1
|
Behera A, Sachan D, Barik GK, Reddy ABM. Role of MARCH E3 ubiquitin ligases in cancer development. Cancer Metastasis Rev 2024; 43:1257-1277. [PMID: 39037545 DOI: 10.1007/s10555-024-10201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Membrane-associated RING-CH (MARCH) E3 ubiquitin ligases, a family of RING-type E3 ubiquitin ligases, have garnered increased attention for their indispensable roles in immune regulation, inflammation, mitochondrial dynamics, and lipid metabolism. The MARCH E3 ligase family consists of eleven distinct members, and the dysregulation of many of these members has been documented in several human malignancies. Over the past two decades, extensive research has revealed that MARCH E3 ligases play pivotal roles in cancer progression by ubiquitinating key oncogenes and tumor suppressors and orchestrating various signaling pathways. Some MARCH E3s act as oncogenes, while others act as tumor suppressors, and the majority of MARCH E3s play both oncogenic and tumor suppressive roles in a context-dependent manner. Notably, there is special emphasis on the sole mitochondrial MARCH E3 ligase MARCH5, which regulates mitochondrial homeostasis within cancer cells. In this review, we delve into the diverse functions of MARCH E3 ligases across different cancer types, shedding light on the underlying molecular mechanisms mediating their effects, their regulatory effects on cancer and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Deepanshi Sachan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | | |
Collapse
|
2
|
Thang M, Mellows C, Kass LE, Daglish S, Fennell EM, Mann BE, Mercer-Smith AR, Valdivia A, Graves LM, Hingtgen SD. Combining the constitutive TRAIL-secreting induced neural stem cell therapy with the novel anti-cancer drug TR-107 in glioblastoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200834. [PMID: 39045029 PMCID: PMC11263637 DOI: 10.1016/j.omton.2024.200834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/27/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024]
Abstract
Tumor-homing neural stem cell (NSC) therapy is emerging as a promising treatment for aggressive cancers of the brain. Despite their success, developing tumor-homing NSC therapy therapies that maintain durable tumor suppression remains a challenge. Herein, we report a synergistic combination regimen where the novel small molecule TR-107 augments NSC-tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) therapy (hiNeuroS-TRAIL) in models of the incurable brain cancer glioblastoma (GBM) in vitro. We report that the combination of hiNeuroS-TRAIL and TR-107 synergistically upregulated caspase markers and restored sensitivity to the intrinsic apoptotic pathway by significantly downregulating inhibitory pathways associated with chemoresistance and radioresistance in the TRAIL-resistant LN229 cell line. This combination also showed robust tumor suppression and enhanced survival of mice bearing human xenografts of both solid and invasive GBMs. These findings elucidate a novel combination regimen and suggest that the combination of these clinically relevant agents may represent a new therapeutic option with increased efficacy for patients with GBM.
Collapse
Affiliation(s)
- Morrent Thang
- Neuroscience Center, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Clara Mellows
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Lauren E. Kass
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Sabrina Daglish
- Department of Pharmacology, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Emily M.J. Fennell
- Department of Pharmacology, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Breanna E. Mann
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Alison R. Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Lee M. Graves
- Department of Pharmacology, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Shawn D. Hingtgen
- Neuroscience Center, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Cai Y, Li Y, Xu Y, Yang W, Huang M. TCEB3 initiates ovarian cancer apoptosis by mediating ubiquitination and degradation of MCL-1. FASEB J 2024; 38:e23625. [PMID: 38661028 DOI: 10.1096/fj.202400249rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Platinum resistance remains a major contributor to the poor prognosis of ovarian cancer. Anti-apoptotic protein myeloid cell leukemia-1 (MCL-1) has emerged as a promising target for overcoming drug resistance, but different cancer cells utilize distinct protein degradation pathways to alter MCL-1 level. We systematically investigated E3 ligases to identify novel candidates that mediate platinum resistance in ovarian cancer. Transcription Elongation Factor B (TCEB3) has been identified as a novel E3 ligase recognition subunit that targets MCL-1 in the cytoplasm during platinum treatment other than its traditional function of targeting the Pol II in the nuclear compartment. TCEB3 expression is downregulated in platinum-resistant cell lines and this low expression is associated with poor prognosis. The ubiquitination of MCL-1 induced by TCEB3 leads to cell death in ovarian cancer. Moreover, platinum treatment increased the cytoplasm proportion of TCEB3, and the cytoplasm localization of TCEB3 is important for its targeting of MCL-1. This study emphasizes the dual function of TCEB3 in homeostasis maintenance and in cell fate determination under different conditions, and provides a new insight into drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Ying Cai
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yun Li
- Department of Neonatology, The Affiliated Children's Hospital of Jiangnan University, Wuxi, P. R. China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Masha Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
4
|
Cao C, Pei Y, Yu H, Qi H. Dual targeting Bcl-2 and Bcl-xL augments osteosarcoma response to doxorubicin. J Chemother 2024; 36:156-166. [PMID: 37309095 DOI: 10.1080/1120009x.2023.2220583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
Chemotherapy resistance is the major cause of treatment failure in osteosarcoma, the most common primary bone malignancy, and sensitizing therapeutic strategy is required to improve the clinical outcome. In this study, we discovered that navitoclax, a selective inhibitor of Bcl-2/Bcl-xL, effectively combats chemoresistance in osteosarcoma. Our research revealed that Bcl-2, but not Bcl-xL, is upregulated in osteosarcoma cells that are resistant to doxorubicin. However, venetoclax, a specific inhibitor of Bcl-2, did not exhibit activity against doxorubicin-resistant cells. Further analysis showed that depleting either Bcl-2 or Bcl-xL alone was insufficient to overcome doxorubicin resistance. Only by depleting both Bcl-2 and Bcl-xL significantly reduce the viability of doxorubicin-resistant cells. Similarly, navitoclax not only decreased the viability of doxorubicin-resistant cells but also acted synergistically with doxorubicin in cells sensitive to the drug. To confirm the ability of navitoclax to overcome doxorubicin resistance, we conducted experiments using multiple mouse models of osteosarcoma, both doxorubicin-sensitive and doxorubicin-resistant. The results provided confirmation that navitoclax is effective in overcoming doxorubicin resistance. Our findings demonstrate that simultaneous inhibition of Bcl-2 and Bcl-xL could serve as a novel strategy to sensitize chemoresistant osteosarcoma cells. Moreover, our study presents preclinical evidence supporting the potential of a navitoclax and doxorubicin combination therapy for the treatment of osteosarcoma, paving the way for future clinical investigations.
