1
|
Wang B, Liu W, Song B, Li Y, Wang Y, Tan B. Targeting LINC00665/miR-199b-5p/SERPINE1 axis to inhibit trastuzumab resistance and tumorigenesis of gastric cancer via PI3K/AKt pathway. Noncoding RNA Res 2025; 10:153-162. [PMID: 39399377 PMCID: PMC11467570 DOI: 10.1016/j.ncrna.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 10/15/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) serve as critical mediators of tumor progression and drug resistance in cancer. Herein, we identified a lncRNA, LINC00665, associated with trastuzumab resistance and development in gastric cancer (GC). LINC00665 was highly expressed in GC tissues and high expression of LINC00665 was correlated with poor prognosis. LINC00665 knockdown was verified to suppress migration, invasion, and resistance to trastuzumab in GC. Furthermore, we found that LINC00665 participates in the infiltration of naive B cells, mast cells, and T follicular helper (Tfh) cells. Mechanistically, LINC00665 was confirmed to regulate tumorigenesis and trastuzumab resistance by activating PI3K/AKt pathway. LINC00665 sponged miR-199b-5p to interact with SERPINE1 expression, resulting in the increase of phosphorylation of AKt, thus participating in the PI3K/AKt pathway. To summarize, LINC00665 facilitated the tumorigenesis and trastuzumab resistance of GC by sponging miR-199b-5p and promoting SERPINE1 expression, which further activated PI3K/AKt signaling; this finding reveals a new mechanism by which LINC00665 modulates tumor development and drug resistance in GC.
Collapse
Affiliation(s)
- Bingyu Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Wenbo Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Buyun Song
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Yong Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Yingying Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| |
Collapse
|
2
|
Peng J, Lv L, Zhou Y, Wang X, Hu C. PHAX enhanced LIN28B-mediated PBX3 mRNA stability to promote esophageal cancer development. Cancer Sci 2024. [PMID: 39668567 DOI: 10.1111/cas.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
The abnormal expression of PHAX was observed in esophageal cancer, however, its specific function and mechanism remain to be further elucidated. We demonstrated that PHAX, LIN28B, and PBX3 were upregulated in esophageal cancer, while TET2 was downregulated. Elevated PHAX correlated with adverse outcomes among esophageal cancer patients. PHAX or PBX3 knockdown not only inhibited esophageal cancer cell proliferation, and promoted apoptosis and autophagy in vitro, but it also repressed tumor growth and lung metastasis in mice. Mechanically, PHAX stabilized PBX3 mRNA through interacting with LIN28B. PBX3 directly bound to the TET2 promoter region and inhibited its expression. In conclusion, PHAX directly bound to LIN28B and enhanced LIN28B-mediated stabilization of PBX3 mRNA, leading to upregulation of PBX3. PBX3 then transcriptionally repressed TET2 expression to promote esophageal cancer cell proliferation, and suppress apoptosis and autophagy. Targeting this signaling cascade could represent a promising therapeutic strategy for esophageal cancer.
Collapse
Affiliation(s)
- Jie Peng
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Lv
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuqian Zhou
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuehong Wang
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Changmei Hu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Azizidoost S, Sheykhi-Sabzehpoush M, Dari MAG, Józkowiak M, Niebora J, Domagała D, Data K, Dzięgiel P, Mozdziak P, Farzaneh M, Kempisty B. LncRNA-mediated regulation of cisplatin response in breast cancer. Pathol Res Pract 2024; 264:155716. [PMID: 39536542 DOI: 10.1016/j.prp.2024.155716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer is a prevalent and aggressive disease characterized by high metastasis, recurrence, and mortality rates. While cisplatin is an effective chemotherapy drug, its use is limited by its toxic effects on the body. Despite advancements in therapeutic strategies, the therapeutic response is often unsatisfactory due to drug resistance, leading to poor prognosis. Recent studies have shown that cisplatin interacts with long non-coding RNAs (lncRNAs) and accelerates the development of resistance in tumor cells to therapy. This interaction highlights the complex mechanisms involved in the response of cancer cells to chemotherapy. Several lncRNAs have been identified as key players in mediating cisplatin resistance in breast cancer. These lncRNAs include SNHG15, HULC, HCP5, MT1JP, LncMat2B, DLX6-ASL, Linc00665, CARMN, and Lnc-EinRP44-3:6. These lncRNAs have been shown to target microRNAs and mRNAs and modulate the expression of genes involved in cisplatin resistance, which is important in treating breast cancer.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Małgorzata Józkowiak
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, Poland; Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - Julia Niebora
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, Poland
| | - Dominika Domagała
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Data
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland; Department of Human Biology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA; Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Clinical Research Development Unit, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Environmental and Petroleum Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bartosz Kempisty
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, Poland; Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA; Department of Veterinary Surgery, Institute of Veterinary Medicine Nicolaus Copernicus University, Torun, Poland; Center of Assisted Reproduction Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic.
| |
Collapse
|
4
|
Shen D, Li C, Liu S, Lin A, Liu B. Association of LIN28B Gene Polymorphisms with Intrauterine Adhesions in Patients after Curettage Abortion. Biomedicines 2024; 12:2044. [PMID: 39335557 PMCID: PMC11428946 DOI: 10.3390/biomedicines12092044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Intrauterine adhesion (IUA) is characterized by endometrial fibrocyte hyperplasia. The LIN28B gene is associated with many proliferative diseases. However, its association with IUA is entirely unknown. We hypothesized that LIN28B gene polymorphisms are responsible for IUA susceptibility after curettage abortion. Methods: In this genetic association study, We genotyped two common polymorphisms (rs369065 C>T and rs314280 A>G) in 107 patients with IUA and 270 controls without IUA after curettage abortion from a Chinese population between July 2022 and May 2023 and analyzed their associations with IUA risk using multiple logistic regression models. Results: The carriers of genotype rs314280 AA of the LIN28B gene showed an increased risk of IUA (AOR [adjusted odds ratio] = 2.12, 95% CI [confidence interval] = 1.151-3.903), compared to GG+GA genotypes. Further stratification analyses showed that the deleterious role of the rs314280 AA genotype was more evident in patients with fewer than four pregnancies (AOR = 2.740, 95% CI = 1.355-5.540), fewer than two births (AOR = 2.676, 95% CI = 1.300-5.509), and fibrous (AOR = 2.082, 95% CI = 1.084-3.997) and muscular adhesions (AOR = 3.887, 95% CI = 1.116-13.540). However, the rs369065 T>C polymorphism of the LIN28B gene was not significantly associated with the occurrence of IUA. Conclusions: The rs314280 AA genotype of the LIN28B gene is associated with an increased risk of IUA in patients after curettage abortion, especially in those with fewer pregnancies or parities and higher disease severity. Our findings implicate a precise choice of clinical counseling and decision-making of IUA, thereby protecting female reproduction.
Collapse
Affiliation(s)
- Danting Shen
- Department of Gynecology, Shenzhen Baoan Women's and Children's Hospital, 56 Yulv Road, Shenzhen 510181, China
| | - Cong Li
- Department of Gynecology, Shenzhen Baoan Women's and Children's Hospital, 56 Yulv Road, Shenzhen 510181, China
| | - Shuhua Liu
- Department of Gynecology, Shenzhen Baoan Women's and Children's Hospital, 56 Yulv Road, Shenzhen 510181, China
| | - Anping Lin
- Department of Gynecology, Shenzhen Baoan Women's and Children's Hospital, 56 Yulv Road, Shenzhen 510181, China
| | - Bin Liu
- Maternal & Child Health Research Institute, Shenzhen Baoan Women's and Children's Hospital, 56 Yulv Road, Shenzhen 510181, China
| |
Collapse
|
5
|
Wang BY, Gao Q, Sun Y, Qiu XB. Biochemical targets of the micropeptides encoded by lncRNAs. Noncoding RNA Res 2024; 9:964-969. [PMID: 38764490 PMCID: PMC11098672 DOI: 10.1016/j.ncrna.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are a group of transcripts longer than 200 nucleotides, which play important roles in regulating various cellular activities by the action of the RNA itself. However, about 40% of lncRNAs in human cells are potentially translated into micropeptides (also referred to as microproteins) usually shorter than 100 amino acids. Thus, these lncRNAs may function by both RNAs directly and their encoded micropeptides. The micropeptides encoded by lncRNAs may regulate transcription, translation, protein phosphorylation or degradation, or subcellular membrane functions. This review attempts to summarize the biochemical targets of the micropeptides-encoded by lncRNAs, which function by both RNAs and micropeptides, and discuss their associations with various diseases and their potentials as drug targets.
Collapse
Affiliation(s)
- Bi-Ying Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Qi Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xiao-Bo Qiu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| |
Collapse
|
6
|
Han C, Su J, Pei Y, Su X, Zheng D. LINC00665 promotes the progression and immune evasion of lung cancer by facilitating the translation of TCF7 protein through dependence on IRES. Cancer Cell Int 2024; 24:227. [PMID: 38951802 PMCID: PMC11218341 DOI: 10.1186/s12935-024-03411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
OBJECTIVE To investigate the influence of LINC00665 on the development and immune evasion of lung cancer. METHODS Tumor tissues and corresponding adjacent tissues were collected from 84 lung cancer patients, categorized into non-metastatic (n = 58) and metastatic (n = 26) groups. LINC00665 expression in lung cancer and metastatic lung cancer tissues was assessed via qRT-PCR. Pearson correlation analysis was conducted to examine the correlation between LINC00665 and immune-modulating cytokines (TGF-β, IL-10, IL-1β, IFN-γ, IL-2, TNF-α). A549 and H1299 cells, with relatively high LINC00665 expression, were used for in vitro studies. Cells were transfected with LINC00665-targeting shRNA, and changes in proliferation, apoptosis, migration, invasion, and NK cell cytotoxicity were assessed. Downstream molecular mechanisms of LINC00665 were investigated using GEO database analysis, highlighting the association with HHLA2. LINC00665's role in promoting HHLA2 expression via binding with TCF7 was explored. In low LINC00665-expressing A549/H1299 cells, overexpression of HHLA2 was performed to evaluate effects on malignant behavior and NK cell sensitivity. A xenograft model was established for in vivo validation through tumor volume and weight measurements, Ki-67 immunoreactivity analysis, and flow cytometry analysis of CD107a + NK cells. RESULTS LINC00665, TCF7 mRNA, and HHLA2 mRNA expression levels were significantly higher in lung cancer tissues than adjacent tissues, with non-metastatic lung cancer showing higher expression than metastatic lung cancer. In metastatic lung cancer, LINC00665 positively correlated with immune-suppressive cytokines (TGF-β, IL-10, IL-1β) and negatively correlated with anti-tumor cytokines (IFN-γ, IL-2, TNF-α). LINC00665 knockdown significantly inhibited lung cancer cell growth and metastasis, promoting sensitivity to NK cells. Further analysis revealed that LINC00665 recruits transcription factor TCF7 to upregulate HHLA2 expression in lung cancer cells, thereby facilitating lung cancer development and immune escape. CONCLUSION LINC00665, through recruitment of TCF7 and upregulation of HHLA2, inhibits NK cell cytotoxicity, promoting the development and immune evasion of lung cancer.
Collapse
Affiliation(s)
- Chaonan Han
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jinchen Su
- School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yue Pei
- Department of Laboratory Medicine, Yixing Hospital of Traditional Chinese Medicine, No.128 East Yangquan Road, Yicheng Subdistrict, Yixing, 214200, Jiangsu, China
| | - Xiangyu Su
- Department of Oncology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, P.R. China
| | - Di Zheng
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
7
|
Du B, Zhang Z, Jia L, Zhang H, Zhang S, Wang H, Cheng Z. Micropeptide AF127577.4-ORF hidden in a lncRNA diminishes glioblastoma cell proliferation via the modulation of ERK2/METTL3 interaction. Sci Rep 2024; 14:12090. [PMID: 38802444 PMCID: PMC11130299 DOI: 10.1038/s41598-024-62710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
Micropeptides hidden in long non-coding RNAs (lncRNAs) have been uncovered to program various cell-biological changes associated with malignant transformation-glioblastoma (GBM) cascade. Here, we identified and characterized a novel hidden micropeptide implicated in GBM. We screened potential candidate lncRNAs by establishing a workflow involving ribosome-bound lncRNAs, publicly available MS/MS data, and prognosis-related lncRNAs. Micropeptide expression was detected by western blot (WB), immunofluorescence (IF), and immunohistochemistry (IHC). Cell proliferation rate was assessed by calcein/PI staining and EdU assay. Proteins interacted with the micropeptide were analyzed by proteomics after co-immunoprecipitation (Co-IP). We discovered that lncRNA AF127577.4 indeed encoded an endogenous micropeptide, named AF127577.4-ORF. AF127577.4-ORF was associated with GBM clinical grade. In vitro, AF127577.4-ORF could suppress GBM cell proliferation. Moreover, AF127577.4-ORF reduced m6A methylation level of GBM cells. Mechanistically, AF127577.4-ORF diminished ERK2 interaction with m6A reader methyltransferase like 3 (METTL3) and downregulated phosphorylated ERK (p-ERK) level. The ERK inhibitor reduced p-ERK level and downregulated METTL3 protein expression. AF127577.4-ORF weakened the stability of METTL3 protein by ERK. Also, AF127577.4-ORF suppressed GBM cell proliferation via METTL3. Our study identifies a novel micropeptide AF127577.4-ORF hidden in a lncRNA, with a potent anti-proliferating function in GBM by diminishing METTL3 protein stability by reducing the ERK2/METTL3 interaction. This micropeptide may be beneficial for development of therapeutic strategies against GBM.
