DOI: 10.3390/ijms20215415] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/12/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023] Open
Abstract
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 (PFKFB3), a glycolytic enzyme highly expressed in cancer cells, has been reported to participate in regulating metabolism, angiogenesis, and autophagy. Although anti-cancer drug oxaliplatin (Oxa) effectively inhibits cell proliferation and induces apoptosis, the growing resistance and side-effects make it urgent to improve the therapeutic strategy of Oxa. Although Oxa induces the autophagy process, the role of PFKFB3 in this process remains unknown. In addition, whether PFKFB3 affects the cytotoxicity of Oxa has not been investigated. Here, we show that Oxa-inhibited cell proliferation and migration concomitant with the induction of apoptosis and autophagy in SW480 cells. Both inhibition of autophagy by small molecule inhibitors and siRNA modification decreased the cell viability loss and apoptosis induced by Oxa. Utilizing quantitative PCR and immunoblotting, we observed that Oxa increased PFKFB3 expression in a time- and dose-dependent manner. Meanwhile, suppression of PFKFB3 attenuated both the basal and Oxa-induced autophagy, by monitoring the autophagic flux and phosphorylated-Ulk1, which play essential roles in autophagy initiation. Moreover, PFKFB3 inhibition further inhibited the cell proliferation/migration, and cell viability decreased by Oxa. Collectively, the presented data demonstrated that PFKFB3 inhibition attenuated Oxa-induced autophagy and enhanced its cytotoxicity in colorectal cancer cells.
Collapse
Affiliation(s)
- Siyuan Yan
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining 272067, China.
| | - Nan Zhou
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining 272067, China.
| | - Deru Zhang
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining 272067, China.
| | - Kaile Zhang
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining 272067, China.
| | - Wenao Zheng
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining 272067, China.
| | - Yonghua Bao
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining 272067, China.
| | - Wancai Yang
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining 272067, China.
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|