Collapse
Affiliation(s)
- Chuanhua Cao
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China
- Institute of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China
| | - Yu Pei
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China
- Institute of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China
| | - Haiying Yu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China
- Institute of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China
| | - Huixiong Qi
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China
- Institute of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China
| |
Collapse
|
5
|
Du M, Wang M, Liu M, Fu S, Lin Y, Huo Y, Yu J, Yu X, Wang C, Xiao H, Wang L. C/EBPα-p30 confers AML cell susceptibility to the terminal unfolded protein response and resistance to Venetoclax by activating DDIT3 transcription. J Exp Clin Cancer Res 2024; 43:79. [PMID: 38475919 DOI: 10.1186/s13046-024-02975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) with biallelic (CEBPAbi) as well as single mutations located in the bZIP region is associated with a favorable prognosis, but the underlying mechanisms are still unclear. Here, we propose that two isoforms of C/EBPα regulate DNA damage-inducible transcript 3 (DDIT3) transcription in AML cells corporately, leading to altered susceptibility to endoplasmic reticulum (ER) stress and related drugs. METHODS Human AML cell lines and murine myeloid precursor cell line 32Dcl3 cells were infected with recombinant lentiviruses to knock down CEBPA expression or over-express the two isoforms of C/EBPα. Quantitative real-time PCR and western immunoblotting were employed to determine gene expression levels. Cell apoptosis rates were assessed by flow cytometry. CFU assays were utilized to evaluate the differentiation potential of 32Dcl3 cells. Luciferase reporter analysis, ChIP-seq and ChIP-qPCR were used to validate the transcriptional regulatory ability and affinity of each C/EBPα isoform to specific sites at DDIT3 promoter. Finally, an AML xenograft model was generated to evaluate the in vivo therapeutic effect of agents. RESULTS We found a negative correlation between CEBPA expression and DDIT3 levels in AML cells. After knockdown of CEBPA, DDIT3 expression was upregulated, resulting in increased apoptotic rate of AML cells induced by ER stress. Cebpa knockdown in mouse 32Dcl3 cells also led to impaired cell viability due to upregulation of Ddit3, thereby preventing leukemogenesis since their differentiation was blocked. Then we discovered that the two isoforms of C/EBPα regulate DDIT3 transcription in the opposite way. C/EBPα-p30 upregulated DDIT3 transcription when C/EBPα-p42 downregulated it instead. Both isoforms directly bound to the promoter region of DDIT3. However, C/EBPα-p30 has a unique binding site with stronger affinity than C/EBPα-p42. These findings indicated that balance of two isoforms of C/EBPα maintains protein homeostasis and surveil leukemia, and at least partially explained why AML cells with disrupted C/EBPα-p42 and/or overexpressed C/EBPα-p30 exhibit better response to chemotherapy stress. Additionally, we found that a low C/EBPα p42/p30 ratio induces resistance in AML cells to the BCL2 inhibitor venetoclax since BCL2 is a major target of DDIT3. This resistance can be overcome by combining ER stress inducers, such as tunicamycin and sorafenib in vitro and in vivo. CONCLUSION Our results indicate that AML patients with a low C/EBPα p42/p30 ratio (e.g., CEBPAbi) may not benefit from monotherapy with BCL2 inhibitors. However, this issue can be resolved by combining ER stress inducers.
Collapse
Affiliation(s)
- Mengbao Du
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Mowang Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Meng Liu
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Shan Fu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Yu Lin
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yankun Huo
- Hematology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Rd., Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Jian Yu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Xiaohong Yu
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Chong Wang
- Hematology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Rd., Zhengzhou, 450000, Henan Province, People's Republic of China.
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| | - Limengmeng Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
6
|
Wyżewski Z, Stępkowska J, Kobylińska AM, Mielcarska A, Mielcarska MB. Mcl-1 Protein and Viral Infections: A Narrative Review. Int J Mol Sci 2024; 25:1138. [PMID: 38256213 PMCID: PMC10816053 DOI: 10.3390/ijms25021138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
MCL-1 is the prosurvival member of the Bcl-2 family. It prevents the induction of mitochondria-dependent apoptosis. The molecular mechanisms dictating the host cell viability gain importance in the context of viral infections. The premature apoptosis of infected cells could interrupt the pathogen replication cycle. On the other hand, cell death following the effective assembly of progeny particles may facilitate virus dissemination. Thus, various viruses can interfere with the apoptosis regulation network to their advantage. Research has shown that viral infections affect the intracellular amount of MCL-1 to modify the apoptotic potential of infected cells, fitting it to the "schedule" of the replication cycle. A growing body of evidence suggests that the virus-dependent deregulation of the MCL-1 level may contribute to several virus-driven diseases. In this work, we have described the role of MCL-1 in infections caused by various viruses. We have also presented a list of promising antiviral agents targeting the MCL-1 protein. The discussed results indicate targeted interventions addressing anti-apoptotic MCL1 as a new therapeutic strategy for cancers as well as other diseases. The investigation of the cellular and molecular mechanisms involved in viral infections engaging MCL1 may contribute to a better understanding of the regulation of cell death and survival balance.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Justyna Stępkowska
- Institute of Family Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Aleksandra Maria Kobylińska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| | - Adriana Mielcarska
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| |
Collapse
|
7
|
Coulter DW, Chhonker YS, Kumar D, Kesherwani V, Aldhafiri WN, McIntyre EM, Alexander G, Ray S, Joshi SS, Li R, Murry DJ, Chaturvedi NK. Marinopyrrole derivative MP1 as a novel anti-cancer agent in group 3 MYC-amplified Medulloblastoma. J Exp Clin Cancer Res 2024; 43:18. [PMID: 38200580 PMCID: PMC10782703 DOI: 10.1186/s13046-024-02944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Medulloblastoma (MB) patients with MYC oncogene amplification or overexpression exhibit extremely poor prognoses and therapy resistance. However, MYC itself has been one of the most challenging targets for cancer treatment. Here, we identify a novel marinopyrrole natural derivative, MP1, that shows desirable anti-MYC and anti-cancer activities in MB. METHODS In this study, using MYC-amplified (Group 3) and non-MYC amplified MB cell lines in vitro and in vivo, we evaluated anti-cancer efficacies and molecular mechanism(s) of MP1. RESULTS MP1 significantly suppressed MB cell growth and sphere counts and induced G2 cell cycle arrest and apoptosis in a MYC-dependent manner. Mechanistically, MP1 strongly downregulated the expression of MYC protein. Our results with RNA-seq revealed that MP1 significantly modulated global gene expression and inhibited MYC-associated transcriptional targets including translation/mTOR targets. In addition, MP1 inhibited MYC-target metabolism, leading to declined energy levels. The combination of MP1 with an FDA-approved mTOR inhibitor temsirolimus synergistically inhibited MB cell growth/survival by downregulating the expression of MYC and mTOR signaling components. Our results further showed that as single agents, both MP1 and temsirolimus, were able to significantly inhibit tumor growth and MYC expression in subcutaneously or orthotopically MYC-amplified MB bearing mice. In combination, there were further anti-MB effects on the tumor growth and MYC expression in mice. CONCLUSION These preclinical findings highlight the promise of marinopyrrole MP1 as a novel MYC inhibition approach for MYC-amplified MB.