Collapse
Affiliation(s)
- Baoshun Du
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, 453003, Henan, People's Republic of China
| | - Zheying Zhang
- Department of Pathology, Xinxiang Medical University, No. 601 Jinsui Avenue, Xinxiang, 453003, Henan, People's Republic of China.
| | - Linlin Jia
- Department of Critical Care Medicine, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, 450053, Henan, People's Republic of China
| | - Huan Zhang
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, 453003, Henan, People's Republic of China
| | - Shuai Zhang
- Department of Pathology, Xinxiang Medical University, No. 601 Jinsui Avenue, Xinxiang, 453003, Henan, People's Republic of China
| | - Haijun Wang
- Department of Pathology, Xinxiang Medical University, No. 601 Jinsui Avenue, Xinxiang, 453003, Henan, People's Republic of China
| | - Zhenguo Cheng
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, 453003, Henan, People's Republic of China
| |
Collapse
|
8
|
Kong N, Chi Y, Ma H, Luo D. LncRNA SNHG1 acts as a ceRNA for miR-216a-3p to regulate TMBIM6 expression in esophageal squamous cell carcinoma. J Cancer 2024; 15:3128-3139. [PMID: 38706912 PMCID: PMC11064271 DOI: 10.7150/jca.95127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/21/2024] [Indexed: 05/07/2024] Open
Abstract
Background: The long noncoding RNA small nucleolar RNA host gene 1 (SNHG1) has been demonstrated to play a crucial role in the progression of esophageal squamous cell carcinoma (ESCC). The current study aims to explore the deeper molecular mechanisms of SNHG1 in ESCC. Methods: Fifty patients with ESCC were enrolled to assess overall survival. Quantitative real-time PCR was performed to measure the levels of SNHG1, miR-216a-3p, and TMBIM6 in ESCC cells. Functional assessments of SNHG1 on ESCC cells were conducted using CCK-8 assay, flow cytometry, and Transwell assays. Western blot was conducted to detect the protein levels of TMBIM6 and proapoptotic proteins (Calpain and Caspase-12). The interaction among SNHG1, miR-216a-3p, and TMBIM6 was assessed with luciferase reporter assays. Results: Our study revealed that SNHG1 was notably increased in both clinical ESCC samples and cellular lines. Upregulation of SNHG1 in ESCC tissues was indicative of poor overall survival. Functionally, SNHG1 knockdown significantly inhibited the proliferation, migration, and invasion while promoting apoptosis in ESCC cells. Mechanistically, SNHG1 functioned as a competing endogenous RNA by sequestering miR-216a-3p to modulate TMBIM6 levels in ESCC cells. Notably, inhibiting miR-216a-3p or restoring TMBIM6 reversed the inhibitory effect induced by SNHG1 knockdown in ESCC cells. Conclusions: We demonstrate for the first time that SNHG1 may act as a competing endogenous RNA and promote ESCC progression through the miR-216a-3p/TMBIM6 axis. This highlights the potential of SNHG1 as a target for ESCC treatment.
Collapse
Affiliation(s)
- Ni Kong
- Department of Thoracic Surgery, Xinjiang Medical University Affiliated Tumor Hospital, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi 830054, China
| | - Yuheng Chi
- Department of Thoracic Surgery, Xinjiang Medical University Affiliated Tumor Hospital, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi 830054, China
| | - Hong Ma
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang 830054, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, Xinjiang 830017, China
| | - Dongbo Luo
- Department of Thoracic Surgery, Xinjiang Medical University Affiliated Tumor Hospital, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi 830054, China
| |
Collapse
|
9
|
Li Z, Zhu T, Yao F, Shen X, Xu M, Fu L, Wu Y, Ding J, Zhang J, Zhao J, Dong L, Wang X, Yu G. LINC00665 promotes glycolysis in lung adenocarcinoma cells via the let-7c-5p/HMMR axis. J Bioenerg Biomembr 2024; 56:181-191. [PMID: 38411863 DOI: 10.1007/s10863-024-10004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Abstract
Lung adenocarcinoma (LUAD) is one of the most lethal and common malignancies. The energy metabolism of LUAD is a critical factor affecting its malignant progression, and research on this topic can aid in the development of novel cancer treatment targets. Bioinformatics analysis of the expression of long non-coding RNA (lncRNA) LINC00665 in LUAD was performed. Downstream regulatory molecules of LINC00665 were predicted using the StarBase database. We used quantitative reverse transcription polymerase chain reaction and western blot to measure the expression at mRNA and protein levels, respectively. The effects of the LINC00665/let-7c-5p/HMMR axis on cell viability in vitro were tested by CCK-8 assay. The regulatory effects on glycolysis were analyzed by extracellular acidification rate, oxygen consumption rate, glucose uptake, adenosine triphosphate production, and lactate production. The predicted competitive endogenous RNA mechanism between LINC00665 and let-7c-5p/HMMR was verified by a dual-luciferase reporter gene assay. LINC00665 was upregulated in LUAD. Silencing LINC00665 inhibited tumor proliferation and reduced the glycolytic activity of tumor cells. Additionally, the expression of LINC00665 had a negative correlation with that of let-7c-5p, while the expression of HMMR was remarkably inhibited by let-7c-5p. HMMR could affect the development of LUAD by influencing glycolytic capacity. Mechanistically, LINC00665 acted as a molecular sponge to absorb let-7c-5p and targeted HMMR. Transfection of let-7c-5p inhibitor or overexpression of HMMR plasmid could reverse the inhibition in proliferation and glycolysis of LUAD cells induced by silencing of LINC00665. In summary, this study demonstrated that the LINC00665/let-7c-5p/HMMR regulatory axis promoted the tumorigenesis of LUAD by enhancing aerobic glycolysis, suggesting that this regulatory axis was an effective target for inhibiting LUAD progression and providing theoretical support for the development of new drugs for LUAD.
Collapse
Affiliation(s)
- Zhupeng Li
- Department of Thoracic Surgery, Shaoxing People's Hospital, No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital, No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Fuqiang Yao
- Shaoxing University School of Medicine, Shaoxing, 312000, China
| | - Xiao Shen
- Shaoxing University School of Medicine, Shaoxing, 312000, China
| | - Minghao Xu
- Shaoxing University School of Medicine, Shaoxing, 312000, China
| | - Linhai Fu
- Department of Thoracic Surgery, Shaoxing People's Hospital, No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People's Hospital, No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Jianyi Ding
- Department of Thoracic Surgery, Shaoxing People's Hospital, No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Jiandong Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital, No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Junjun Zhao
- Department of Thoracic Surgery, Shaoxing People's Hospital, No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Lingjun Dong
- Department of Thoracic Surgery, Shaoxing People's Hospital, No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Xiang Wang
- Department of Thoracic Surgery, Shaoxing People's Hospital, No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People's Hospital, No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China.
| |
Collapse
|
10
|
Wang J, Shen D, Li S, Li Q, Zuo Q, Lu J, Tang D, Feng Y, Yin P, Chen C, Chen T. LINC00665 activating Wnt3a/β-catenin signaling by bond with YBX1 promotes gastric cancer proliferation and metastasis. Cancer Gene Ther 2023; 30:1530-1542. [PMID: 37563362 DOI: 10.1038/s41417-023-00657-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Long noncoding RNAs (lncRNAs) play a key role in human cancer development; nevertheless, the effect of lncRNA LINC00665 on the progression of gastric cancer (GC) still unclear. In this study, we found that LINC00665 expression is upregulated in GC than normal gastric mucosa tissues and higher LINC00665 expression is associated with a poor prognosis in GC patients. Downregulated LINC00665 inhibited GC cells proliferation, invasion, and migration in vitro. Pulmonary metastasis animal models showed that downregulated LINC00665 could reduce the lung metastasis of GC in vivo. Tumor organoids were generated from human malignant GC tissues, downregulated LINC00665 could inhibit the growth of the organoids of GC tissues. Mechanistically, downregulated LINC00665 could inhibit GC cells EMT. RNA pulldown, RIP, and RIP-seq studies found that LINC00665 can bind to the transcription factor YBX1 and form a positive feed-forward loop. The luciferase reporter and CHIP results showed that YBX1 could regulate the transcriptional activity of Wnt3a, and downregulation of LINC00665 could block the activation of Wnt/β-catenin signaling. In conclusion, our results identified a feedback loop between LINC00665 and YBX1 that activates Wnt/β-catenin signaling, and it may be a potential therapeutic approach to suppress GC progression.
Collapse
Affiliation(s)
- Jie Wang
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Dongxiao Shen
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
| | - Shichao Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Qiuying Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
| | - Qingsong Zuo
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
| | - Jiahao Lu
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Donghao Tang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Yuejiao Feng
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Peihao Yin
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Chao Chen
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China.
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China.
| | - Teng Chen
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China.
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China.
| |
Collapse
|
11
|
Zheng W, Guo Y, Zhang G, Bai J, Song Y, Song X, Zhu Q, Bao X, Wu G, Zhang C. Peptide encoded by lncRNA BVES-AS1 promotes cell viability, migration, and invasion in colorectal cancer cells via the SRC/mTOR signaling pathway. PLoS One 2023; 18:e0287133. [PMID: 37347740 PMCID: PMC10286995 DOI: 10.1371/journal.pone.0287133] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been revealed to harbor open reading frames (ORFs) that can be translated into small peptides. The peptides may participate in the pathogenesis of colorectal cancer (CRC). Herein, we investigated the role of a lncRNA BVES-AS1-encoded peptide in colorectal tumorigenesis. Through bioinformatic analysis, lncRNA BVES-AS1 was predicted to have encoding potential and to be associated with poor prognosis of patients with CRC. In CRC cells, BVES-AS1 was validated to encode a 50-aa-length micro-peptide, named BVES-AS1-201-50aa, through a western blotting method. BVES-AS1-201-50aa enhanced cell viability and promoted the migratory and invasive capacities of HCT116 and SW480 CRC cells in vitro, validated via CCK-8 assay and transwell assay, respectively. Immunofluorescence assay showed that BVES-AS1-201-50aa increased the expression of proliferating cell nuclear antigen (PCNA) and matrix metalloproteinase 9 (MMP9) in CRC cells. We further verified that BVES-AS1-201-50aa targeted and activated the Src/mTOR signaling pathway in CRC cells by co-immunoprecipitation (Co-IP) experiment, qualitative proteomic analysis, and western blotting. Our findings demonstrated that BVES-AS1 could encode a micro-peptide, which promoted CRC cell viability, migration, and invasion in vitro. Our current work broadens the diversity and breadth of lncRNAs in human carcinogenesis.
