1
|
Ma Q, Liao H, Liu S, Huang H, Goel A, Torabian P, Mohan CD, Duan C. Endoplasmic reticulum stress-mediated autophagy in cancer and its interaction with apoptosis and ferroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024:119869. [PMID: 39490702 DOI: 10.1016/j.bbamcr.2024.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is a site of the synthesis of proteins and lipids and contributes to the regulation of proteostasis, lipid metabolism, redox balance, and calcium storage/-dependent signaling events. The disruption of ER homeostasis due to the accumulation of misfolded proteins in the ER causes ER stress which activates the unfolded protein response (UPR) system through the activation of IRE1, PERK, and ATF6. Activation of UPR is observed in various cancers and the tumor cells effectively utilize the UPR system to overcome ER stress. Also, ER stress and autophagy are the stress response mechanisms that operate together to maintain cellular homeostasis. In cancers, ER stress-mediated autophagy can function as either pro-survival or pro-death in a context-dependent manner. ER stress-mediated autophagy can have crosstalk with other types of cell death pathways including apoptosis and ferroptosis. In this article, we have reviewed the role of ER stress in the regulation of autophagy-mediated tumorigenesis and its interactions with other cell death mechanisms such as apoptosis and ferroptosis. We have also comprehensively discussed the effect of ER stress-mediated autophagy on cancer progression and chemotherapeutic resistance.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Haitang Liao
- Department of Intensive Care Unit, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Chakrabhavi Dhananjaya Mohan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India..
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
2
|
Zhang C, Yu N, Qin Q, Wu X, Gu Y, Liu T, Zhang Q, Liu X, Chen M, Wang K. Keratin8 Deficiency Aggravates Retinal Ganglion Cell Damage Under Acute Ocular Hypertension. Invest Ophthalmol Vis Sci 2023; 64:1. [PMID: 37656477 PMCID: PMC10479409 DOI: 10.1167/iovs.64.12.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Purpose Keratin 8/18 (KRT8/18), paired members of the intermediate filament family, have shown vital functions in regulating physiological activities more than supporting the mechanic strength for cells and organelles. However, the KRT8/18 presence in retinal ganglion cells (RGCs) and functions on neuroprotection in a mouse model of acute ocular hypertension (AOH) are unknown and worthy of exploration. Methods We identified the existence of KRT8/18 in normal human and mouse retinas and primary RGCs. KRT8/18 levels were detected after AOH modeling. The adeno-associated virus (AAV) system was intravitreally used for selective KRT8 knockdown in RGCs. The histological changes, the loss and dysfunction of RGCs, and the gliosis in retinas were detected. The markers of cell apoptosis and MAPK pathways were investigated. Results KRT8/18 existed in all retinal layers and was highly expressed in RGCs, and they increased after AOH induction. The KRT8 knockdown in RGCs caused no histopathological changes and RGC loss in retinas without AOH modeling. However, after the KRT8 deficiency, AOH significantly promoted the loss of whole retina and inner retina thickness, the reduction, apoptosis, and dysfunction of RGCs, and the glial activation. Besides, downregulated Bcl-2 and upregulated cleaved-Caspase 3 were found in the AOH retinas with KRT8 knockdown, which may be caused by the increased phosphorylation level of MAPK pathways (JNK, p38, and ERK). Conclusions The KRT8 deficiency promoted RGC apoptosis and neurodegeneration by abnormal activation of MAPK pathways in AOH retinas. Targeting KRT8 may serve as a novel treatment for saving RCGs from glaucomatous injuries.