Collapse
Affiliation(s)
- Don W Coulter
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice & Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Devendra Kumar
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Varun Kesherwani
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wafaa N Aldhafiri
- Department of Pharmacy Practice & Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Erin M McIntyre
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gracey Alexander
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sutapa Ray
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shantaram S Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rongshi Li
- Department of Pharmacy Practice & Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Daryl J Murry
- Department of Pharmacy Practice & Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nagendra K Chaturvedi
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Pediatrics, Hematology and Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
8
|
Yu CY, Yeung TK, Fu WK, Poon RYC. BCL-XL regulates the timing of mitotic apoptosis independently of BCL2 and MCL1 compensation. Cell Death Dis 2024; 15:2. [PMID: 38172496 PMCID: PMC10764939 DOI: 10.1038/s41419-023-06404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Mitotic catastrophe induced by prolonged mitotic arrest is a major anticancer strategy. Although antiapoptotic BCL2-like proteins, including BCL-XL, are known to regulate apoptosis during mitotic arrest, adaptive changes in their expression can complicate loss-of-function studies. Our studies revealed compensatory alterations in the expression of BCL2 and MCL1 when BCL-XL is either downregulated or overexpressed. To circumvent their reciprocal regulation, we utilized a degron-mediated system to acutely silence BCL-XL just before mitosis. Our results show that in epithelial cell lines including HeLa and RPE1, BCL-XL and BCL2 acted collaboratively to suppress apoptosis during both unperturbed cell cycle and mitotic arrest. By tagging BCL-XL and BCL2 with a common epitope, we estimated that BCL-XL was less abundant than BCL2 in the cell. Nonetheless, BCL-XL played a more prominent antiapoptotic function than BCL2 during interphase and mitotic arrest. Loss of BCL-XL led to mitotic cell death primarily through a BAX-dependent process. Furthermore, silencing of BCL-XL led to the stabilization of MCL1, which played a significant role in buffering apoptosis during mitotic arrest. Nevertheless, even in a MCL1-deficient background, depletion of BCL-XL accelerated mitotic apoptosis. These findings underscore the pivotal involvement of BCL-XL in controlling timely apoptosis during mitotic arrest, despite adaptive changes in the expression of other BCL2-like proteins.
Collapse
Affiliation(s)
- Chun Yin Yu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Tsz Kwan Yeung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Wai Kuen Fu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Randy Y C Poon
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| |
Collapse
|
9
|
Zhang H, Han Y, Xiao W, Gao Y, Sui Z, Ren P, Meng F, Tang P, Yu Z. USP4 promotes the proliferation, migration, and invasion of esophageal squamous cell carcinoma by targeting TAK1. Cell Death Dis 2023; 14:730. [PMID: 37949874 PMCID: PMC10638297 DOI: 10.1038/s41419-023-06259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Ubiquitin-specific protease 4 (USP4) represents a potential oncogene involved in various human cancers. Nevertheless, the biological roles and precise mechanism of USP4 in esophageal squamous cell carcinoma (ESCC) progression are not understood. Here, USP4 expression was found to be markedly upregulated in ESCC tumor tissues and cells. Loss- and gain-of-function assays suggested that USP4 silencing inhibited ESCC cell proliferation, migration, and invasion, while USP4 overexpression promoted these behaviors. Consistently, USP4 silencing repressed tumor growth and metastasis in an ESCC nude mouse model in vivo. As a target molecule of USP4, transforming growth factor-β-activated kinase 1 (TAK1) also showed high expression in ESCC. Moreover, we observed that USP4 specifically interacted with TAK1 and stabilized TAK1 protein levels via deubiquitination in ESCC cells. Importantly, USP4 promotes ESCC proliferation, migration, and invasion via the MEK/ERK signaling pathway and can be inhibited by U0126. Neutral red (NR), an inhibitor of USP4 can suppress ESCC progression in vitro and in vivo. Overall, this study revealed that USP4/TAK1 plays crucial roles in ESCC progression by modulating proliferation, migration, and invasion, and USP4 might be a potential therapeutic target in ESCC.
Collapse
Affiliation(s)
- Hongdian Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Digestive Cancer of Tianjin, Tianjin, 300060, China
| | - Youming Han
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Digestive Cancer of Tianjin, Tianjin, 300060, China
- Binhai Hospital of Tianjin Medical University General Hospital, Tianjin, 300456, China
| | - Wanyi Xiao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Digestive Cancer of Tianjin, Tianjin, 300060, China
| | - Yongyin Gao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Digestive Cancer of Tianjin, Tianjin, 300060, China
| | - Zhilin Sui
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Digestive Cancer of Tianjin, Tianjin, 300060, China
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and PeKing Union Medical College, Shenzhen, 518116, China
| | - Peng Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Digestive Cancer of Tianjin, Tianjin, 300060, China
| | - Fanbiao Meng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Digestive Cancer of Tianjin, Tianjin, 300060, China.
| | - Peng Tang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Digestive Cancer of Tianjin, Tianjin, 300060, China.
| | - Zhentao Yu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Digestive Cancer of Tianjin, Tianjin, 300060, China.
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and PeKing Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
10
|
Li XM, Liu SP, Liu DM, Li Y, Cai XM, Su Y, Xie ZF. Identification of disulfidptosis-related genes and immune infiltration in lower-grade glioma. Open Med (Wars) 2023; 18:20230825. [PMID: 37900961 PMCID: PMC10612529 DOI: 10.1515/med-2023-0825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Lower-grade glioma (LGG), a prevalent malignant tumor in the central nervous system, requires accurate prediction and treatment to prevent aggressive progression. We aimed to explore the role of disulfidptosis-related genes (DRGs) in LGG, a recently discovered form of programmed cell death characterized by abnormal disulfide accumulation. Leveraging public databases, we analyzed 532 LGG tumor tissues (The Cancer Genome Atlas), 1,157 normal samples (Genotype-Tissue Expression), and 21 LGG tumor samples with 8 paired normal samples (GSE16011). Our research uncovered intricate relationships between DRGs and crucial aspects of LGG, including gene expression, immune response, mutation, drug sensitivity, and functional enrichment. Notably, we identified significant heterogeneity among disulfidptosis sub-clusters and elucidated specific differential gene expression in LGG, with myeloid cell leukemia-1 (MCL1) as a key candidate. Machine learning techniques validated the relevance of MCL1, considering its expression patterns, prognostic value, diagnostic potential, and impact on immune infiltration. Our study offers opportunities and challenges to unravel potential mechanisms underlying LGG prognosis, paving the way for personalized cancer care and innovative immunotherapeutic strategies. By shedding light on DRGs, particularly MCL1, we enhance understanding and management of LGG.