Collapse
Affiliation(s)
- Weiwei Zheng
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan Province, China
| | - Yingchang Guo
- Department of Interventional Therapy, the First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan Province, China
| | - Guangtan Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan Province, China
| | - Junwei Bai
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan Province, China
| | - Yucheng Song
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan Province, China
| | - Xiaofei Song
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan Province, China
| | - Qinhui Zhu
- Department of General Surgery, Shangcai People’s Hospital, Zhumadian, Henan Province, China
| | - Xuebin Bao
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan Province, China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan Province, China
| | - Chao Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan Province, China
| |
Collapse
|
12
|
GEWALT TABEA, NOH KAWON, MEDER LYDIA. The role of LIN28B in tumor progression and metastasis in solid tumor entities. Oncol Res 2023; 31:101-115. [PMID: 37304235 PMCID: PMC10208000 DOI: 10.32604/or.2023.028105] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 06/13/2023] Open
Abstract
LIN28B is an RNA-binding protein that targets a broad range of microRNAs and modulates their maturation and activity. Under normal conditions, LIN28B is exclusively expressed in embryogenic stem cells, blocking differentiation and promoting proliferation. In addition, it can play a role in epithelial-to-mesenchymal transition by repressing the biogenesis of let-7 microRNAs. In malignancies, LIN28B is frequently overexpressed, which is associated with increased tumor aggressiveness and metastatic properties. In this review, we discuss the molecular mechanisms of LIN28B in promoting tumor progression and metastasis in solid tumor entities and its potential use as a clinical therapeutic target and biomarker.
Collapse
Affiliation(s)
- TABEA GEWALT
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - KA-WON NOH
- Institute for Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - LYDIA MEDER
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Tian Y, Chen Z, Wu P, Zhang D, Ma Y, Liu X, Wang X, Ding D, Cao X, Yu Y. MIR497HG-Derived miR-195 and miR-497 Mediate Tamoxifen Resistance via PI3K/AKT Signaling in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204819. [PMID: 36815359 PMCID: PMC10131819 DOI: 10.1002/advs.202204819] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/14/2022] [Indexed: 05/28/2023]
Abstract
Tamoxifen is commonly used for the treatment of patients with estrogen receptor-positive (ER+) breast cancer, but the acquired resistance to tamoxifen presents a critical challenge of breast cancer therapeutics. Recently, long noncoding RNA MIR497HG and its embedded miR-497 and miR-195 are proved to play significant roles in many types of human cancers, but their roles in tamoxifen-resistant breast cancer remain unknown. The results indicate that MIR497HG deficiency induces breast cancer progression and tamoxifen resistance by inducing downregulation of miR-497/195. miR-497/195 coordinately represses five positive PI3K-AKT regulators (MAP2K1, AKT3, BCL2, RAF1, and CCND1), resulting in inhibition of PI3K-AKT signaling, and PI3K-AKT inhibition in tamoxifen-resistant cells restored tamoxifen responsiveness. Furthermore, ER α binds the MIR497HG promoter to activate its transcription in an estrogen-dependent manner. ZEB1 interacts with HDAC1/2 and DNMT3B at the MIR497HG promoter, resulting in promoter hypermethylation and histone deacetylation. The findings reveal that ZEB1-induced MIR497HG depletion contributes to breast cancer progression and tamoxifen resistance through PI3K-AKT signaling. MIR497HG can be used as a biomarker for predicting tamoxifen sensitivity in patients with ER+ breast cancer.
Collapse
Affiliation(s)
- Yao Tian
- The First Department of Breast CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Cancer Prevention and TherapyTianjin300060China
- Tianjin's Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical UniversityMinistry of EducationTianjin300060China
- Department of General SurgeryTianjin Medical University General HospitalTianjin300052China
| | - Zhao‐Hui Chen
- The First Department of Breast CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Cancer Prevention and TherapyTianjin300060China
- Tianjin's Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical UniversityMinistry of EducationTianjin300060China
| | - Peng Wu
- The First Department of Breast CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Cancer Prevention and TherapyTianjin300060China
- Tianjin's Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical UniversityMinistry of EducationTianjin300060China
| | - Di Zhang
- The First Department of Breast CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Cancer Prevention and TherapyTianjin300060China
- Tianjin's Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical UniversityMinistry of EducationTianjin300060China
| | - Yue Ma
- The First Department of Breast CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Cancer Prevention and TherapyTianjin300060China
- Tianjin's Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical UniversityMinistry of EducationTianjin300060China
| | - Xiao‐Feng Liu
- Key Laboratory of Cancer Prevention and TherapyTianjin300060China
- Tianjin's Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical UniversityMinistry of EducationTianjin300060China
| | - Xin Wang
- The First Department of Breast CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Cancer Prevention and TherapyTianjin300060China
- Tianjin's Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical UniversityMinistry of EducationTianjin300060China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Xu‐Chen Cao
- The First Department of Breast CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Cancer Prevention and TherapyTianjin300060China
- Tianjin's Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical UniversityMinistry of EducationTianjin300060China
| | - Yue Yu
- The First Department of Breast CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Cancer Prevention and TherapyTianjin300060China
- Tianjin's Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical UniversityMinistry of EducationTianjin300060China
| |
Collapse
|
14
|
Bai J, Zhang X, Jiang F, Shan H, Gao X, Bo L, Zhang Y. A Feedback Loop of LINC00665 and the Wnt Signaling Pathway Expedites Osteosarcoma Cell Proliferation, Invasion, and Epithelial-Mesenchymal Transition. Orthop Surg 2022; 15:286-300. [PMID: 36387061 PMCID: PMC9837296 DOI: 10.1111/os.13532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Osteosarcoma (OS) is a malignant tumor with frequent occurrence among teenagers. Long non-coding RNAs (lncRNAs) play pro-cancer roles in many tumors. The purpose of this study was to figure out the functional role of a novel lncRNA long intergenic non-protein coding RNA 665 (LINC00665) in OS by observing the OS cell behaviors. METHODS Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to analyze LINC00665 expression in OS cells. Cell function assays assessed the impacts of LINC00665 on OS cell phenotype. Immunofluorescence and western blot analyzed the function of LINC00665 on epithelial-mesenchymal transition (EMT) in OS. Moreover, mechanistic assays analyzed the downstream mechanism of LINC00665 in OS cells. RESULTS LINC00665 was significantly up-regulated in OS cells. LINC00665 silence facilitated OS cell proliferation, migration, invasion, and EMT while inhibiting cell apoptosis. Mechanically, LINC00665 acted as a competing endogenous RNA (ceRNA) to sponge miR-1249-5p and thereby modulated Wnt family member 2B (WNT2B) to activate Wnt pathway. Wnt pathway activated LINC00665 expression transcriptionally. CONCLUSIONS Our study uncovered the cancer-promoting role of LINC00665 in OS, and the feedback loop of LINC00665/miR-1249-5p/WNT2B/Wnt might be a potential target for OS treatment.
Collapse
Affiliation(s)
- Jinyu Bai
- Department of Orthopaedicsthe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiao Zhang
- Department of Traditional Chinese Medicine Orthopaedicsthe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Fengxian Jiang
- Department of Orthopaedicsthe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Huajian Shan
- Department of Orthopaedicsthe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiang Gao
- Department of Orthopaedicsthe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lin Bo
- Department of Rheumatologythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yingzi Zhang
- Department of Orthopaedicsthe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
15
|
A Concise Review on Dysregulation of LINC00665 in Cancers. Cells 2022; 11:cells11223575. [PMID: 36429005 PMCID: PMC9688310 DOI: 10.3390/cells11223575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Long Intergenic Non-Protein Coding RNA 665 (LINC00665) is an RNA gene located on the minus strand of chromosome 19. This lncRNA acts as a competing endogenous RNA for miR-4458, miR-379-5p, miR-551b-5p, miR-3619-5p, miR-424-5p, miR-9-5p, miR-214-3p, miR-126-5p, miR-149-3p, miR-379-5p, miR-665, miR-34a-5p, miR-186-5p, miR-138-5p, miR-181c-5p, miR-98, miR-195-5p, miR-224-5p, miR-3619, miR-708, miR-101, miR-1224-5p, miR-34a-5p, and miR-142-5p. Via influencing expression of these miRNAs, it can enhance expression of a number of oncogenes. Moreover, LINC00665 can influence activity of Wnt/β-Catenin, TGF-β, MAPK1, NF-κB, ERK, and PI3K/AKT signaling. Function of this lncRNA has been assessed through gain-of-function tests and/or loss-of-function studies. Furthermore, diverse research groups have evaluated its expression levels in tissue samples using microarray and RT-qPCR techniques. In this manuscript, we have summarized the results of these studies and categorized them in three sections, i.e., cell line studies, animal studies, and investigations in clinical samples.
Collapse
|
16
|
Zhou MF, Wang W, Wang L, Tan JD. LINC00536 knockdown inhibits breast cancer cells proliferation, invasion, and migration through regulation of the miR-4282/centromere protein F axis. Kaohsiung J Med Sci 2022; 38:1037-1047. [PMID: 36053930 DOI: 10.1002/kjm2.12583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) poses a huge threat to women's health. Growing evidence has shown lncRNAs play critical roles in BC progression. However, the effect of LINC00536 in BC remains unknown. LINC00536, miR-4282, and centromere protein F (CENPF) expressions in BC cells were determined using qPCR assay. Colony formation assay was employed to evaluate the cell proliferation of BC cells. Besides, cell migration and invasion were evaluated using the transwell assay. FISH assay was employed to analyze LINC00536 and miR-4282 locations in BC cells. Additionally, dual luciferase reporter gene assay was performed to verify the binding relationships between LINC00536 and miR-4282, miR-4282 and CENPF. Here, our results displayed that LINC00536 and CENPF were overexpressed in BC cells, while miR-4282 was downregulated. LINC00536 could negatively regulate miR-4282 expression via directly binding to miR-4282. LINC00536 silence suppressed the proliferation, migration, and invasion of BC cells, which was abolished by miR-4282 inhibition. Additionally, miR-4282 could negatively regulate CENPF expression via directly binding to CENPF. MiR-4282 overexpression suppressed BC development, which was abolished by CENPF overexpression. Finally, we proved that LINC00536 silencing suppressed BC growth via regulating the miR-4282/CENPF axis in vivo. Our research displayed that LINC00536 acted as an oncogene in BC. LINC00536-enhanced BC cell proliferation, migration, and invasion. Moreover, LINC00536 functioned as a ceRNA to exert malignant characteristics in BC via the miR-4282-CENPF axis. Collectively, our results demonstrated that the LINC00536-miR-4282-CENPF axis was a critical player in BC development and was a promising target for BC therapy.
Collapse
Affiliation(s)
- Mei-Feng Zhou
- Department of Medical Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| | - Wei Wang
- Department of General Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| | - Lin Wang
- Department of Medical Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| | - Jin-Dian Tan
- Department of Orthopaedic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| |
Collapse
|
17
|
Zhu H, Xu X, Zheng E, Ni J, Jiang X, Yang M, Zhao G. LncRNA RP11‑805J14.5 functions as a ceRNA to regulate CCND2 by sponging miR‑34b‑3p and miR‑139‑5p in lung adenocarcinoma. Oncol Rep 2022; 48:161. [PMID: 35866595 PMCID: PMC9350987 DOI: 10.3892/or.2022.8376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/08/2021] [Indexed: 11/05/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common lung cancer with high incidence. The prognosis of LUAD is poor due to its aggressive behavior. Long non‑coding RNAs (lncRNAs) have been reported as a key modulator on LUAD progression. Therefore, the present study aimed to clarify the molecular mechanism of lncRNAs in LUAD development. The expression of lncRNA RP11‑805J14.5 (RP11‑805J14.5) in LUAD tissues and cells was quantified based on the data in The Cancer Genome Atlas (TCGA). Cell viability was determined using Cell Counting Kit‑8 method. Apoptotic cells were sorted and determined by flow cytometry. Cell migration and invasion abilities were detected by the Transwell assay. Luciferase reporter experiment and RNA pull‑down assay were utilized to determine the interactions between RP11‑805J14.5, microRNA (miR)‑34b‑3p, miR‑139‑5p, and cyclin D2 (CCND2). A xenograft tumor was established to determine tumor growth in vivo. RP11‑805J14.5 was highly expressed in LUAD and associated with poor survival of LUAD patients. Knockdown of RP11‑805J14.5 suppressed LUAD cell growth, invasion, migration and tumor growth, indicating that RP11‑805J14.5 is an important regulator of LUAD. Our study demonstrated that the regulation of RP11‑805J14.5 on LUAD was mediated by CCND2 whose expression was regulated by sponging miR‑34b‑3p and miR‑139‑5p. The expression of RP11‑805J14.5 was increased in LUAD, and the knockdown of RP11‑805J14.5 expression suppressed LUAD cell growth, invasion and migration by downregulating CCND2 by sponging miR‑34b‑3p and miR‑139‑5p, indicating that RP11‑805J14.5 could be a prospective target for LUAD therapy.