Collapse
Affiliation(s)
- Chengshou Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Naiji Yu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Qiyu Qin
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Xingdi Wu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yuxiang Gu
- Department of Ophthalmology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang Province, China
| | - Tong Liu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Qi Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Xin Liu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Min Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Kaijun Wang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Wang D, Shang Q, Mao J, Gao C, Wang J, Wang D, Wang H, Jia H, Peng P, Du M, Luo Z, Yang L. Phosphorylation of KRT8 (keratin 8) by excessive mechanical load-activated PKN (protein kinase N) impairs autophagosome initiation and contributes to disc degeneration. Autophagy 2023; 19:2485-2503. [PMID: 36897022 PMCID: PMC10392755 DOI: 10.1080/15548627.2023.2186099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/11/2023] Open
Abstract
Excessive mechanical load (overloading) is a well-documented pathogenetic factor for many mechano stress-induced pathologies, i.e. intervertebral disc degeneration (IDD). Under overloading, the balance between anabolism and catabolism within nucleus pulposus (NP) cells are badly thrown off, and NP cells undergo apoptosis. However, little is known about how the overloading is transduced to the NP cells and contributes to disc degeneration. The current study shows that conditional knockout of Krt8 (keratin 8) within NP aggravates load-induced IDD in vivo, and overexpression of Krt8 endows NP cells greater resistance to overloading-induced apoptosis and degeneration in vitro. Discovery-driven experiments shows that phosphorylation of KRT8 on Ser43 by overloading activated RHOA-PKN (protein kinase N) impedes trafficking of Golgi resident small GTPase RAB33B, suppresses the autophagosome initiation and contributes to IDD. Overexpression of Krt8 and knockdown of Pkn1 and Pkn2, at an early stage of IDD, ameliorates disc degeneration; yet only knockdown of Pkn1 and Pkn2, when treated at late stage of IDD, shows a therapeutic effect. This study validates a protective role of Krt8 during overloading-induced IDD and demonstrates that targeting overloading activation of PKNs could be a novel and effective approach to mechano stress-induced pathologies with a wider window of therapeutic opportunity.Abbreviations: AAV: adeno-associated virus; AF: anulus fibrosus; ANOVA: analysis of variance; ATG: autophagy related; BSA: bovine serum albumin; cDNA: complementary deoxyribonucleic acid; CEP: cartilaginous endplates; CHX: cycloheximide; cKO: conditional knockout; Cor: coronal plane; CT: computed tomography; Cy: coccygeal vertebra; D: aspartic acid; DEG: differentially expressed gene; DHI: disc height index; DIBA: dot immunobinding assay; dUTP: 2'-deoxyuridine 5'-triphosphate; ECM: extracellular matrix; EDTA: ethylene diamine tetraacetic acid; ER: endoplasmic reticulum; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GPS: group-based prediction system; GSEA: gene set enrichment analysis; GTP: guanosine triphosphate; HE: hematoxylin-eosin; HRP: horseradish peroxidase; IDD: intervertebral disc degeneration; IF: immunofluorescence staining; IL1: interleukin 1; IVD: intervertebral disc; KEGG: Kyoto encyclopedia of genes and genomes; KRT8: keratin 8; KD: knockdown; KO: knockout; L: lumbar vertebra; LBP: low back pain; LC/MS: liquid chromatograph mass spectrometer; LSI: mouse lumbar instability model; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MMP3: matrix metallopeptidase 3; MRI: nuclear magnetic resonance imaging; NC: negative control; NP: nucleus pulposus; PBS: phosphate-buffered saline; PE: p-phycoerythrin; PFA: paraformaldehyde; PI: propidium iodide; PKN: protein kinase N; OE: overexpression; PTM: post translational modification; PVDF: polyvinylidene fluoride; qPCR: quantitative reverse-transcriptase polymerase chain reaction; RHOA: ras homolog family member A; RIPA: radio immunoprecipitation assay; RNA: ribonucleic acid; ROS: reactive oxygen species; RT: room temperature; TCM: rat tail compression-induced IDD model; TCS: mouse tail suturing compressive model; S: serine; Sag: sagittal plane; SD rats: Sprague-Dawley rats; shRNA: short hairpin RNA; siRNA: small interfering RNA; SOFG: safranin O-fast green; SQSTM1: sequestosome 1; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling; VG/ml: viral genomes per milliliter; WCL: whole cell lysate.