Collapse
Affiliation(s)
- Xiao-min Li
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shan-peng Liu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Dan-man Liu
- Breast Surgery Clinics, Guangdong Province Women and Children Hospital, Guangzhou, China
| | - Yu Li
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiao-ming Cai
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yun Su
- Department of Microbiology & Immunology, Shantou University Medical College, 22 Xinling Road, Shantou515041, Guangdong, China
| | - Ze-feng Xie
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
11
|
Praharaj PP, Patra S, Mishra SR, Mukhopadhyay S, Klionsky DJ, Patil S, Bhutia SK. CLU (clusterin) promotes mitophagic degradation of MSX2 through an AKT-DNM1L/Drp1 axis to maintain SOX2-mediated stemness in oral cancer stem cells. Autophagy 2023; 19:2196-2216. [PMID: 36779631 PMCID: PMC10351456 DOI: 10.1080/15548627.2023.2178876] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/14/2023] Open
Abstract
Mitophagy regulates cancer stem cell (CSC) populations affecting tumorigenicity and malignancy in various cancer types. Here, we report that cisplatin treatment led to the activation of higher mitophagy through regulating CLU (clusterin) levels in oral CSCs. Moreover, both the gain-of-function and loss-of-function of CLU indicated its mitophagy-specific role in clearing damaged mitochondria. CLU also regulates mitochondrial fission by activating the Ser/Thr kinase AKT, which triggered phosphorylation of DNM1L/Drp1 at the serine 616 residue initiating mitochondrial fission. More importantly, we also demonstrated that CLU-mediated mitophagy positively regulates oral CSCs through mitophagic degradation of MSX2 (msh homeobox 2), preventing its nuclear translocation from suppressing SOX2 activity and subsequent inhibition of cancer stemness and self-renewal ability. However, CLU knockdown disturbed mitochondrial metabolism generating excessive mitochondrial superoxide, which improves the sensitivity to cisplatin in oral CSCs. Notably, our results showed that CLU-mediated cytoprotection relies on SOX2 expression. SOX2 inhibition through genetic (shSOX2) and pharmacological (KRX-0401) strategies reverses CLU-mediated cytoprotection, sensitizing oral CSCs toward cisplatin-mediated cell death.
Collapse
Affiliation(s)
- Prakash P. Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Soumya R. Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Subhadip Mukhopadhyay
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UTAH, USA
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences , Saveetha University, Chennai, India
| | - Sujit K. Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
12
|
Ibrahim RS, Ibrahim SS, El-Naas A, Koklesová L, Kubatka P, Büsselberg D. Could Metformin and Resveratrol Support Glioblastoma Treatment? A Mechanistic View at the Cellular Level. Cancers (Basel) 2023; 15:3368. [PMID: 37444478 DOI: 10.3390/cancers15133368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma, a malignant brain tumor, is a common primary brain tumor in adults, with diabetes mellitus being a crucial risk factor. This review examines how the antidiabetic drug metformin and dietary supplement resveratrol can benefit the treatment of glioblastoma. Metformin and resveratrol have demonstrated action against relevant pathways in cancer cells. Metformin and resveratrol inhibit cell proliferation by downregulating the PI3K/Akt pathway, activating mTOR, and increasing AMPK phosphorylation, resulting in lower proliferation and higher apoptosis levels. Metformin and resveratrol both upregulate and inhibit different cascades in the MAPK pathway. In vivo, the drugs reduced tumor growth and volume. These actions show how metformin and resveratrol can combat cancer with both glucose-dependent and glucose-independent effects. The pre-clinical results, alongside the lack of clinical studies and the rise in novel delivery mechanisms, warrant further clinical investigations into the applications of metformin and resveratrol as both separate and as a combination complement to current glioblastoma therapies.
Collapse
Affiliation(s)
| | | | - Ahmed El-Naas
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Lenka Koklesová
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| |
Collapse
|
13
|
Li K, Pang S, Li Z, Ding X, Gan Y, Gan Q, Fang S. House ammonia exposure causes alterations in microbiota, transcriptome, and metabolome of rabbits. Front Microbiol 2023; 14:1125195. [PMID: 37250049 PMCID: PMC10213413 DOI: 10.3389/fmicb.2023.1125195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Pollutant gas emissions in the current production system of the livestock industry have negative influences on environment as well as the health of farm staffs and animals. Although ammonia (NH3) is considered as the primary and harmful gas pollutant in the rabbit farm, less investigation has performed to determine the toxic effects of house ammonia exposure on rabbit in the commercial confined barn. Methods In this study, we performed multi-omics analysis on rabbits exposed to high and low concentration of house ammonia under similar environmental conditions to unravel the alterations in nasal and colonic microbiota, pulmonary and colonic gene expression, and muscular metabolic profile. Results and discussion The results showed that house ammonia exposure notably affected microbial structure, composition, and functional capacity in both nasal and colon, which may impact on local immune responses and inflammatory processes. Transcriptome analysis indicated that genes related to cell death (MCL1, TMBIM6, HSPB1, and CD74) and immune response (CDC42, LAMTOR5, VAMP8, and CTSB) were differentially expressed in the lung, and colonic genes associated with redox state (CAT, SELENBP1, GLUD1, and ALDH1A1) were significantly up-regulated. Several key differentially abundant metabolites such as L-glutamic acid, L-glutamine, L-ornithine, oxoglutaric acid, and isocitric acid were identified in muscle metabolome, which could denote house ammonia exposure perturbed amino acids, nucleotides, and energy metabolism. In addition, the widespread and strong inter-system interplay were uncovered in the integrative correlation network, and central features were confirmed by in vitro experiments. Our findings disclose the comprehensive evidence for the deleterious effects of house ammonia exposure on rabbit and provide valuable information for understanding the underlying impairment mechanisms.
Collapse
|
14
|
Huang X, Ma Z, Qin W. Screening and Bioinformatics Analyses of Key miRNAs Associated with Toll-like Receptor Activation in Gastric Cancer Cells. Medicina (B Aires) 2023; 59:medicina59030511. [PMID: 36984512 PMCID: PMC10053384 DOI: 10.3390/medicina59030511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Background and Objectives: To screen key miRNAs and their target genes related to Toll-like receptor (TLR) activation in gastric cancer (GC) cells and analyze them bioinformatically. Materials and Methods: Venn diagrams were obtained to screen miRNAs that were upregulated/downregulated in both GSE54129 and GSE164174. The miRTarBase database was used to predict the target genes of upregulated miRNAs. The differentially expressed genes in the regulatory network were analyzed. miR-16-5p expression in different tissue samples and the variations in the methylation states of four hub genes were measured. Results: We found that GSE54129 included 21 normal gastric tissues and 111 gastric cancer tissues, GSE164174 included 1417 normal gastric tissues and 1423 gastric cancer tissues. Venn diagram analysis results showed that compared with the control group, a total of 68 DEmiRNAs were upregulated in the GSE54129 and GSE164174 datasets, and no common downregulated DEmiRNAs were found. On further analysis of the GSE108345 dataset, we obtained the competing endogenous RNA (ceRNA) network associated with the activation of TLRs, and listed the top 10 lncRNA–miRNA–mRNA networks, including 10 miRNAs, 86 mRNA and 134 lncRNAs. Cytological HuBBA scores yielded a total of 1 miRNA, 16 mRNAs and 45 lncRNAs, of which miR-16-5p scored the highest as it was considered a key miRNA for TLR activation in GC cells, which are important in response against microorganisms. The results of Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that endocytosis, microRNAs in cancer and the PI3K-Akt signaling pathway are related to TLR signaling. The results of in vivo experiments indicated that miR-16-5p was highly expressed in gastric cancer cells and tissues. Conclusions: Hsa-miR-16-5p’s target genes mainly play a role by regulating the expression of four genes—MCL1, AP2B1, LAMB1, and RAB11FIP2. The findings provide a scientific basis for the development of immunotherapy for GC.