Collapse
Affiliation(s)
- Huangkai Zhu
- Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiang Xu
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Enkuo Zheng
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Junjun Ni
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Xu Jiang
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Minglei Yang
- Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Guofang Zhao
- Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
18
|
Zhang M, Wu L, Wang X, Chen J. lncKRT16P6 promotes tongue squamous cell carcinoma progression by sponging miR‑3180 and regulating GATAD2A expression. Int J Oncol 2022; 61:111. [PMID: 35904180 PMCID: PMC9374467 DOI: 10.3892/ijo.2022.5401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/05/2022] [Indexed: 11/05/2022] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is characterized by a poor prognosis and its 5‑year overall survival rate has not improved significantly. However, the precise molecular mechanisms underlying TSCC remain largely unknown. Through RNA screening, the present study identified a novel long noncoding RNA (lncRNA), keratin 16 pseudogene 6 (lncKRT16P6), which was upregulated in TSCC tissues and cell lines and associated with TSCC tumor stage and differentiation grade. Inhibition of lncKRT16P6 expression reduced TSCC cell migration, invasion and proliferation. lncKRT16P6 sponged microRNA (miR)‑3180 and upregulated GATA zinc finger domain containing 2A (GATAD2A) expression. miR‑3180 inhibition reversed the lncKRT16P6 depletion‑induced attenuation of TSCC malignancy and GATAD2A depletion reversed the miR‑3180 silencing‑induced enhancement of TSCC malignancy. In summary, the present study revealed a potential competitive endogenous RNA (ceRNA) regulatory pathway in which lncKRT16P6 modulates GATAD2A expression by binding miR‑3180, ultimately promoting tumorigenesis and metastasis in TSCC. Therefore, lncKRT16P6 may be used as a prognostic biomarker and therapeutic target for clinical intervention in TSCC.
Collapse
Affiliation(s)
- Mi Zhang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Ling Wu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Xudong Wang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
19
|
Dong Y, Yu C, Ma N, Xu X, Wu Q, Lu H, Gong L, Chen J, Ren J. MicroRNA-379-5p regulates free cholesterol accumulation and relieves diet induced-liver damage in db/db mice via STAT1/HMGCS1 axis. MOLECULAR BIOMEDICINE 2022; 3:25. [PMID: 35945406 PMCID: PMC9363541 DOI: 10.1186/s43556-022-00089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
Lipotoxicity induced by the overload of lipid in the liver, especially excess free cholesterol (FC), has been recognized as one of driving factors in the transition from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH). MicroRNA (miR)-379-5p has been reported to play regulatory roles in hepatic triglyceride homeostasis, but the relationship of miR-379-5p and hepatic cholesterol homeostasis has never been touched. In the current study, we found that hepatic miR-379-5p levels were decreased obviously in NAFLD patients and model mice compared with their controls. Moreover, miR-379-5p was discovered to be able to inhibit intracellular FC accumulation and alleviate mitochondrial damage induced by palmitic acid (PA) in vitro. Furthermore, overexpression of miR-379-5p in HFHC-fed db/db mice could reduce the level of hepatic total cholesterol (TC) and FC, and ameliorate hepatic injury reflected by the lower serum alanine aminotransferase (ALT) and aspartate transaminase (AST). Subsequently, by combining spectrometry (MS) and luciferase assay, we identified miR-379-5p suppressed STAT1 through transcriptional and translational regulation. Finally, we confirmed that STAT1 was a transcriptional factor of HMGCS1. In conclusion, miR-379-5p inhibits STAT1 expression and regulates cholesterol metabolism through the STAT1/HMGCS1 axis, suggesting miR-379-5p might be applied to improve lipotoxicity in the future.
Collapse
|
20
|
Xu LM, Yuan YJ, Yu H, Wang S, Wang P. LINC00665 knockdown confers sensitivity in irradiated non-small cell lung cancer cells through the miR-582-5p/UCHL3/AhR axis. J Transl Med 2022; 20:350. [PMID: 35918714 PMCID: PMC9344728 DOI: 10.1186/s12967-022-03516-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background The resistance to radiotherapy remains a major obstacle that limits the efficacy of radiotherapy in non-small cell lung cancer (NSCLC). This study aims to illustrate the molecular mechanism underlying the role of LINC00665 in the radiosensitivity of NSCLC, which involves ubiquitin C-terminal hydrolase L3 (UCHL3). Methods and results The expression of UCHL3 was determined in clinical tissue samples collected from NSCLC patients and NSCLC cell lines. We found that UCHL3 overexpression occurred in both NSCLC tissues and cells, associated with poor prognosis in NSCLC patients. Mechanistically, UCHL3 stabilized aryl hydrocarbon receptor (AhR) protein through deubiquitination, thereby promoting PD-L1 expression. UCHL3 reduced the radiosensitivity of NSCLC cells by stabilizing AhR protein. Upstream microRNAs (miRNAs) and lncRNAs of UCHL3 were predicted by microarray profiling and validated by functional experiments. LINC00665 functioned as a sponge of miR-582-5p and thus up-regulated the expression of the miR-582-5p target UCHL3. Gain- and loss- of function assays were performed to assess the effects of LINC00665, UCHL3 and miR-582-5p on the in vitro cell malignant behaviors and immune escape as well as on the in vivo tumor growth. Silencing LINC00665 or overexpressing miR-582-5p enhanced the sensitivity of NSCLC cells to radiotherapy. LINC00665 augmented the immune escape of NSCLC cells in vitro and in vivo through stabilizing AhR protein via the miR-582-5p/UCHL3 axis. Conclusions Overall, LINC00665 reduced the radiosensitivity of NSCLC cells via stabilization of AhR through the miR-582-5p/UCHL3 axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03516-2.
Collapse
Affiliation(s)
- Li-Ming Xu
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Ya-Jing Yuan
- Department of Anesthesia, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Hao Yu
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Shuai Wang
- Department of Hepatobiliary Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Ping Wang
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
21
|
Zhu J, Weng Y, Wang F, Zhao J. LINC00665/miRNAs axis-mediated collagen type XI alpha 1 correlates with immune infiltration and malignant phenotypes in lung adenocarcinoma. Open Med (Wars) 2022; 17:1259-1274. [PMID: 35892083 PMCID: PMC9281593 DOI: 10.1515/med-2022-0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 11/15/2022] Open
Abstract
Collagen type XI alpha 1 (COL11A1) as an oncogene has been reported in several malignant tumors. Herein, we aimed to explore the function of COL11A1 and its upstream regulators in lung adenocarcinoma (LUAD). COL11A1 expression prognostic significance, gene ontology, Kyoto Encyclopedia of Genes and Genomes, and immune infiltration were explored in LUAD. In vitro experimental measurements were implemented to validate the function of COL11A1 and LINC00665 in LUAD cells. Our study demonstrated that LINC00665-2 and COL11A1 were significantly upregulated in LUAD tissues compared with nontumor tissues. COL11A1 was positively correlated with multiple immune cell enrichment, suggesting that COL11A1 may be a prospective therapeutic target to enhance the efficacy of immunotherapy in LUAD. A regulatory mechanism LINC00665-2/microRNAs (miRNAs)/COL11A1 axis was identified to facilitate the tumorigenesis of LUAD. si-LINC00665 transfection induced the inhibition of growth and migration, and apoptosis was reversed by the overexpression of COL11A1 in LUAD cells. In conclusion, LINC00665 as a competing endogenous RNA sponging multiple miRNAs to modulate COL11A1 expression in LUAD, suggesting that LINC00665/miRNAs/COL11A1 axis may contribute to the pathogenesis of LUAD.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Yuan Weng
- Department of Thoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Fudong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, No. 899 Pinghai Road, Gusu District, Suzhou 215006, Jiangsu Province, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Gusu District, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
22
|
Liu Y, Zeng S, Wu M. Novel insights into noncanonical open reading frames in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188755. [PMID: 35777601 DOI: 10.1016/j.bbcan.2022.188755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022]
Abstract
With technological advances, previously neglected noncanonical open reading frames (nORFs) are drawing ever-increasing attention. However, the translation potential of numerous putative nORFs remains elusive, and the functions of noncanonical peptides have not been systemically summarized. Moreover, the relationship between noncanonical peptides and their counterpart protein or RNA products remains elusive and the clinical implementation of noncanonical peptides has not been explored. In this review, we highlight how recent technological advances such as ribosome profiling, bioinformatics approaches and CRISPR/Cas9 facilitate the research of noncanonical peptides. We delineate the features of each nORF category and the evolutionary process underneath the nORFs. Most importantly, we summarize the diversified functions of noncanonical peptides in cancer based on their subcellular location, which reflect their extensive participation in key pathways and essential cellular activities in cancer cells. Meanwhile, the equilibrium between noncanonical peptides and their corresponding transcripts or counterpart products may be dysregulated under pathological states, which is essential for their roles in cancer. Lastly, we explore their underestimated potential in clinical application as diagnostic biomarkers and treatment targets against cancer.
Collapse
Affiliation(s)
- Yihan Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Minghua Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
23
|
Tian C, Wang Y, Song X. Prognostic Characteristics of Immune-Related Genes and the Related Regulatory Axis in Patients With Stage N+M0 Breast Cancer. Front Oncol 2022; 12:878219. [PMID: 35785160 PMCID: PMC9243266 DOI: 10.3389/fonc.2022.878219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BRCA) has the highest incidence rate among female tumours. The function of the immune system affects treatment efficacy and prognosis in patients with BRCA. However, the exact role of immune-related genes (IRGs) in stage N+M0 BRCA is unknown. We constructed a predictive risk scoring model with five IRGs (CDH1, FGFR3, INHBA, S100B, and SCG2) based on the clinical, mutation, and RNA sequencing data of individuals with stage N+M0 BRCA sourced from The Cancer Genome Atlas. Results from the Shandong Cancer Hospital and Institute validation cohort suggested that regardless of clinical stage, tumour size, or the number of lymph node metastases, this model was able to reliably discriminate low-risk patients from high-risk ones and assess the prognosis of patients with stage N+M0 BRCA, and low-risk patients could benefit more from immunotherapy than high-risk patients. In addition, significant inter-group variations in immunocyte infiltration and the tumour microenvironment were observed. Moreover, risk score and age were found to be independent factors in multivariate COX regression analysis, which influenced the outcome of patients with stage N+M0 BRCA. Based on the above findings, we plotted a prognostic nomogram. Finally, we constructed a lncRNA KCNQ1OT1-LINC00665-TUG1/miR-9-5p/CDH1 regulatory axis of the ceRNA network to explore the mechanism of BRCA progression. In summary, we conducted a systemic and extensive bioinformatics investigation and established an IRG-based prognostic scoring model. Finally, we constructed a ceRNA regulatory axis that might play a significant role in BRCA development. More research is required to confirm this result. Scoring system-based patient grouping can help predict the outcome of patients with stage N+M0 BRCA more effectively and determine their sensitivity to immunotherapies, which will aid the development of personalised therapeutic strategies and inspire the research and development of novel medications.