Collapse
Affiliation(s)
- Di Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Qiliang Shang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Jianxin Mao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Chu Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Medical Research Institute, Northwestern Polytechnical University, Xi’an, People’s Republic of China
| | - Jie Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Han Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Haoruo Jia
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Pandi Peng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Medical Research Institute, Northwestern Polytechnical University, Xi’an, People’s Republic of China
| | - Mu Du
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Medical Research Institute, Northwestern Polytechnical University, Xi’an, People’s Republic of China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Medical Research Institute, Northwestern Polytechnical University, Xi’an, People’s Republic of China
| |
Collapse
|
4
|
Pan L, E T, Xu C, Fan X, Xia J, Liu Y, Liu J, Zhao J, Bao N, Zhao Y, Sun H, Qin G, Farouk MH. The apoptotic effects of soybean agglutinin were induced through three different signal pathways by down-regulating cytoskeleton proteins in IPEC-J2 cells. Sci Rep 2023; 13:5753. [PMID: 37031286 PMCID: PMC10082828 DOI: 10.1038/s41598-023-32951-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/05/2023] [Indexed: 04/10/2023] Open
Abstract
Soybean agglutinin (SBA) is a main anti-nutritional factor in soybean. SBA exhibits its anti-nutritional functions by binding to intestinal epithelial cells. Keratin8 (KRT8), Keratin18 (KRT18) and Actin (ACTA) are the representative SBA-specific binding proteins. Such cytoskeletal proteins act a crucial role in different cell activities. However, limited reports reveal what the signal transduction pathway of apoptosis caused by SBA when binding to KRT8, KRT18 and ACTA. We aimed to evaluate the effects of SBA on cell apoptosis and the expression of the cytoskeletal protein (KRT8, KRT18 and ACTA), reveal the roles of these cytoskeletal proteins or their combinations on SBA-induced cell apoptosis in IPEC-J2 cell line, evaluate the influences of SBA on the mitochondria, endoplasmic reticulum stress and death receptor-mediated apoptosis signal pathway and to show the roles of KRT8, KRT18 and ACTA in different apoptosis signal pathways induced by SBA. The results showed that SBA induced the IPEC-J2 cell apoptosis and decreased the mRNA expression of KRT8, KRT18 and ACTA (p < 0.05). The degree of effect of three cytoskeleton proteins on cell apoptosis was ACTA > KRT8 > KRT18. The roles of these three cytoskeletal proteins on IPEC-J2 apoptotic rates had a certain accumulation effect. SBA up-regulated mitochondrial fission variant protein (FIS1) and fusion protein (Mfn2) promoted CytC and AIF in mitochondria to enter the cytoplasm, activated caspase-9 and caspase-3, damaged or declined mitochondrial function and reduced ATP synthesis (p < 0.05). Also, SBA up-regulated the expression of GRP78, XBP-1, eIF2α, p-eIF2α and CHOP (p < 0.05), down-regulated the expression level of ASK1 protein (p < 0.05). SBA led to the recruitment of FADD to the cytoplasmic membrane and increased the expression of FasL, resulting in caspase-8 processing. SBA up-regulated the expression level of Bax protein and decreased cytosolic Bcl-2 and Bid (p < 0.05). In addition, there was a significant negative correlation between the gene expression of cytoskeleton proteins and apoptosis, as well as the expression of key proteins of apoptosis-related signal transduction pathways. In conclusion, SBA induced the activation of the mitochondria, endoplasmic reticulum stress and the death receptor-mediated apoptosis signal pathway and the crosstalk between them. The effect of SBA on these three pathways was mainly exhibited via down-regulation of the mRNA expression of the three cytoskeletal expressions. This study elucidates the molecular mechanism and signaling pathway of SBA that lead to apoptosis from the perspective of cell biology and molecular biology and provides a new perspective on the toxicity mechanism of other food-derived anti-nutrients, medical gastrointestinal health and related cancer treatment.