Collapse
Affiliation(s)
- Xiong Huang
- Department of General Surgery, The Eighth People’s Hospital of Shanghai, Shanghai 200233, China
- Correspondence: ; Tel.: +86-021-34284588
| | - Zhen Ma
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Qin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
15
|
The Role of Reprogrammed Glucose Metabolism in Cancer. Metabolites 2023; 13:metabo13030345. [PMID: 36984785 PMCID: PMC10051753 DOI: 10.3390/metabo13030345] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cancer cells reprogram their metabolism to meet biosynthetic needs and to adapt to various microenvironments. Accelerated glycolysis offers proliferative benefits for malignant cells by generating glycolytic products that move into branched pathways to synthesize proteins, fatty acids, nucleotides, and lipids. Notably, reprogrammed glucose metabolism and its associated events support the hallmark features of cancer such as sustained cell proliferation, hijacked apoptosis, invasion, metastasis, and angiogenesis. Overproduced enzymes involved in the committed steps of glycolysis (hexokinase, phosphofructokinase-1, and pyruvate kinase) are promising pharmacological targets for cancer therapeutics. In this review, we summarize the role of reprogrammed glucose metabolism in cancer cells and how it can be manipulated for anti-cancer strategies.
Collapse
|
16
|
Gan Y, Li X, Han S, Zhou L, Li W. Targeting Mcl-1 Degradation by Bergenin Inhibits Tumorigenesis of Colorectal Cancer Cells. Pharmaceuticals (Basel) 2023; 16:241. [PMID: 37259388 PMCID: PMC9965350 DOI: 10.3390/ph16020241] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 09/29/2023] Open
Abstract
Myeloid leukemia 1 (Mcl-1) is frequently overexpressed in human malignancies and emerged as a promising drug target. In this study, we verified the inhibitory effect of bergenin on colorectal cancer cells both in vivo and in vitro. In an in vitro setting, bergenin significantly reduced the viability and colony formation and promoted apoptosis of CRC cells dose-dependently. Bergenin decreased the activity of Akt/GSK3β signaling and enhanced the interaction between FBW7 and Mcl-1, which eventually induced Mcl-1 ubiquitination and degradation. Using the HA-Ub K48R mutant, we demonstrated that bergenin promotes Mcl-1 K48-linked polyubiquitination and degradation. In vivo studies showed that bergenin significantly reduced tumor size and weight without toxicity to vital organs in mice. Overall, our results support the role of bergenin in inhibiting CRC cells via inducing Mcl-1 destruction, suggesting that targeting Mcl-1 ubiquitination could be an alternative strategy for antitumor therapy.
Collapse
Affiliation(s)
- Yu Gan
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, The Third Xiangya Hospital, Central South University, Changsha 410008, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
17
|
Li M, Gao F, Li X, Gan Y, Han S, Yu X, Liu H, Li W. Stabilization of MCL-1 by E3 ligase TRAF4 confers radioresistance. Cell Death Dis 2022; 13:1053. [PMID: 36535926 PMCID: PMC9763423 DOI: 10.1038/s41419-022-05500-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The E3 ligase TNF receptor-associated factor 4 (TRAF4) is frequently overexpressed and closely related to poor prognosis in human malignancies. However, its effect on carcinogenesis and radiosensitivity in oral squamous cell carcinoma (OSCC) remains unclear. The present study found that TRAF4 was significantly upregulated in primary and relapsed OSCC tumor tissues. Depletion of TRAF4 markedly improved the sensitivity of OSCC cells to irradiation (IR) treatment, showing that tumor cell proliferation, colony formation and xenograft tumor growth were reduced. Mechanistically, IR promoted the interaction between TRAF4 and Akt to induce Akt K63-mediated ubiquitination and activation. TRAF4 knockout inhibited the phosphorylation of Akt and upregulated GSK3β activity, resulting in increased myeloid cell leukemia-1 (MCL-1) S159 phosphorylation, which disrupted the interaction of MCL-1 with Josephin domain containing 1 (JOSD1), and ultimately induced MCL-1 ubiquitination and degradation. Moreover, TRAF4 was positively correlated with MCL-1 in primary and in radiotherapy-treated, relapsed tumor tissues. An MCL-1 inhibitor overcame radioresistance in vitro and in vivo. Altogether, the present findings suggest that TRAF4 confers radioresistance in OSCC by stabilizing MCL-1 through Akt signaling, and that targeting TRAF4 may be a promising therapeutic strategy to overcome radioresistance in OSCC.
Collapse
Affiliation(s)
- Ming Li
- grid.431010.7Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China ,Changsha Stomatological Hospital, Changsha, Hunan 410004 People’s Republic of China ,grid.488482.a0000 0004 1765 5169School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208 People’s Republic of China ,grid.431010.7Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China
| | - Feng Gao
- grid.431010.7Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China ,grid.431010.7Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China
| | - Xiaoying Li
- grid.431010.7Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China
| | - Yu Gan
- grid.431010.7Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China
| | - Shuangze Han
- grid.431010.7Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China ,grid.33199.310000 0004 0368 7223Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022 People’s Republic of China
| | - Xinfang Yu
- grid.431010.7Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China ,grid.39382.330000 0001 2160 926XDepartment of Medicine, Baylor College of Medicine, Houston, TX 77030 USA
| | - Haidan Liu
- grid.452708.c0000 0004 1803 0208Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, People’s Republic of China ,grid.452708.c0000 0004 1803 0208Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, People’s Republic of China
| | - Wei Li
- grid.431010.7Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China ,grid.431010.7Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China
| |
Collapse
|
18
|
Janssen M, Schmidt C, Bruch PM, Blank MF, Rohde C, Waclawiczek A, Heid D, Renders S, Göllner S, Vierbaum L, Besenbeck B, Herbst SA, Knoll M, Kolb C, Przybylla A, Weidenauer K, Ludwig AK, Fabre M, Gu M, Schlenk RF, Stölzel F, Bornhäuser M, Röllig C, Platzbecker U, Baldus C, Serve H, Sauer T, Raffel S, Pabst C, Vassiliou G, Vick B, Jeremias I, Trumpp A, Krijgsveld J, Müller-Tidow C, Dietrich S. Venetoclax synergizes with gilteritinib in FLT3 wild-type high-risk acute myeloid leukemia by suppressing MCL-1. Blood 2022; 140:2594-2610. [PMID: 35857899 DOI: 10.1182/blood.2021014241] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022] Open
Abstract
BCL-2 inhibition has been shown to be effective in acute myeloid leukemia (AML) in combination with hypomethylating agents or low-dose cytarabine. However, resistance and relapse represent major clinical challenges. Therefore, there is an unmet need to overcome resistance to current venetoclax-based strategies. We performed high-throughput drug screening to identify effective combination partners for venetoclax in AML. Overall, 64 antileukemic drugs were screened in 31 primary high-risk AML samples with or without venetoclax. Gilteritinib exhibited the highest synergy with venetoclax in FLT3 wild-type AML. The combination of gilteritinib and venetoclax increased apoptosis, reduced viability, and was active in venetoclax-azacitidine-resistant cell lines and primary patient samples. Proteomics revealed increased FLT3 wild-type signaling in specimens with low in vitro response to the currently used venetoclax-azacitidine combination. Mechanistically, venetoclax with gilteritinib decreased phosphorylation of ERK and GSK3B via combined AXL and FLT3 inhibition with subsequent suppression of the antiapoptotic protein MCL-1. MCL-1 downregulation was associated with increased MCL-1 phosphorylation of serine 159, decreased phosphorylation of threonine 161, and proteasomal degradation. Gilteritinib and venetoclax were active in an FLT3 wild-type AML patient-derived xenograft model with TP53 mutation and reduced leukemic burden in 4 patients with FLT3 wild-type AML receiving venetoclax-gilteritinib off label after developing refractory disease under venetoclax-azacitidine. In summary, our results suggest that combined inhibition of FLT3/AXL potentiates venetoclax response in FLT3 wild-type AML by inducing MCL-1 degradation. Therefore, the venetoclax-gilteritinib combination merits testing as a potentially active regimen in patients with high-risk FLT3 wild-type AML.