Collapse
Affiliation(s)
- Chonglin Tian
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yongsheng Wang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Yongsheng Wang, ; Xianrang Song,
| | - Xianrang Song
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Yongsheng Wang, ; Xianrang Song,
| |
Collapse
|
24
|
Zhang C, Xu SN, Li K, Chen JH, Li Q, Liu Y. The Biological and Molecular Function of LINC00665 in Human Cancers. Front Oncol 2022; 12:886034. [PMID: 35664776 PMCID: PMC9161781 DOI: 10.3389/fonc.2022.886034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are more than 200 nucleotides in length and are implicated in the development of human cancers, without protein-coding function. Mounting evidence indicates that cancer initiation and progression are triggered by lncRNA dysregulation. Recently, a growing number of studies have found that LINC00665, a long intergenic non-protein coding RNA, may be associated with various cancers, including gastrointestinal tumors, gynecological tumors, and respiratory neoplasms. LINC00665 was reported to be significantly dysregulated in cancers and has an important clinical association. It participates in cell proliferation, migration, invasion, and apoptosis through different biological pathways. In this review, we summarize the current findings on LINC00665, including its biological roles and molecular mechanisms in various cancers. LINC00665 may be a potential prognostic biomarker and novel therapeutic target for cancers.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Shu-Ning Xu
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ke Li
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jing-Hong Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Qun Li
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ying Liu
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
25
|
Yang B, Su K, Sha G, Bai Q, Sun G, Chen H, Xie H, Jiang X. LINC00665 interacts with BACH1 to activate Wnt1 and mediates the M2 polarization of tumor-associated macrophages in GC. Mol Immunol 2022; 146:1-8. [PMID: 35395473 DOI: 10.1016/j.molimm.2022.03.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/27/2022] [Indexed: 01/25/2023]
Abstract
Gastric cancer (GC) remains one of the prevalent causes of cancer-related deaths globally. Long non-coding RNAs (lncRNAs) have been associated with different cancers. The polarization of macrophages towards the M2 (alternatively activated) phenotype promotes immunologic tolerance and can induce gastric tumorigenesis. Thus far, lncRNAs have been shown to modulate the differentiation of immune cells. Here, we investigated the biological effects of LINC00665 on the progression of GC and explored the mechanisms underlying its ability to mediate the polarization of macrophages towards the M2 phenotype. We report that the levels of LINC00665 were increased in GC tissues. Furthermore, this increase in LINC00665 expression could be associated with decreased overall survival (OS), progression-free survival (PFS), and post-progression survival (PPS). Using cell-based macrophage polarization models, we demonstrated that LINC00665 upregulation in GC cells facilitated the polarization of macrophages towards the M2 but not M1 (classically activated) phenotype. Furthermore, the loss of LINC00665 prevented the M2 polarization of macrophages. Mechanically, we identified that Wnt1 was the downstream target of LINC00665. Additionally, LINC00665 could directly interact with the transcription factor BTB domain and CNC homology 1 (BACH1). The interaction between LINC00665 and BACH1 resulted in the activation and binding of BACH1 to the Wnt1 promoters. Furthermore, BACH1 silencing could inhibit GC progression, which highlighted a crucial role for BACH1 in LINC00665-mediated Wnt1 activation. In addition, genetic Wnt1 overexpression effectively abolished the repression of Wnt signaling after BACH1 depletion and mediated GC development by supporting M2 macrophage polarization. In conclusion, we report that LINC00665 modulates M2 macrophage polarization and suggest that it may facilitate macrophage-dependent GC progression.
Collapse
Affiliation(s)
- Bo Yang
- Department of Oncology, Suqian Hospital of Traditional Chinese Medicine, Su qian, Jiang su, China
| | - Kun Su
- Department of Oncology, Suqian Hospital of Traditional Chinese Medicine, Su qian, Jiang su, China
| | - Guanyu Sha
- Radiation Treatment Center, Suqian Hospital Affiliated to Xuzhou Medical University, Su qian, Jiang su, China
| | - Qingqing Bai
- Department of Oncology, Suqian Hospital of Traditional Chinese Medicine, Su qian, Jiang su, China
| | - Gengxin Sun
- Department of Oncology, Suqian Hospital of Traditional Chinese Medicine, Su qian, Jiang su, China
| | - Huidong Chen
- Department of Oncology, Suqian Hospital of Traditional Chinese Medicine, Su qian, Jiang su, China
| | - Hongmei Xie
- Department of Oncology, Suqian Hospital of Traditional Chinese Medicine, Su qian, Jiang su, China
| | - Xuan Jiang
- Department of Oncology, Huai'an Second People's Hospital, Affiliated to Xuzhou Medical University, Huai an, Jiang su, China.
| |
Collapse
|
26
|
Wang Z, Tian Q, Tian Y, Zheng Z. MicroRNA-122-3p plays as the target of long non-coding RNA LINC00665 in repressing the progress of arthritis. Bioengineered 2022; 13:13328-13340. [PMID: 35635065 PMCID: PMC9275898 DOI: 10.1080/21655979.2022.2081757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in many diseases, including rheumatoid arthritis (RA). However, the mechanisms underlying the effects of miR-122-3p-3p on RA are not distinct and require further investigation. Patients with RA and healthy controls were recruited to analyze the miR-122-3p levels. The MH7A cells were stimulated with interleukin (IL)-1β to mimic the local inflammation of RA. Cell Counting Kit-8 (CCK-8) and flow cytometry were performed to measure the viability and apoptosis of MH7A cells. Diana tools and TargetScan were used to predict the target relationships. Luciferase reporter assay was used to validate the target relationship. miR-122-3p is downregulated in RA patients and IL-1β-stimulated MH7A cells. miR-122-3p suppresses MH7A cell viability and promotes MH7A cell apoptosis. miR-122-3p targets LINC00665. LINC00665 eliminates the inhibitory effect of miR-122-3p on IL-1β-stimulated MH7A cells. Eukaryotic translation initiation factor 2 alpha kinase 1 (EIF2AK1) targets miR-122-3p. In addition, EIF2AK1 is highly expressed in patients with RA. In addition, EIF2AK1 activates the mTOR signaling pathway. miR-122-3p represses RA progression by reducing cell viability and increasing synoviocyte apoptosis.
Collapse
Affiliation(s)
- Zhiyan Wang
- Department of Rheumatology, Shouguang People’s Hospital, Shouguang, Shandong, P.R. China
| | - Qijun Tian
- Trauma orthopedics, The No. 4 hospital of Jinan, Jinan, Shandong, P.R. China
| | - Yumei Tian
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, P.R. China
| | - Zhonghua Zheng
- Department of Teaching Supervision and Evaluation, JILin Medical University, Jilin, Jilin, P.R. China
| |
Collapse
|
27
|
lncRNA LUCAT1/ELAVL1/LIN28B/SOX2 Positive Feedback Loop Promotes Cell Stemness in Triple-Negative Breast Cancer. Breast J 2022; 2022:7689718. [PMID: 35711895 PMCID: PMC9187271 DOI: 10.1155/2022/7689718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
Background. Triple-negative breast cancer (TNBC), as a subtype of breast cancer (BC), features an aggressive nature. Long noncoding RNAs (lncRNAs) are proved to get involved in the processes of cancers. lncRNA lung cancer associated transcript 1 (LUCAT1) has been reported in multiple cancers. The role of LUCAT1 in TNBC and its latent regulatory mechanism were investigated. Methods. RT-qPCR was performed to examine LUCAT1 expression. Functional experiments were implemented to disclose the role of LUCAT1 in TNBC. The underlying regulatory mechanism of LUCAT1 in TNBC was explored by chromatin immunoprecipitation (ChIP), RNA-binding protein immunoprecipitation (RIP), luciferase reporter, and RNA pull-down assays. Results. LUCAT1 is significantly overexpressed in TNBC cells. LUCAT1 interference impedes cell stemness in TNBC cells. SRY-box transcription factor 2 (SOX2) is an active transcription factor of LUCAT1. LUCAT1 recruits ELAV-like RNA binding protein 1 (ELAVL1) protein to stabilize lin-28 homolog B (LIN28B) mRNA, thereby further modulating SOX2 expression, which forms a positive feedback loop. Conclusion. The lncRNA LUCAT1/ELAVL1/LIN28B/SOX2 positive feedback loop promotes cell stemness in TNBC. The exploration of the mechanisms underlying TNBC stemness might be beneficial to TNBC treatment.
Collapse
|
28
|
Aini S, Bolati S, Ding W, Liu S, Su P, Aili S, Naman Y, Xuekelaiti K. LncRNA SNHG10 suppresses the development of doxorubicin resistance by downregulating miR-302b in triple-negative breast cancer. Bioengineered 2022; 13:11430-11439. [PMID: 35506202 PMCID: PMC9275935 DOI: 10.1080/21655979.2022.2063592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Unlike other types of breast cancer, triple negative breast cancer (TNBC) does not respond to therapies targeting human epidermal growth factor receptor-2 (HER2) or hormone therapy, and the prognosis of patients with TNBC is usually poor. The role of long non-coding RNA (lncRNA) small nucleolar RNA host gene 10 (SNHG10) has been investigated in many types of cancer, but its role in TNBC is unknown. This study aimed to explore the role of SNHG10 in TNBC in the context of doxorubicin treatment, a common therapy for TNBC. Analysis of the TCGA dataset revealed the downregulation of SNHG10 in TNBC. The downregulation of SNHG10 of TNBC in TNBC was further confirmed by detecting its expression in 60 patients with TNBC by qPCR. The expression of SNHG10 was further downregulated after doxorubicin treatment. In TNBC, microRNA-302b (miR-302b) was downregulated and was positively correlated with SNHG10. In TNBC cells, overexpression of SNHG10 resulted in upregulation of miR-302b, and methylation-specific PCR analysis showed that SNHG10 negatively regulates the methylation of miR-302b. In addition, doxorubicin treatment resulted in the downregulation of SNHG10 in TNBC cells, and overexpression of SNHG10 and miR-302b promoted apoptosis of doxorubicin-treated TNBC cells. Furthermore, overexpression of both SNHG10 and miR-302b had a stronger effect on apoptosis than that of overexpression of SNHG10 alone. Our study showed that SNHG10 could inhibit the development of resistance to doxorubicin by upregulating miR-302b in TNBC through methylation. Our findings suggested that SNHG10 might serve as a molecular target for intervening in TBNC metastasis.
Collapse
Affiliation(s)
| | | | - Wei Ding
- Department of Mammary Gland and Thyroid Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Siyin Liu
- Department of Mammary Gland and Thyroid Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Pengcheng Su
- Department of Mammary Gland and Thyroid Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Saiding Aili
- Department of Mammary Gland and Thyroid Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Yimin Naman
- Department of Mammary Gland and Thyroid Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Kuerban Xuekelaiti
- Department of Mammary Gland and Thyroid Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| |
Collapse
|
29
|
LINC00665: An Emerging Biomarker for Cancer Diagnostics and Therapeutics. Cells 2022; 11:cells11091540. [PMID: 35563845 PMCID: PMC9102468 DOI: 10.3390/cells11091540] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Long intergenic noncoding RNA 00665 (LINC00665) is located on human chromosome 19q13.12. LINC00665 was upregulated in eighteen cancers and downregulated in two cancers. LINC00665 not only inhibits 25 miRNAs but also directly affects the stability of ten protein-coding genes. Notably, LINC00665 also encodes a micro-peptide CIP2A-BP that promotes triple-negative breast cancer progression. LINC00665 can participate in five signaling pathways to regulate cancer progression, including the Wnt/β-catenin signaling pathway, TGF-β signaling pathway, NF-κB signaling pathway, PI3K/AKT signaling pathway, and MAPK signaling pathway. Aberrant expression of LINC00665 in breast cancer, gastric cancer, and hepatocellular carcinoma can be used for disease diagnosis. In addition, aberrant expression of LINC00665 is closely associated with clinicopathological features and poor prognosis of various cancers. LINC00665 is closely associated with the effects of anticancer drugs, including gefitinib and cisplatin in non-small cell lung cancer, gemcitabine in cholangiocarcinoma, and cisplatin-paclitaxel in breast cancer. This work systematically summarizes the diagnostic and prognostic values of LINC00665 in various tumors, and comprehensively analyzes the molecular regulatory mechanism related to LINC00665, which is expected to provide clear guidance for future research.