Collapse
Affiliation(s)
- Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Tianjiao E
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Chengyu Xu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Xiapu Fan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jiajia Xia
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Yan Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jiawei Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jinpeng Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Yuan Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Hui Sun
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| | - Mohammed Hamdy Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
5
|
Takano N, Hiramoto M, Yamada Y, Kokuba H, Tokuhisa M, Hino H, Miyazawa K. Azithromycin, a potent autophagy inhibitor for cancer therapy, perturbs cytoskeletal protein dynamics. Br J Cancer 2023; 128:1838-1849. [PMID: 36871041 PMCID: PMC10147625 DOI: 10.1038/s41416-023-02210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Autophagy plays an important role in tumour cell growth and survival and also promotes resistance to chemotherapy. Hence, autophagy has been targeted for cancer therapy. We previously reported that macrolide antibiotics including azithromycin (AZM) inhibit autophagy in various types of cancer cells in vitro. However, the underlying molecular mechanism for autophagy inhibition remains unclear. Here, we aimed to identify the molecular target of AZM for inhibiting autophagy. METHODS We identified the AZM-binding proteins using AZM-conjugated magnetic nanobeads for high-throughput affinity purification. Autophagy inhibitory mechanism of AZM was analysed by confocal microscopic and transmission electron microscopic observation. The anti-tumour effect with autophagy inhibition by oral AZM administration was assessed in the xenografted mice model. RESULTS We elucidated that keratin-18 (KRT18) and α/β-tubulin specifically bind to AZM. Treatment of the cells with AZM disrupts intracellular KRT18 dynamics, and KRT18 knockdown resulted in autophagy inhibition. Additionally, AZM treatment suppresses intracellular lysosomal trafficking along the microtubules for blocking autophagic flux. Oral AZM administration suppressed tumour growth while inhibiting autophagy in tumour tissue. CONCLUSIONS As drug-repurposing, our results indicate that AZM is a potent autophagy inhibitor for cancer treatment, which acts by directly interacting with cytoskeletal proteins and perturbing their dynamics.
Collapse
Affiliation(s)
- Naoharu Takano
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan.
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Yumiko Yamada
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Hiroko Kokuba
- Laboratory of Electron Microscopy, Tokyo Medical University, Tokyo, Japan
| | - Mayumi Tokuhisa
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Hirotsugu Hino
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
6
|
Mao J, Wang D, Wang D, Wu Q, Shang Q, Gao C, Wang H, Wang H, Du M, Peng P, Jia H, Xu X, Wang J, Yang L, Luo Z. SIRT5-related desuccinylation modification of AIFM1 protects against compression-induced intervertebral disc degeneration by regulating mitochondrial homeostasis. Exp Mol Med 2023; 55:253-268. [PMID: 36653443 PMCID: PMC9898264 DOI: 10.1038/s12276-023-00928-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial dysfunction plays a major role in the development of intervertebral disc degeneration (IDD). Sirtuin 5 (SIRT5) participates in the maintenance of mitochondrial homeostasis through its desuccinylase activity. However, it is still unclear whether succinylation or SIRT5 is involved in the impairment of mitochondria and development of IDD induced by excessive mechanical stress. Our 4D label-free quantitative proteomic results showed decreased expression of the desuccinylase SIRT5 in rat nucleus pulposus (NP) tissues under mechanical loading. Overexpression of Sirt5 effectively alleviated, whereas knockdown of Sirt5 aggravated, the apoptosis and dysfunction of NP cells under mechanical stress, consistent with the more severe IDD phenotype of Sirt5 KO mice than wild-type mice that underwent lumbar spine instability (LSI) surgery. Moreover, immunoprecipitation-coupled mass spectrometry (IP-MS) results suggested that AIFM1 was a downstream target of SIRT5, which was verified by a Co-IP assay. We further demonstrated that reduced SIRT5 expression resulted in the increased succinylation of AIFM1, which in turn abolished the interaction between AIFM1 and CHCHD4 and thus led to the reduced electron transfer chain (ETC) complex subunits in NP cells. Reduced ETC complex subunits resulted in mitochondrial dysfunction and the subsequent occurrence of IDD under mechanical stress. Finally, we validated the efficacy of treatments targeting disrupted mitochondrial protein importation by upregulating SIRT5 expression or methylene blue (MB) administration in the compression-induced rat IDD model. In conclusion, our study provides new insights into the occurrence and development of IDD and offers promising therapeutic approaches for IDD.