Collapse
Affiliation(s)
- Maike Janssen
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christina Schmidt
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter-Martin Bruch
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maximilian F Blank
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Christian Rohde
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alexander Waclawiczek
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Daniel Heid
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Simon Renders
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Stefanie Göllner
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lisa Vierbaum
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Birgit Besenbeck
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sophie A Herbst
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mareike Knoll
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Carolin Kolb
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Adriana Przybylla
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Katharina Weidenauer
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anne Kathrin Ludwig
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Margarete Fabre
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
| | - Muxin Gu
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
| | - Richard F Schlenk
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Friedrich Stölzel
- Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christoph Röllig
- Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Uwe Platzbecker
- Medical Clinic and Policlinic I, Hematology and Cellular Therapy, Leipzig University Hospital, Leipzig, Germany
| | - Claudia Baldus
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Hubert Serve
- Hematology-Oncology, Department of Medicine II, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Tim Sauer
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Simon Raffel
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Caroline Pabst
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - George Vassiliou
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
| | - Binje Vick
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Cancer Consortium, Partner Site Munich, Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Cancer Consortium, Partner Site Munich, Munich, Germany
- Department of Pediatrics, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sascha Dietrich
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
19
|
Zhou Z, Song X, Kang R, Tang D. The Emerging Role of Deubiquitinases in Cell Death. Biomolecules 2022; 12:1825. [PMID: 36551253 PMCID: PMC9775562 DOI: 10.3390/biom12121825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Regulated cell death (RCD) is a signal-controlled process that not only eliminates infected, damaged, or aged cells but is also implicated in a variety of pathological conditions. The process of RCD is regulated by intracellular proteins that undergo varying levels of post-translational modifications, including mono- or polyubiquitination. Functionally, ubiquitination can affect protein abundance, localization, and activity. Like other post-translational modifications, ubiquitination is a dynamic and reversible process mediated by deubiquitinases, a large class of proteases that cleave ubiquitin from proteins and other substrates. The balance between ubiquitination and deubiquitination machinery determines cell fate under stressful conditions. Here, we review the latest advances in our understanding of the role of deubiquitinases in regulating the main types of RCD, including apoptosis, necroptosis, pyroptosis, and ferroptosis. This knowledge may contribute to identifying new protein degradation-related prognostic markers and therapeutic targets for human disease.
Collapse
Affiliation(s)
| | | | | | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
20
|
Chen L, Chan AM, Wilder PT, Fletcher S. 1-Sulfonylated 1,2,3,4-tetrahydroquinoline-6-carboxylic acids as simple, readily-accessible MCL-1 inhibitors. Drug Dev Res 2022; 83:1879-1889. [PMID: 36281026 DOI: 10.1002/ddr.22004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 12/30/2022]
Abstract
MCL-1 is a member of the BCL-2 family of proteins that regulates the mitochondrial pathway of apoptosis. Overexpression of MCL-1 is associated with the development and progression of a range of human cancers, and is also responsible for the onset of resistance to conventional chemotherapies. Although several MCL-1 inhibitors have now advanced to clinical trials, recent suspensions and terminations reveal the urgency with which new inhibitor chemotypes must be discovered. Building on our previous studies of a chiral, isomeric lead, we report the discovery of a new chemotype to inhibit MCL-1: 1-sulfonylated 1,2,3,4-tetrahydroquinoline-6-carboxylic acid. The nature of the sulfonyl moiety contributed significantly to the resulting inhibitory ability. For example, transforming a phenylsulfonyl group into a 4-chloro-3,5-dimethylphenoxy)phenyl)sulfonyl moiety elicited more than a 73-fold enhancement in inhibiton of MCL-1, possibly through targeting the p2 pocket in the BH3-binding groove, and so it is anticipated that further structure-activity studies here will lead to continued improvements in binding. It should be underscored that this class of MCL-1 inhibitors is readily accessible in four simple steps, is achiral and offers many avenues for optimization, all factors that are welcomed in the search for safe and effective inhibitors of this driver of cancer cell survival.
Collapse
Affiliation(s)
- Lijia Chen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Alexandria M Chan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Paul T Wilder
- Department of Biochemistry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA.,University of Maryland Greenebaum Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
21
|
LINC00629, a KLF10-responsive lncRNA, promotes the anticancer effects of apigenin by decreasing Mcl1 stability in oral squamous cell carcinoma. Aging (Albany NY) 2022; 14:9149-9166. [PMID: 36445338 PMCID: PMC9740369 DOI: 10.18632/aging.204396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022]
Abstract
Apigenin, a naturally occurring flavonoid, is known to exhibit antitumor activity in many cancers. However, the regulatory mechanism of apigenin and the long noncoding RNAs (lncRNAs) altered upon apigenin treatment in oral squamous cell carcinoma (OSCC) remain unclear. In this study, we found that LINC00629 was significantly upregulated in response to apigenin treatment. Upregulated LINC00629 enhanced the growth-suppressive and proapoptotic effects of apigenin on OSCC cells by interacting with Mcl1 and facilitating its degradation. Subsequently, our data indicated that KLF10, an important transcription factor, directly bound to the promoter of LINC00629, facilitating its transcription and contributing to apigenin-induced LINC00629 expression. Collectively, these results suggest that the KLF10-LINC00629-Mcl1 axis plays an important role in the anticancer effects of apigenin.