Collapse
|
30
|
Zhu J, Zhang Y, Chen X, Bian Y, Li J, Wang K. The Emerging Roles of LINC00665 in Human Cancers. Front Cell Dev Biol 2022; 10:839177. [PMID: 35356290 PMCID: PMC8959703 DOI: 10.3389/fcell.2022.839177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs that have more than 200 nucleotides and can participate in the regulation of gene expression in various ways. An increasing number of studies have shown that the dysregulated expression of lncRNAs is related to the occurrence and progression of human cancers. LINC00665 is a novel lncRNA, which is abnormally expressed in various human cancers, such as lung cancer, breast cancer, prostate cancer, and glioma. LINC00665 functions in many biological processes of tumor cells, such as cell proliferation, migration, invasion, angiogenesis, and metabolism, and is related to the clinicopathological characteristics of cancer patients. LINC00665 can play biological functions as a ceRNA, directly binding and interacting with proteins, and as an upstream molecule regulating multiple signaling pathways. In this review, we comprehensively summarize the expression level, function, and molecular mechanisms of LINC00665 in different human cancers and emphasize that LINC00665 is a promising new diagnostic, prognostic biomarker, and therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | - Juan Li
- *Correspondence: Keming Wang, ; Juan Li,
| | | |
Collapse
|
31
|
Wang B, Wang M, Jia S, Li T, Yang M, Ge F. Systematic Survey of the Regulatory Networks of the Long Noncoding RNA BANCR in Cervical Cancer Cells. J Proteome Res 2022; 21:1137-1152. [DOI: 10.1021/acs.jproteome.2c00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- The Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shuzhao Jia
- The Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
LIN28B Polymorphisms Confer a Higher Postoperative Recurrence Risk in Reproductive-Age Women with Endometrial Polyps. DISEASE MARKERS 2022; 2022:4824357. [PMID: 35273655 PMCID: PMC8902632 DOI: 10.1155/2022/4824357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022]
Abstract
The RNA-binding protein LIN28B is an important factor for cell proliferation. Because LIN28B polymorphisms have been shown to be relative with the recurrence of some hyperplastic diseases, we hypothesized that genetic variants of LIN28B gene were associated with postoperative recurrence risk in reproductive-age women with endometrial polyps (EP). In a hospital-based cohort of 351 reproductive female patients underwent hysteroscopic polypectomies between May 2018 and Jan 2020, we genotyped two common polymorphisms in LIN28B gene (rs369065 C > T and rs314280 A > G) and analyzed their associations with the risk of postoperative recurrence in multiple Cox regression model. When followed up to Jun 2021, carries of rs369065 TT genotype had an increased risk of polyp recurrence (adjusting hazard ratio [HR] = 1.883, 95% confidence interval [CI] = 1.033 − 3.434) and had a shorter time to recurrence (median time 352 vs. 342 days, log-rank P < 0.01), compared to the CC/CT genotype. Further stratification analysis showed that the increased risk of rs369065 TT genotype was more evident in patients who were older than 33 years (adjusted HR = 2.597, 95%CI = 1.037 − 6.505), had a single polyp (adjusted HR = 2.545, 95%CI = 1.059 − 6.113), and had smaller polyps (<1.2 cm, adjusted HR = 2.708, 95%CI = 1.042 − 7.043). However, no significant association between rs314280 A > G polymorphism and the risk of polyp recurrence was found. Our study suggests that rs369065 TT genotype of LIN28B gene is associated with an increased postoperative recurrence risk in EP patients, especially in those with fewer and smaller polyps. These findings implicate a precise choice of clinical counseling and decision making. Larger studies in different ethnic populations are warranted.
Collapse
|
33
|
Lin28B-high breast cancer cells promote immune suppression in the lung pre-metastatic niche via exosomes and support cancer progression. Nat Commun 2022; 13:897. [PMID: 35173168 PMCID: PMC8850492 DOI: 10.1038/s41467-022-28438-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/24/2022] [Indexed: 12/27/2022] Open
Abstract
The formation of pre-metastatic niche is a key step in the metastatic burden. The pluripotent factor Lin28B is frequently expressed in breast tumors and is particularly upregulated in the triple negative breast cancer subtype. Here, we demonstrate that Lin28B promotes lung metastasis of breast cancer by building an immune-suppressive pre-metastatic niche. Lin28B enables neutrophil recruitment and N2 conversion. The N2 neutrophils are then essential for immune suppression in pre-metastatic lung by PD-L2 up-regulation and a dysregulated cytokine milieu. We also identify that breast cancer-released exosomes with low let-7s are a prerequisite for Lin28B-induced immune suppression. Moreover, Lin28B-induced breast cancer stem cells are the main sources of low-let-7s exosomes. Clinical data further verify that high Lin28B and low let-7s in tumors are both indicators for poor prognosis and lung metastasis in breast cancer patients. Together, these data reveal a mechanism by which Lin28B directs the formation of an immune-suppressive pre-metastatic niche. The establishment of a pre-metastatic niche is a key step preceding metastasis formation. Here the authors show that tumor-intrinsic Lin28B, a RNA-binding protein, has an essential role in the formation of an immune-suppressive pre-metastatic niche, promoting lung metastasis of breast cancer.
Collapse
|
34
|
Cao W, Liu X, Su W, Liang H, Tang H, Zhang W, Huang S, Dang N, Qiao A. LINC00665 sponges miR-641 to promote the progression of breast cancer by targeting the SNF2-related CREBBP activator protein (SRCAP). Bioengineered 2022; 13:4573-4586. [PMID: 35152838 PMCID: PMC8974044 DOI: 10.1080/21655979.2022.2031402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The regulatory network of competing endogenous RNAs (ceRNA) exists widely in tumors and affects the expression of cancer-related genes, thus playing an important role in the development and prognosis of human tumors. In this research, we explored the role and mechanism of LINC00665 as a ceRNA in breast cancer. We analyzed the expression and targets of LINC00665 in breast cancer using bioinformatics, and detected their effects on breast cancer cells by CCK8, transwell, colony formation and flow cytometry assays. From our results, LINC00665 knockdown suppressed the proliferation, migration and invasion and induced the apoptosis through inactivating the AKT/mTOR signaling pathway in MCF7 and MDA-MB-231 cells. LINC00665 had five potential downstream target miRNAs (miR-542-3p, miR-624-5p, miR-641, miR-425-5p, and miR-30-3p). In dual-luciferase report gene assay, the fluorescence activity of cells transfected with miR-641 mimics decreased, and the expression of miR-641 decreased significantly after knocking down LINC00665. miR-641 mimics significantly inhibited cell proliferation and invasion in MCF7 and MDA-MB-231 cells. We detected five potential direct targets of miR-641 using qPCR (SRCAP, SIKE1, NADK, KHDC4, and HSPG2). SRCAP expression decreased significantly in miR-641 overexpression cells and the binding of SRCAP’s 3ʹUTR and miR-641 was further confirmed by dual-luciferase report gene assay. SRCAP blocked the proliferation and invasion inhibition induced by miR-641 or si-LINC00665 in MCF7 and MDA-MB-231 cells. In conclusion, LINC00665 could promote the survival and metastasis of breast cancer cells through sponging miR-641 and targeting SRCAP. This research provided new potential targets for targeted therapy in human breast cancer.
Collapse
Affiliation(s)
- Wen Cao
- Health College, Yantai Nanshan University, Yantai, Shandong, China
| | - Xiaojing Liu
- Department of Clinical Laboratory Medicine, Shandong University Qilu Hospital, Jinan, China
| | - Weijia Su
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hao Liang
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huiru Tang
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Weiliang Zhang
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuhong Huang
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Aiguo Qiao
- Health College, Yantai Nanshan University, Yantai, Shandong, China
| |
Collapse
|
35
|
Zhang Z, Lin J, Hu J, Liu L. Liquiritigenin Blocks Breast Cancer Progression by Inhibiting Connective Tissue Growth Factor Expression via Up-Regulating miR-383-5p. Int J Toxicol 2022; 41:5-15. [PMID: 35045746 DOI: 10.1177/10915818211059470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of this study was to investigate the effect of liquiritigenin (LQ) on breast cancer (BC) and its mechanism. After BC cell lines and normal mammary epithelial cells were cultured with LQ, CCK-8, and Scratch, Transwell assays and flow cytometry were applied to test the effect of LQ on cell proliferation, migration, invasion, and apoptosis. The effect of LQ on the expression of microRNA-383-5p (miR-383-5p) and connective tissue growth factor (CTGF) was measured by qRT-PCR and Western blotting. Bioinformatics prediction was used to evaluate the binding relationship between miR-383-5p and CTGF, which was verified by dual-luciferase reporter assay. After miR-383-5p and/or CTGF expression was upregulated through cell transfection, the relationship between miR-383-5p and CTGF, as well as their effects on BC, was further assessed. The results showed that LQ can significantly inhibit CTGF expression and the proliferative, migratory, and invasive abilities of BC cells, while facilitating apoptosis of BC cells and miR-383-5p expression. The inhibiting effect of LQ was dose-dependently enhanced in BC cells. Dual-luciferase reporter assay verified that miR-383-5p targeted CTGF. CTGF expression was inversely regulated by miR-383-5p. CTGF upregulation repressed the suppressive effect of miR-385-5p on BC cell development. In conclusion, LQ can inhibit CTGF expression by upregulating miR-383-5p, thereby inhibiting proliferative, migratory, and invasive abilities and promoting apoptosis of BC cells.
Collapse
Affiliation(s)
- Zhanwei Zhang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
- Department of Chinese Traditional Surgery, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Jie Lin
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Jinhui Hu
- Department of Breast Surgery, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Lifang Liu
- Department of Breast Surgery, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
36
|
Luo C, Lin K, Hu C, Zhu X, Zhu J, Zhu Z. LINC01094 promotes pancreatic cancer progression by sponging miR-577 to regulate LIN28B expression and the PI3K/AKT pathway. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:523-535. [PMID: 34631282 PMCID: PMC8479296 DOI: 10.1016/j.omtn.2021.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
The leading cause of death in pancreatic cancer (PC) patients is the progression of cancer metastasis. Recently, long non-coding RNAs (lncRNAs) have been shown to play an important role in regulating cancer cell proliferation and metastasis; however, its molecular basis in PC remains to be explored. In this study, we observed that LINC01094 was markedly overexpressed in PC tissues and was associated with poor patient prognosis. Downregulation of LINC01094 decreased the proliferation and metastasis of PC cells and inhibited tumorigenesis and metastasis in mouse xenografts. Mechanically, LINC01094 acted as an endogenous miR-577 sponge to increase the expression of its target gene, the RNA-binding protein lin-28 homolog B (LIN28B), by decoying the miR-577, thereby activating the PI3K/AKT pathway. Our findings suggest that LINC01094 plays critical roles in proliferation and metastasis of PC, implying that LINC01094 can be regarded as a new biomarker or therapeutic target for the treatment of PC.
Collapse
Affiliation(s)
- Chen Luo
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Medical College of Nanchang University, Nanchang, China
| | - Kang Lin
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Medical College of Nanchang University, Nanchang, China
| | - Cegui Hu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Medical College of Nanchang University, Nanchang, China
| | - Xiaojian Zhu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Medical College of Nanchang University, Nanchang, China
| | - Jinfeng Zhu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Medical College of Nanchang University, Nanchang, China
| | - Zhengming Zhu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Corresponding author: Zhengming Zhu, Department of General Surgery, Second Affiliation Hospital of Nanching University, Nanchang, China.
| |
Collapse
|
37
|
LINC00665 Targets miR-214-3p/MAPK1 Axis to Accelerate Hepatocellular Carcinoma Growth and Warburg Effect. JOURNAL OF ONCOLOGY 2021; 2021:9046798. [PMID: 34804162 PMCID: PMC8598336 DOI: 10.1155/2021/9046798] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
Inhibition of aerobic glycolysis is a hopeful method for cancer treatment. In this study, we aimed to explore LINC00665/miR-214-3p/MAPK1 role in regulating cell viability and aerobic glycolysis in hepatocellular carcinoma (HCC). The expressions of LINC00665 in 50 paired HCC tissues and normal tissues were determined by qRT-PCR. Pearson analysis was applied to evaluate the association between the expression levels of miR-214-3p, LINC00665, and MAPK1 in HCC tissues. The interactions between miR-214-3p and LINC00665 or MAPK1 were determined by luciferase reporter assay and RNA immunoprecipitation. CCK-8 and colony formation assays were used for cell viability evaluation. Lactate production, glucose consumption, and ATP levels were measured to assess Warburg effect. The results showed that LINC00665 was overexpressed in HCC, which positively associated with MAPK1 level and negatively associated with miR-214-3p level in HCC tissues. Overexpression of LINC00665 led to significant enhancements in cell viability and colony formation, whereas this effect was weakened when miR-214-3p was overexpressed or MAPK1 was downregulated. In addition, deletion of LINC00665 expression repressed tumor formation in vivo. Mechanically, LINC00665 increased MAPK1 expression through binding to miR-214-3p. Collectively, this study revealed that LINC00665 accelerated cell growth and Warburg effect through sponging miR-214-3p to increase MAPK1 expression in HCC.