Collapse
Affiliation(s)
- Jianxin Mao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Di Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Qi Wu
- Intensive Care Unit, Heze Municipal Hospital, Heze, 274031, People's Republic of China
| | - Qiliang Shang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chu Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Huanbo Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Han Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Mu Du
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Pandi Peng
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, 710068, People's Republic of China
| | - Haoruo Jia
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiaolong Xu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jie Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, 710068, People's Republic of China.
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, 710068, People's Republic of China.
| |
Collapse
|
7
|
Wang W, Tan H, Sun M, Han Y, Chen W, Qiu S, Zheng K, Wei G, Ni T. Independent component analysis based gene co-expression network inference (ICAnet) to decipher functional modules for better single-cell clustering and batch integration. Nucleic Acids Res 2021; 49:e54. [PMID: 33619563 PMCID: PMC8136772 DOI: 10.1093/nar/gkab089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Abstract
With the tremendous increase of publicly available single-cell RNA-sequencing (scRNA-seq) datasets, bioinformatics methods based on gene co-expression network are becoming efficient tools for analyzing scRNA-seq data, improving cell type prediction accuracy and in turn facilitating biological discovery. However, the current methods are mainly based on overall co-expression correlation and overlook co-expression that exists in only a subset of cells, thus fail to discover certain rare cell types and sensitive to batch effect. Here, we developed independent component analysis-based gene co-expression network inference (ICAnet) that decomposed scRNA-seq data into a series of independent gene expression components and inferred co-expression modules, which improved cell clustering and rare cell-type discovery. ICAnet showed efficient performance for cell clustering and batch integration using scRNA-seq datasets spanning multiple cells/tissues/donors/library types. It works stably on datasets produced by different library construction strategies and with different sequencing depths and cell numbers. We demonstrated the capability of ICAnet to discover rare cell types in multiple independent scRNA-seq datasets from different sources. Importantly, the identified modules activated in acute myeloid leukemia scRNA-seq datasets have the potential to serve as new diagnostic markers. Thus, ICAnet is a competitive tool for cell clustering and biological interpretations of single-cell RNA-seq data analysis.
Collapse
Affiliation(s)
- Weixu Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, P.R. China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Mingwan Sun
- College of Life Science, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Yiqing Han
- College of Agricultural, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Wei Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, P.R. China
| | - Shengnu Qiu
- Division of Biosciences, Faculty of Life Sciences, University College London, London, WC1E 6BT, UK
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, P.R. China.,MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, P.R. China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, P.R. China
| |
Collapse
|
8
|
Yue C, Yu C, Peng R, Wang J, Li G, Xu L. LINC00665/miR-379-5p/GRP78 regulates cisplatin sensitivity in gastric cancer by modulating endoplasmic reticulum stress. Cytotechnology 2021; 73:413-422. [PMID: 34149174 DOI: 10.1007/s10616-021-00466-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/19/2021] [Indexed: 12/25/2022] Open
Abstract
Acquired resistance to cisplatin (DDP)-based chemotherapy greatly hinders the treatment of gastric cancer (GC). LINC00665 serves as an oncogene in GC. Hence, the current study was designed to investigate the regulatory effects of LINC00665 on DDP-resistance of GC. LINC00665 and miR-379-5p expression levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and Glucose regulated protein 78 (GRP78) protein level was measured by western blot assay. Interactions between LINC00665 and miR-379-5p or between miR-379-5p and GRP78 were verified by dual luciferase reporter assay. Cell counting kit 8 (CCK-8) assay and flow cytometry assay respectively determine the proliferative ability and apoptosis of GC cells. Western blot analysis was also performed to detect the protein levels of C/EBP-homologous protein (CHOP), X box binding protein (XBP1) and apoptosis-related proteins. In addition, GRP78 expression was evaluated by immunofluorescence. It was observed that the expression levels of LINC00665 and GRP78 were upregulated, and the expression level of miR-379-5p was downregulated in DDP-sensitive and DDP-resistant GC cell lines. What's more, GRP78 expression and the cell growth inhibition rates of DDP-sensitive and DDP-resistant GC cells had a negative correlation. Additionally, miR-379-5p was a target miRNA of LINC00665, and GRP78 was a target mRNA of miR-379-5p. Functional studies revealed that knockdown of LINC00665 inhibited DDP-resistant GC cell proliferation, induced apoptosis as well as suppressed Endoplasmic reticulum (ER) stress. Mechanistically, knockdown of LINC00665 downregulated GRP78 expression by strengthening miR-379-5p. LINC00665 silencing could overcome DPP-resistance of GC cells by downregulating GRP78 via sponging miR-379-5p, indicating that LINC00665 might be a potential therapeutic target for DDP- resistant GC patients.