Collapse
|
22
|
Chang W, Luo Q, Wu X, Nan Y, Zhao P, Zhang L, Luo A, Jiao W, Zhu Q, Fu Y, Liu Z. OTUB2 exerts tumor-suppressive roles via STAT1-mediated CALML3 activation and increased phosphatidylserine synthesis. Cell Rep 2022; 41:111561. [DOI: 10.1016/j.celrep.2022.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/17/2022] [Accepted: 10/04/2022] [Indexed: 12/09/2022] Open
|
23
|
Chan AM, Goodis CC, Pommier EG, Fletcher S. Recent applications of covalent chemistries in protein-protein interaction inhibitors. RSC Med Chem 2022; 13:921-928. [PMID: 36092144 PMCID: PMC9384789 DOI: 10.1039/d2md00112h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 10/17/2023] Open
Abstract
Protein-protein interactions (PPIs) are large, often featureless domains whose modulations by small-molecules are challenging. Whilst there are some notable successes, such as the BCL-2 inhibitor venetoclax, the requirement for larger ligands to achieve the desired level of potency and selectivity may result in poor "drug-like" properties. Covalent chemistry is presently enjoying a renaissance. In particular, targeted covalent inhibition (TCI), in which a weakly electrophilic "warhead" is installed onto a protein ligand scaffold, is a powerful strategy to develop potent inhibitors of PPIs that are smaller/more drug-like yet have enhanced affinities by virtue of the reinforcing effect on the existing non-covalent interactions by the resulting protein-ligand covalent bond. Furthermore, the covalent bond delivers sustained inhibition, which may translate into significantly reduced therapeutic dosing. Herein, we discuss recent applications of a spectrum of TCIs, as well as covalent screening strategies, in the discovery of more effective inhibitors of PPIs using the HDM2 and BCL-2 protein families as case studies.
Collapse
Affiliation(s)
- Alexandria M Chan
- University of Maryland School of Pharmacy, Department of Pharmaceutical Sciences 20 N. Pine St Baltimore MD 21201 USA
| | - Christopher C Goodis
- University of Maryland School of Pharmacy PharmD Program, 20 N. Pine St Baltimore MD 21201 USA
| | - Elie G Pommier
- University of Maryland School of Pharmacy PharmD Program, 20 N. Pine St Baltimore MD 21201 USA
| | - Steven Fletcher
- University of Maryland School of Pharmacy, Department of Pharmaceutical Sciences 20 N. Pine St Baltimore MD 21201 USA
- University of Maryland Greenebaum Cancer Center 20 S. Greene St Baltimore MD 21201 USA
| |
Collapse
|
24
|
Lu Z, Zhang Z, Yang M, Xiao M. Ubiquitin-specific protease 1 inhibition sensitizes hepatocellular carcinoma cells to doxorubicin by ubiquitinated proliferating cell nuclear antigen-mediated attenuation of stemness. Anticancer Drugs 2022; 33:622-631. [PMID: 35324534 DOI: 10.1097/cad.0000000000001311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Currently, resistance to the chemotherapeutic agent doxorubicin (Dox) in hepatocellular carcinoma (HCC) cells is an obstacle in developing effective Dox-targeted clinical therapies. Ubiquitin-specific protease 1 (USP1) plays a crucial role in the progression of multiple cancers. In this study, the purpose was to investigate the effect of USP1 depletion with chemotherapeutant Dox on the HCC cells. Flow cytometry was used to detect the ratio of apoptosis. The expression levels of selected proteins were evaluated by western blotting. In addition, the expression of genes was quantitated by quantitative real-time PCR assay. Coimmunoprecipitation was performed to confirm the interaction between USP1 and proliferating cell nuclear antigen (PCNA). Sphere formation assay was carried out to investigate the cancer stemness. Subcutaneous xenograft and orthotopic liver tumor models were established to examine the growth of tumor. Knockdown of USP1 increased the rate of Dox-induced apoptosis in stem-like and nonstem-like HCC cells. The combination of Dox and the USP1 inhibitor SJB3-019A (SJB3) markedly enhanced apoptosis in the primary liver carcinoma/PRF/5 and MHCC-97H cell lines. Notably, Dox/SJB3-induced tumor inhibition was further determined in vivo using a xenograft and orthotopic liver tumor model. Mechanically, USP1 inhibition via SJB3 or short hairpin RNA significantly decreased cancer stemness, including sphere formation ability and the expression of Nanog, Sox2, and c-Myc. The sensitization of HCC to Dox by SJB3 is attributed to the upregulation of PCNA ubiquitylation. Thus, genetic or pharmacological inhibition of USP1 restored the sensitivity of HCC cells to Dox in vitro and in vivo , representing a new potential therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Zhe Lu
- Clinical Laboratory, Women and Children's Health Care Center of Hainan Province and Departments of
| | | | - Min Yang
- Medical Oncology, Hainan Cancer Hospital, Haikou, P.R. China
| | - Meifang Xiao
- Clinical Laboratory, Women and Children's Health Care Center of Hainan Province and Departments of
| |
Collapse
|
25
|
Winder ML, Campbell KJ. MCL-1 is a clinically targetable vulnerability in breast cancer. Cell Cycle 2022; 21:1439-1455. [PMID: 35349392 PMCID: PMC9278428 DOI: 10.1080/15384101.2022.2054096] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 11/03/2022] Open
Abstract
Pro-survival members of the BCL-2 family, including MCL-1, are emerging as important proteins during the development and therapeutic response of solid tumors. Notably, high levels of MCL-1 occur in breast cancer, where functional dependency has been demonstrated using cell lines and mouse models. The utility of restoring apoptosis in cancer cells through inhibition of pro-survival BCL-2 proteins has been realized in the clinic, where the first specific inhibitor of BCL-2 is approved for use in leukemia. A variety of MCL-1 inhibitors are now undergoing clinical trials for blood cancer treatment and application of this new class of drugs is also being tested in solid cancers. On-target compounds specific to MCL-1 have demonstrated promising efficacy in preclinical models of breast cancer and show potential to enhance the anti-tumor effect of conventional therapies. Taken together, this makes MCL-1 an extremely attractive target for clinical evaluation in the context of breast cancer.Abbreviations: ADC (antibody-drug conjugate); AML (Acute myeloid leukemia); APAF1 (apoptotic protease activating factor 1); bCAFs (breast cancer associated fibroblasts); BCL-2 (B-cell lymphoma 2); BH (BCL-2 homology); CLL (chronic lymphocytic leukemia); EGF (epidermal growth factor); EMT (epithelial to mesenchymal transition); ER (estrogen receptor); FDA (food and drug administration); GEMM (genetically engineered mouse model); HER2 (human epidermal growth factor 2); IL6 (interleukin 6); IMM (inner mitochondrial membrane); IMS (intermembrane space); MCL-1 (myeloid cell leukemia-1); MOMP (mitochondrial outer membrane permeabilisation); MM (multiple myeloma); PDX (patient-derived xenograft); OMM (outer mitochondrial membrane); PROTAC (proteolysis-targeting chimeras) TNBC (triple negative breast cancer); UPS (ubiquitin mediated proteolysis system).