Collapse
|
38
|
Yang Z, Hu S, He Y, Ji L. LINC00665 rescues bupivacaine induced neurotoxicity in human neural cell of SH-SY5Y through has-miR-34a-5p. Brain Res Bull 2021; 177:210-216. [PMID: 34626694 DOI: 10.1016/j.brainresbull.2021.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Excessive application of local anesthetics, bupivacaine (BUP) may induce neurotoxicity and lead to neurologic dysfunctions in human brains. Yet, the exact molecular mechanisms underlying BUP-induced neurotoxicity was not fully understood. In this study, we utilized an in vitro SH-SY5Y cell culture model to explore the functional mechanism of long intergenic non-protein coding RNA 665 (LINC00665) in regulating BUP-induced neurotoxicity. METHODS SH-SY5Y cells were induced with BUP in vitro, and their viability and apoptosis were monitored. BUP-induced LINC00665 expression was also monitored, by qRT-PCR. LINC00665 was then overexpressed in SH-SY5Y cells, and its effects on BUP-induced neurotoxicity were investigated. The downstream target transcript of LINC00665, human mature microRNA-34a-5p (hsa-miR-34a-5p) was investigated in BUP-induced SH-SY5Y cells. Co-regulation of LINC00665 / hsa-miR-132-3p epigenetic axis was further examined on BUP-induced apoptosis in SH-SY5Y cells. RESULTS BUP reduced cell viability, induced apoptosis and downregulated LINC00665 in SH-SY5Y cells. LINC00665 overexpression rescued BUP-induced neurotoxicity in SH-SY5Y cells. Hsa-miR-34a-5p expression was directly correlated with BUP treatment and LINC00665 overexpression in SH-SY5Y cells. Upregulating hsa-miR-34a-5p reversed the rescuing effects of LINC00665 on BUP-induced SH-SY5Y apoptosis. CONCLUSIONS BUP-induced neurotoxicity in human neural cells may be regulated by the epigenetic axis of LINC00665 / hsa-miR-34a-5p.
Collapse
Affiliation(s)
- Zhoujing Yang
- Anesthesiology & Perioperative Medicine Centre, Xi'an People's Hospital, Xi'an 710004, Shaanxi Province, China
| | - Sheng Hu
- Anesthesiology & Perioperative Medicine Centre, Xi'an People's Hospital, Xi'an 710004, Shaanxi Province, China
| | - Yinbin He
- Anesthesiology & Perioperative Medicine Centre, Xi'an People's Hospital, Xi'an 710004, Shaanxi Province, China
| | - Ling Ji
- Anesthesiology & Perioperative Medicine Centre, Xi'an People's Hospital, Xi'an 710004, Shaanxi Province, China.
| |
Collapse
|
39
|
Zheng S, Wang C, Yan H, Du Y. Blocking hsa_circ_0074027 suppressed non-small cell lung cancer chemoresistance via the miR-379-5p/IGF1 axis. Bioengineered 2021; 12:8347-8357. [PMID: 34592879 PMCID: PMC8806969 DOI: 10.1080/21655979.2021.1987053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cancer cell chemoresistance is the primary reason behind cancer treatment failure. Previous reports suggest that circular RNA (circRNA) hsa_circ_0074027 (HC0074027) is a crucial modulator of non-small cell lung cancer (NSCLC) disease progression. Herein, we delineated the underlying mechanism of HC0074027-regulated chemoresistance in NSCLC. We employed quantitative real-time polymerase chain reaction (qRT-PCR) or Elisa in the detection of HC0074027, micoRNA-379-5p (miR-379-5p), and insuline-like growth factor I (IGF1) expressions. Cell survival was evaluated via the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Direct associations among HC0074027, miR-379-5p, and IGF1 were examined via dual-luciferase reporter (DLR) and RNA immunoprecipitation (RIP) assays. Lastly, HC0074027 was incorporated into nude mice to examine its biological activity in vivo. Based on our analysis, HC0074027 levels strongly correlated with NSCLC chemoresistance to docetaxel (DTX), cisplatin (DDP), and paclitaxel (PTX). Alternately, HC0074027 silencing enhanced chemosensitivity in vitro. In vivo, HC0074027 downregulation suppressed tumor expansion and increased cancer cell sensitivity to chemotherapy. We also revealed that HC0074027 physically interacts with miR-379-5p to exert its biological function in vitro. Moreover, IGF1 is a functionally crucial target of miR-379-5p in modulating NSCLC chemoresistance in vitro. Finally, we demonstrated that HC0074027 can indirectly modulate IGF1 levels via sequestering miR-379-5p. We demonstrated that HC0074027 promotes NSCLC chemoresistance via sequestering miR-379-5p activity, and modulating IGF1 expression. Our work highlights the significance of HC0074027 in NSCLC chemoresistance and suggests HC0074027 to be an excellent candidate for targeted NSCLC therapy.
Collapse
Affiliation(s)
- Shizhen Zheng
- Department of Respiratory Disease, The Second People's Hospital of Chengdu, Sichuan, Sichuan, China
| | - Chao Wang
- Department of Geriatrics International Medical Center, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Hao Yan
- Department of Infectious Disease, The Second People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Yuejun Du
- Department of Infectious Disease, The Second People's Hospital of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
40
|
Wei W, Zhao X, Liu J, Zhang Z. Downregulation of LINC00665 suppresses the progression of lung adenocarcinoma via regulating miR-181c-5p/ZIC2 axis. Aging (Albany NY) 2021; 13:17499-17515. [PMID: 34232917 PMCID: PMC8312465 DOI: 10.18632/aging.203240] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022]
Abstract
Long non-coding RNA (lncRNA) LINC00665 was demonstrated to be upregulated in lung adenocarcinoma (LUAD) and target miR-181c-5p. ZIC2, which is upregulated in LUAD, serves as a putative target of miR-181c-5p. In this study, we aimed to reveal whether LINC00665 regulates miR-181c-5p/ZIC2 axis to promote LUAD progression. The results showed that LINC00665, HOXA1, ZIC2, and HOXA11 levels were increased in LUAD tissues, while miR-181c-5p level was decreased when compared to the adjacent normal tissues. High expression levels of LINC00665, ZIC2, HOXA1 and HOXA11, and low expression of miR-181c-5p were closely linked to poor prognosis of LUAD patients. Knockdown of LINC00665 induced obvious inhibitions in cell viability, clone formation, invasion and tumorigenesis in LUAD cells, whereas miR-181c-5p downregulation significantly neutralized these effects. In addition, downregulation of ZIC2 obviously reversed the enhancements of cell viability, clone formation, invasion and tumorigenesis induced by miR-181c-5p knockdown. In summary, the present study reveals that silencing of LINC00665 suppresses LUAD progression through targeting miR-181c-5p/ZIC2 axis.
Collapse
Affiliation(s)
- Wei Wei
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, China
| | - Xiaoliang Zhao
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, China
| | - Jiang Liu
- Department of Molecule Imaging and Nuclear Medicine in Diagnosis and Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, China
| |
Collapse
|
41
|
LINC00665 Facilitates the Malignant Processes of Osteosarcoma by Increasing the RAP1B Expression via Sponging miR-708 and miR-142-5p. ACTA ACUST UNITED AC 2021; 2021:5525711. [PMID: 34306997 PMCID: PMC8282375 DOI: 10.1155/2021/5525711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022]
Abstract
Osteosarcoma (OS) is a kind of fatal primary bone tumors in adolescents and young adults. Long noncoding RNAs (lncRNAs) are a group of noncoding RNAs which occupy a part of the latest hot topics. We aimed to investigate the roles of lncRNA LINC00665 in OS in this study. In this study, we found that LINC00665 was highly expressed in OS tissues and cell lines, and its high expression was associated with malignant feature and poor prognosis of OS. In OS cells, LINC00665 could facilitate the proliferation, migration, and invasion to play an oncogenic role. Mechanistically, LINC00665 served as a sponge for miR-708 and miR-142-5p and positively mediated the expression of their target RAP1B. Finally, we confirmed that LINC00665 exercised its biological functions by mediating RAP1B. In conclusion, LINC00665 is overexpressed in OS and facilitates the malignant processes of OS cells by increasing the RAP1B expression via sponging miR-708 and miR-142-5p.
Collapse
|
42
|
Yan YM, Zheng JN, Wu LW, Rao QW, Yang QR, Gao D, Wang Q. Prediction of a Competing Endogenous RNA Co-expression Network by Comprehensive Methods in Systemic Sclerosis-Related Interstitial Lung Disease. Front Genet 2021; 12:633059. [PMID: 34290731 PMCID: PMC8287190 DOI: 10.3389/fgene.2021.633059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/16/2021] [Indexed: 11/27/2022] Open
Abstract
Systemic sclerosis (SSc) is an immune-mediated connective tissue disease characterized by fibrosis of multi-organs, and SSc-related interstitial lung disease (SSc-ILD) is a leading cause of morbidity and mortality. To explore molecular biological mechanisms of SSc-ILD, we constructed a competing endogenous RNA (ceRNA) network for prediction. Expression profiling data were obtained from the Gene Expression Omnibus (GEO) database, and differential expressed mRNAs and miRNAs analysis was further conducted between normal lung tissue and SSc lung tissue. Also, the interactions of miRNA–lncRNA, miRNA–mRNA, and lncRNA–mRNA were predicted by online databases including starBase, LncBase, miRTarBase, and LncACTdb. The ceRNA network containing 11 lncRNAs, 7 miRNAs, and 20 mRNAs were constructed. Based on hub genes and miRNAs identified by weighted correlation network analysis (WGCNA) method, three core sub-networks—SNHG16, LIN01128, RP11-834C11.4(LINC02381)/hsa-let-7f-5p/IL6, LINC01128/has-miR-21-5p/PTX3, and LINC00665/hsa-miR-155-5p/PLS1—were obtained. Combined with previous studies and enrichment analyses, the lncRNA-mediated network affected LPS-induced inflammatory and immune processes, fibrosis development, and tumor microenvironment variations. The ceRNA network, especially three core sub-networks, may be served as early biomarkers and potential targets for SSc, which also provides further insights into the occurrence, progression, and accurate treatment of SSc at the molecular level.
Collapse
Affiliation(s)
- Yue-Mei Yan
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ji-Na Zheng
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Wei Wu
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qian-Wen Rao
- Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiao-Rong Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Di Gao
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Ghafouri-Fard S, Shaterabadi D, Abak A, Shoorei H, Bahroudi Z, Taheri M, Mousavinejad SA. An update on the role of miR-379 in human disorders. Biomed Pharmacother 2021; 139:111553. [PMID: 33845370 DOI: 10.1016/j.biopha.2021.111553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 12/24/2022] Open
Abstract
miR-379 is a miRNA transcribed from the MIR379 locus on 14q32.31. This miRNA is located in an evolutionarily conserved miRNA cluster in an imprinted region that contains DLK1 and DIO3 genes. The mouse homolog of this miRNA has been shown to be under-expressed in response to glucocorticoid receptor deficiency. Moreover, miR-379 has a tumor-suppressive role in a wide variety of tissues including the brain, breast, lung, and liver. In addition to restraining cell proliferation and migration, miR-379 can suppress the epithelial-mesenchymal transition process. Abnormal expression of this miRNA implies the pathogenesis of Duchene muscular dystrophy, spinal cord injury, diabetic nephropathy, acute myocardial infarction, and premature ovarian failure. This review aims to the summarization of the role of miR-379 in neoplastic and non-neoplastic conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Donya Shaterabadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afete Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Ali Mousavinejad
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Wang A, Zhang T, Wei W, Wang H, Zhang Z, Yang W, Xia W, Mao Q, Xu L, Jiang F, Dong G. The Long Noncoding RNA LINC00665 Facilitates c-Myc Transcriptional Activity via the miR-195-5p MYCBP Axis to Promote Progression of Lung Adenocarcinoma. Front Oncol 2021; 11:666551. [PMID: 34277412 PMCID: PMC8281894 DOI: 10.3389/fonc.2021.666551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have recently received growing substantial attention in cancer research due to their important roles in various cancer types. However, the underlying mechanisms and functions of lncRNAs, especially in lung adenocarcinoma (LUAD), remain elusive. Based on pan-cancer screening analyses, we identified that the noncoding RNA LINC00665 was up-regulated in lung adenocarcinoma, which was subsequently confirmed in clinical samples and cell lines. Higher expression of LINC00665 was positively associated with poor prognosis and advanced T stage. Next, using gain- and loss- of function approaches, we revealed that LINC00665 promotes cell proliferation, cell migration, invasion, and suppresses cell apoptosis in LUAD through in vitro and in vivo experiments. Additionally, our findings showed that LINC00665 was predominately localized in the cytoplasm so as to interact with Ago2 protein, which could function as miRNA sponges. The results of bioinformatics prediction and RNA pull-down assay indicated that LINC00665 directly interacted with miR-195-5p. This was also confirmed by fluorescence colocalization. Furthermore, luciferase reporter assay demonstrated that Myc binding protein (MYCBP, also called AMY-1), which enhanced c-Myc transcriptional activity, was the target gene of LINC00665 dependent on miR-195-5p. Finally, rescue functional assay results uncovered that the oncogenic capability of LINC00665 was dependent on miR-195-5p and c-Myc transcriptional activity. In summary, this work elucidates that LINC00665 accelerates LUAD progression via the miR-195-5p/MYCBP axis by acting as a competing endogenous RNA (ceRNA), suggesting that LINC00665 may represent a potential therapeutic target for clinical intervention of LUAD.