Collapse
Affiliation(s)
- Chao Yue
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009 Jiangsu Province China
| | - Chen Yu
- Department of Integrated Traditional Chinese and Western Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009 Jiangsu Province China
| | - Rui Peng
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009 Jiangsu Province China
| | - Jian Wang
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009 Jiangsu Province China
| | - Gang Li
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009 Jiangsu Province China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu Province China
| |
Collapse
|
9
|
Wang D, He X, Wang D, Peng P, Xu X, Gao B, Zheng C, Wang H, Jia H, Shang Q, Sun Z, Luo Z, Yang L. Quercetin Suppresses Apoptosis and Attenuates Intervertebral Disc Degeneration via the SIRT1-Autophagy Pathway. Front Cell Dev Biol 2020; 8:613006. [PMID: 33363176 PMCID: PMC7758489 DOI: 10.3389/fcell.2020.613006] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
Intervertebral disc degeneration (IDD) has been generally accepted as the major cause of low back pain (LBP), which causes an enormous socioeconomic burden. Previous studies demonstrated that the apoptosis of nucleus pulposus (NP) cells and the dyshomeostasis of extracellular matrix (ECM) contributed to the pathogenesis of IDD, and effective therapies were still lacking. Quercetin, a natural flavonoid possessing a specific effect of autophagy stimulation and SIRT1 activation, showed some protective effect on a series of degenerative diseases. Based on previous studies, we hypothesized that quercetin might have therapeutic effects on IDD by inhibiting the apoptosis of NP cells and dyshomeostasis of ECM via the SIRT1-autophagy pathway. In this study, we revealed that quercetin treatment inhibited the apoptosis of NP cells and ECM degeneration induced by oxidative stress. We also found that quercetin promoted the expression of SIRT1 and autophagy in NP cells in a dose-dependent manner. Autophagy inhibitor 3-methyladenine (3-MA) reversed the protective effect of quercetin on apoptosis and ECM degeneration. Moreover, SIRT1 enzymatic activity inhibitor EX-527, suppressed quercetin-induced autophagy and the protective effect on NP cells, indicating that quercetin protected NP cells against apoptosis and prevented ECM degeneration via SIRT1-autophagy pathway. In vivo, quercetin was also demonstrated to alleviate the progression of IDD in rats. Taken together, our results suggest that quercetin prevents IDD by promoting SIRT1-dependent autophagy, indicating one novel and effective therapeutic method for IDD.
Collapse
Affiliation(s)
- Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin He
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Di Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pandi Peng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Xiaolong Xu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chao Zheng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Han Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haoruo Jia
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiliang Shang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen Sun
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
10
|
Gao W, Guo H, Niu M, Zheng X, Zhang Y, Xue X, Bo Y, Guan X, Li Z, Guo Y, He L, Zhang Y, Li L, Cao J, Wu Y. circPARD3 drives malignant progression and chemoresistance of laryngeal squamous cell carcinoma by inhibiting autophagy through the PRKCI-Akt-mTOR pathway. Mol Cancer 2020; 19:166. [PMID: 33234130 PMCID: PMC7686732 DOI: 10.1186/s12943-020-01279-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022] Open
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is the second most common malignant tumor in head and neck. Autophagy and circular RNAs (circRNAs) play critical roles in cancer progression and chemoresistance. However, the function and mechanism of circRNA in autophagy regulation of LSCC remain unclear. Methods The autophagy-suppressive circRNA circPARD3 was identified via RNA sequencing of 107 LSCC tissues and paired adjacent normal mucosal (ANM) tissues and high-content screening. RT-PCR, Sanger sequencing, qPCR and fluorescence in situ hybridization were performed to detect circPARD3 expression and subcellular localization. Biological functions of circPARD3 were assessed by proliferation, migration, invasion, autophagic flux, and chemoresistance assays using in vitro and in vivo models. The mechanism of circPARD3 was investigated by RNA immunoprecipitation, RNA pulldown, luciferase reporter assays, western blotting and immunohistochemical staining. Results Autophagy was inhibited in LSCC, and circPARD3 was upregulated in the LSCC tissues (n = 100, p < 0.001). High circPARD3 level was associated with advanced T stages (p < 0.05), N stages (p = 0.001), clinical stages (p < 0.001), poor differentiation degree (p = 0.025), and poor prognosis (p = 0.002) of LSCC patients (n = 100). Functionally, circPARD3 inhibited autophagy and promoted LSCC cell proliferation, migration, invasion and chemoresistance. We further revealed that activation of the PRKCI-Akt-mTOR pathway through sponging miR-145-5p was the main mechanism of circPARD3 inhibited autophagy, promoting LSCC progression and chemoresistance. Conclusion Our study reveals that the novel autophagy-suppressive circPARD3 promotes LSCC progression and chemoresistance through the PRKCI-Akt-mTOR pathway, providing new insights into circRNA-mediated autophagy regulation and potential biomarker and target for LSCC treatment. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12943-020-01279-2.
Collapse
Affiliation(s)
- Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.,Department of Cell Biology and Genetics, Basic Medical School of Shanxi Medical University, Taiyuan, 030001, China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yunfeng Bo
- Department of Pathology, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, 030013, China
| | - Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Zhongxun Li
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Long He
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.,Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Li Li
- Department of Cell Biology and Genetics, Basic Medical School of Shanxi Medical University, Taiyuan, 030001, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.,Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China. .,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China. .,Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, China. .,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China. .,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
11
|
Ashrafizadeh M, Zarrabi A, Saberifar S, Hashemi F, Hushmandi K, Hashemi F, Moghadam ER, Mohammadinejad R, Najafi M, Garg M. Nobiletin in Cancer Therapy: How This Plant Derived-Natural Compound Targets Various Oncogene and Onco-Suppressor Pathways. Biomedicines 2020; 8:biomedicines8050110. [PMID: 32380783 PMCID: PMC7277899 DOI: 10.3390/biomedicines8050110] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer therapy is a growing field, and annually, a high number of research is performed to develop novel antitumor drugs. Attempts to find new antitumor drugs continue, since cancer cells are able to acquire resistance to conventional drugs. Natural chemicals can be considered as promising candidates in the field of cancer therapy due to their multiple-targeting capability. The nobiletin (NOB) is a ubiquitous flavone isolated from Citrus fruits. The NOB has a variety of pharmacological activities, such as antidiabetes, antioxidant, anti-inflammatory, hepatoprotective, and neuroprotective. Among them, the antitumor activity of NOB has been under attention over recent years. In this review, we comprehensively describe the efficacy of NOB in cancer therapy. NOB induces apoptosis and cell cycle arrest in cancer cells. It can suppress migration and invasion of cancer cells via the inhibition of epithelial-to-mesenchymal transition (EMT) and EMT-related factors such as TGF-β, ZEB, Slug, and Snail. Besides, NOB inhibits oncogene factors such as STAT3, NF-κB, Akt, PI3K, Wnt, and so on. Noteworthy, onco-suppressor factors such as microRNA-7 and -200b undergo upregulation by NOB in cancer therapy. These onco-suppressor and oncogene pathways and mechanisms are discussed in this review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Sedigheh Saberifar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran;
| | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon 7319846451, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715749, Iran;
| | - Ebrahim Rahmani Moghadam
- Student Research Committee, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
- Correspondence: (R.M.); (M.N.); (M.G.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Correspondence: (R.M.); (M.N.); (M.G.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida-201313, India
- Correspondence: (R.M.); (M.N.); (M.G.)
| |
Collapse
|