Collapse
Affiliation(s)
- Anpeng Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Te Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei Wei
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Hui Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Zeyu Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Wenming Yang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Wenjie Xia
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Qixing Mao
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Feng Jiang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Su X, Yu Z, Zhang Y, Chen J, Wei L, Sun L. Construction and Analysis of the Dysregulated ceRNA Network and Identification of Risk Long Noncoding RNAs in Breast Cancer. Front Genet 2021; 12:664393. [PMID: 34149805 PMCID: PMC8212960 DOI: 10.3389/fgene.2021.664393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
Breast cancer (BRCA) is the second leading cause of cancer-related mortality in women worldwide. However, the molecular mechanism involved in the development of BRCA is not fully understood. In this study, based on the miRNA-mediated long non-coding RNA (lncRNA)-protein coding gene (PCG) relationship and lncRNA-PCG co-expression information, we constructed and analyzed a specific dysregulated lncRNA-PCG co-expression network in BRCA. Then, we performed the random walk with restart (RWR) method to prioritize BRCA-related lncRNAs through comparing their RWR score and significance. As a result, we identified 30 risk lncRNAs for BRCA, which can distinguish normal and tumor samples. Moreover, through gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, we found that these risk lncRNAs mainly synergistically exerted functions related to cell cycle and DNA separation and replication. At last, we developed a four-lncRNA prognostic signature (including AP000851.1, LINC01977, MAFG-DT, SIAH2-AS1) and assessed the survival accuracy of the signature by performing time-dependent receiver operating characteristic (ROC) analysis. The areas under the ROC curve for 1, 3, 5, and 10 years of survival prediction were 0.68, 0.61, 0.62, and 0.63, respectively. The multivariable Cox regression results verified that the four-lncRNA signature could be used as an independent prognostic biomarker in BRCA. In summary, these results have important reference value for the study of diagnosis, treatment, and prognosis evaluation of BRCA.
Collapse
Affiliation(s)
- Xiaojie Su
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China
| | - Zhaoyan Yu
- Department of Otorhinolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuexin Zhang
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Jiaxin Chen
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Ling Wei
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Liang Sun
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
46
|
Li M, Gao X, Liu K, Bao N, Jiang Z. MiR-379-5p aggravates experimental autoimmune uveitis in mice via the regulation of SEMA3A. Autoimmunity 2021; 54:275-283. [PMID: 34060391 DOI: 10.1080/08916934.2021.1931841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Uveitis is a disease resulting in the inflammation of uveal tracts, but the factors resulting in uveitis is still obscure. Previous studies have shown that miR-379-5p was involved in the pathogenesis of several diseases, however, the role and regulatory mechanism of miR-379-5p in uveitis were unclear. In our study, we established experimental autoimmune uveitis (EAU) mouse models to explore the role of miR-379-5p in uveitis. RT-qPCR identified that miR-379-5p level was increased in serum of EAU mice. In mechanism, SEMA3A 3'UTR was proven to be directly targeted by miR-379-5p and SEMA3A expression was negatively regulated by miR-379-5p in CD4+ T cells. Moreover, ELISA analysis revealed that knockdown of miR-379-5p suppressed the production of inflammation cytokines including IL-17, TNF-α and IL-β in vitro. These results were reversed by SEMA3A overexpression. In addition, the reduction of Th17 cells under miR-379-5p inhibitor was neutralised by SEMA3A knockdown in vitro. Furthermore, we demonstrated that knockdown of miR-379-5p significantly reversed the increased clinical scores and inflammatory response resulting from EAU treatment and this effect was further countervailed by SEMA3A silencing. Our study suggested that miR-379-5p aggravated uveitis in EAU mice via the regulation of SEMA3A, which may provide a novel insight for uveitis treatment.
Collapse
Affiliation(s)
- Mohan Li
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xiang Gao
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Kou Liu
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ning Bao
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
47
|
Xue P, Yan M, Wang K, Gu J, Zhong B, Tu C. Up-Regulation of LINC00665 Facilitates the Malignant Progression of Prostate Cancer by Epigenetically Silencing KLF2 Through EZH2 and LSD1. Front Oncol 2021; 11:639060. [PMID: 34094920 PMCID: PMC8173224 DOI: 10.3389/fonc.2021.639060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/22/2021] [Indexed: 12/27/2022] Open
Abstract
This study aimed to explore the function of LINC00665 on the proliferation and metastasis of prostate cancer (PCa), and the potential regulatory mechanisms were also investigated. The expression level of LINC00665 in 50 pairs of PCa tissues and adjacent ones was studied by qRT-PCR, and the associations between LINC00665 and clinicopathological characteristics of PCa patients were analyzed. Control group (sh-NC) and LINC00665 knock-down group (sh-LINC00665) were set in 22RV1 and DU145 cells, respectively. The biological functions of LINC00665 in PCa cell lines were assessed by CCK-8, EdU, Transwell assays, and the nude mouse xenograft model was used to evaluate the tumorigenicity in vivo. In addition, qRT-PCR, Western Blot, RIP and ChIP assays were also used to determine the regulation mechanism of LINC00665 in PCa cell lines. In this study, our results showed that LINC00665 expression level in PCa cancer tissues was significantly up-regulated, compared with that in adjacent ones. Besides, similar results were found in PCa cell lines. Knock-down of LINC00665 significantly attenuated the proliferation and migration ability in 22RV1 and DU145 cells, compared to sh-NC. Mechanically, LINC00665 could interact with EZH2 and LSD1, recruiting them to KLF2 promoter region to inhibit its transcription. Moreover, the tumor-suppressive effects mediated by sh-LINC00665 were significantly reversed through the down-regulation of KLF2. Also, the suppression of LINC00665 impaired tumor growth of PCa in vivo. In summary, LINC00665 exerted the oncogenic functions in PCa cell lines by epigenetically silencing KLF2 expression by binding to EZH2 and LSD1, illuminating a novel mechanism of LINC00665 in the malignant progression of PCa and furnishing a prospective therapeutic biomarker to combat PCa.
Collapse
Affiliation(s)
- Peng Xue
- Department of Urology, The First People's Hospital of Lianyungang, Lianyungang Clinical Medical College of Nanjing Medical University, Lianyungang, China
| | - Miao Yan
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang Clinical Medical College of Nanjing Medical University, Lianyungang, China
| | - Kunpeng Wang
- Department of Urology, The First People's Hospital of Lianyungang, Lianyungang Clinical Medical College of Nanjing Medical University, Lianyungang, China
| | - Jinbao Gu
- Department of Urology, The First People's Hospital of Lianyungang, Lianyungang Clinical Medical College of Nanjing Medical University, Lianyungang, China
| | - Bing Zhong
- Department of Urology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Chuanquan Tu
- Department of Urology, The First People's Hospital of Lianyungang, Lianyungang Clinical Medical College of Nanjing Medical University, Lianyungang, China
| |
Collapse
|
48
|
Liu X, Lv Q, Jing Z, Long X, Yi R, Yang D, Zhao X. Construction of a prognostic risk model of colorectal adenocarcinoma through integrated analysis of RNA-binding proteins. Transl Cancer Res 2021; 10:1962-1974. [PMID: 35116519 PMCID: PMC8799218 DOI: 10.21037/tcr-21-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND RNA binding proteins (RBPs) play an important role in a variety of cancers. However, their mechanisms in cancer progression are still limited especially in colorectal adenocarcinoma (COAD). Integrated analysis of RBPs will provide a better understanding of disease genesis and new insights into COAD treatment. METHODS The gene expression data and corresponding clinical information for COAD were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate Cox regression analysis was used to screen for RBPs associated with COAD recurrence, and multivariate Cox proportional hazards regression analyses were used to identify genes that were associated with COAD recurrence. A nomogram was constructed to predict the recurrence of COAD, and a receiver operating characteristic (ROC) curve analysis was performed to determine the accuracy of the prediction models. The Human Protein Atlas database was used in prediction models to confirm the expression of key genes in COAD patients. RESULTS A total of 177 differentially expressed RBPs was obtained, comprising 123 upregulated and 54 downregulated. GO and KEGG enrichment analysis showed that the differentially expressed RBPs were mainly related to mRNA metabolism, RNA processing and translation regulation. Seven RBP genes (TDRD6, POP1, TDRD7, PPARGC1A, LIN28B, LRRFIP2 and PNLDC1) were identified as prognosis-associated genes and were used to construct the prognostic model. CONCLUSIONS We constructed a COAD prognostic model through bioinformatics analysis and the nomogram can effectively predict the 1-year, 2-year, and 3-year survival rate for COAD patients.
Collapse
Affiliation(s)
- Xinhong Liu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Qikun Lv
- Department of Critical Care Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Zuolin Jing
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Dingyi Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
49
|
Zhang Y, Sun Y, Ding L, Shi W, Ding K, Zhu Y. Long Non-Coding RNA LINC00467 Correlates to Poor Prognosis and Aggressiveness of Breast Cancer. Front Oncol 2021; 11:643394. [PMID: 33996559 PMCID: PMC8113855 DOI: 10.3389/fonc.2021.643394] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Breast cancer remains the leading cause of female cancer-related mortalities worldwide. Long non-coding RNAs (LncRNAs) have been increasingly reported to play pivotal roles in tumorigenesis and cancer progression. Herein, we focused on LINC00467, which has never been studied in breast cancer. Silence of LINC00467 suppressed proliferation, migration, invasion and epithelial-to-mesenchymal transition (EMT) of breast cancer cells in vitro, whereas forced expression of LINC00467 exhibited the opposite effects. Furthermore, we demonstrated overexpression of LINC00467 promoted tumor growth, while knockdown of LINC00467 inhibited pulmonary metastasis in vivo. Mechanistically, LINC00467 down-regulated miR-138-5p by acting as a miRNA “sponge”. Besides, LINC00467 also up-regulated the protein level of lin-28 homolog B (LIN28B) via a direct interaction. A higher expression level of LINC00467 was observed in breast cancer tissues as compared to the adjacent normal counterparts and elevated LINC00467 predicted poor overall survival. Our findings suggest LINC00467 promotes progression of breast cancer through interacting with miR-138-5p and LIN28B directly. LINC00467 may serve as a potential candidate for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Oncology of the First Affiliated Hospital, Division of Life Science and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Yi Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lin Ding
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjing Shi
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Keshuo Ding
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Oncology of the First Affiliated Hospital, Division of Life Science and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| |
Collapse
|
50
|
miRNA-mRNA Regulatory Network Reveals miRNAs in HCT116 in Response to Folic Acid Deficiency via Regulating Vital Genes of Endoplasmic Reticulum Stress Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6650181. [PMID: 33997035 PMCID: PMC8096553 DOI: 10.1155/2021/6650181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/27/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
Moderate folic acid (FA) intake is an effective strategy that slows colorectal cancer (CRC) progression. However, high consumption of FA may trigger the transition of precancerous tissue towards malignancy. MicroRNAs (miRNAs) are considered to be potential biomarkers of CRC. Thus, identification of miRNAs of dysregulated genes in CRC cells by detailed analysis of mRNA and miRNA expression profile in the context of FA deficiency could substantially increase our understanding of its oncogenesis. mRNA-seq and miRNA-seq analyses were utilized to investigate the expression of miRNAs in FA-deficient CRC cell line–HCT116 through massive parallel sequencing technology. A total of 38 mRNAs and 168 miRNAs were identified to be differentially expressed between CRC groups with or without FA deficiency. We constructed an miRNA-mRNA network for the vital regulatory miRNAs altered in FA-deficient CRC cells. The mRNAs and miRNAs validated by Western blotting and RT-qPCR were consistent with the sequencing results. Results showed that FA deficiency upregulated some miRNAs thereby inhibiting the expression of critical genes in the endoplasmic reticulum (ER) stress pathway. Dysregulated miRNAs in our miRNA-mRNA network could contribute to CRC cell in response to deficient FA. This work reveals novel molecular targets that are likely to provide therapeutic interventions for CRC.
Collapse
|