Collapse
Affiliation(s)
- Matthew L Winder
- CRUK Beatson Institute, Garscube Estate,Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Kirsteen J Campbell
- CRUK Beatson Institute, Garscube Estate,Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| |
Collapse
|
26
|
Semba M, Takamatsu S, Komazawa-Sakon S, Miyoshi E, Nishiyama C, Nakano H, Moriwaki K. Proscillaridin A Sensitizes Human Colon Cancer Cells to TRAIL-Induced Cell Death. Int J Mol Sci 2022; 23:ijms23136973. [PMID: 35805980 PMCID: PMC9266755 DOI: 10.3390/ijms23136973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytotoxic cytokine that induces cancer cell death by binding to TRAIL receptors. Because of its selective cytotoxicity toward cancer cells, TRAIL therapeutics, such as recombinant TRAIL and agonistic antibodies targeting TRAIL receptors, have garnered attention as promising cancer treatment agents. However, many cancer cells acquire resistance to TRAIL-induced cell death. To overcome this issue, we searched for agents to sensitize cancer cells to TRAIL-induced cell death by screening a small-molecule chemical library consisting of diverse compounds. We identified a cardiac glycoside, proscillaridin A, as the most effective TRAIL sensitizer in colon cancer cells. Proscillaridin A synergistically enhanced TRAIL-induced cell death in TRAIL-sensitive and -resistant colon cancer cells. Additionally, proscillaridin A enhanced cell death in cells treated with TRAIL and TRAIL sensitizer, the second mitochondria-derived activator of caspase mimetic. Proscillaridin A upregulated TRAIL receptor expression, while downregulating the levels of the anti-cell death molecules, cellular FADD-like IL-1β converting enzyme-like inhibitor protein and Mcl1, in a cell type-dependent manner. Furthermore, proscillaridin A enhanced TRAIL-induced cell death partly via O-glycosylation. Taken together, our findings suggest that proscillaridin A is a promising agent that enhances the anti-cancer efficacy of TRAIL therapeutics.
Collapse
Affiliation(s)
- Manami Semba
- Department of Biochemistry, Graduate School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan; (M.S.); (S.K.-S.); (H.N.)
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan;
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Faculty of Medicine, Osaka University, Suita 565-0871, Osaka, Japan; (S.T.); (E.M.)
| | - Sachiko Komazawa-Sakon
- Department of Biochemistry, Graduate School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan; (M.S.); (S.K.-S.); (H.N.)
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Faculty of Medicine, Osaka University, Suita 565-0871, Osaka, Japan; (S.T.); (E.M.)
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan;
| | - Hiroyasu Nakano
- Department of Biochemistry, Graduate School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan; (M.S.); (S.K.-S.); (H.N.)
| | - Kenta Moriwaki
- Department of Biochemistry, Graduate School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan; (M.S.); (S.K.-S.); (H.N.)
- Correspondence: ; Tel.: +81-3-3762-4151 (ext. 2355)
| |
Collapse
|
27
|
Wang S, Zhang S, Lin Z, Ma J, Zhu L, Liao G. Identification and Validation of an Apoptosis-Related Gene Prognostic Signature for Oral Squamous Cell Carcinoma. Front Oncol 2022; 12:889049. [PMID: 35769708 PMCID: PMC9235536 DOI: 10.3389/fonc.2022.889049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
To identify an apoptosis-related gene (ARG) prediction model for oral squamous cell carcinoma (OSCC), we analyzed and validated the data from TCGA and GEO, respectively. Kaplan–Meier survival analysis and ROC curves showed a good prognostic ability of the model both in the internal training set and in the external testing set. Furthermore, we built a nomogram using these ARGs to forecast the survival probability of OSCC patients. Moreover, we evaluated the rate of immune cells infiltrating in the tumor samples and found obvious, different patterns between the high and low risk groups. GO and KEGG analyses demonstrated multiple molecular biological processes and signaling pathways connecting with this prognostic model in OSCC. The expression of these risk genes in clinical specimens was higher in the non-survival patients than in the well-survival patients by immunohistochemical staining analysis. In conclusion, we established a signature made up of six risk apoptosis-related genes to predict the survival rate of OSCC. These genes could also be targets for the treatment of OSCC.
Collapse
Affiliation(s)
- Shuqin Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Sien Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhi Lin
- Department of Stomatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingxin Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lijun Zhu
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Guiqing Liao, ; Lijun Zhu,
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- *Correspondence: Guiqing Liao, ; Lijun Zhu,
| |
Collapse
|
28
|
Zhang Q, Liu YJ, Li JP, Zeng SH, Shen H, Han M, Guo S, Liu SL, Zou X. USP35 is a Potential Immunosuppressive Factor in Skin Cutaneous Melanoma. J Inflamm Res 2022; 15:3065-3082. [PMID: 35637872 PMCID: PMC9148213 DOI: 10.2147/jir.s362619] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
Background As one of the most immunogenic malignancies, skin cutaneous melanoma (SKCM) is mainly characterized by a high prevalence in immune-compromised patients and a brisk lymphocyte infiltration in the tumor microenvironment (TME). However, to date, studies on deubiquitination in SKCM are still very limited. Methods Public data with regard to this study in SKCM patients were acquired from The Cancer Genome Atlas (TCGA) and the Gene-Expression Omnibus (GEO) databases. We stratified TCGA-SKCM cases using consensus clustering and identified independent prognostic factors in deubiquitinating enzymes encoding genes (DECGs) by LASSO-Cox analysis. USP35 transcriptome level was examined using public data and validated by Immunohistochemical (IHC) staining at the protein level. Enrichment analysis was used to explore the potential functions of USP35, and the TISCH database, providing further evidence at the single-cell level. The CIBERSORT algorithm was used to assess the relationship between USP35 and the immune microenvironment, and IHC was used to further evaluate the relationship between USP35 and immunotherapy response. Finally, we used the cBioPortal and the Methsurv database to analyze the significance of genomic alterations of USP35 in melanoma. Results Our results showed that DECGs can be effectively used to stratify SKCM patients, suggesting their potential significance in the development of SKCM. Furthermore, USP35 overexpression was significantly associated with an unfavorable prognosis. We further revealed that USP35 may be involved in the activation of TORC1 signaling. Most importantly, USP35 was found to be significantly associated with an immunosuppressive TME, both in terms of negative correlation with the abundance of infiltrating CD8+ T cells and in terms of the fact that patients with high USP35 expression may benefit less from immunotherapy than those with low USP35 expression. Conclusion Deubiquitinating enzymes are of great importance in the diagnosis and treatment of SKCM, and USP35 is an extremely promising target for immunotherapy.
Collapse
Affiliation(s)
- Qian Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Yuan-Jie Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Jie-Pin Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China.,Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, People's Republic of China
| | - Shu-Hong Zeng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Hui Shen
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, People's Republic of China
| | - Mei Han
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Shun Guo
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Shen-Lin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Xi Zou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, People's Republic of China
| |
Collapse
|
29
|
Metformin Enhancement of Therapeutic Effects of 5-Fluorouracil and Oxaliplatin in Colon Cancer Cells and Nude Mice. Biomedicines 2022; 10:biomedicines10050955. [PMID: 35625692 PMCID: PMC9138369 DOI: 10.3390/biomedicines10050955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Studies have demonstrated that metformin has antitumor effects in addition to therapeutic effects on hyperglycemia; however, few studies have explored the effects of metformin in chemotherapy. Therefore, we hypothesized that the administration of metformin would enhance the therapeutic effects of 5-fluorouracil and oxaliplatin (FuOx) to inhibit the growth of colorectal cancer (CRC) cells in vitro and in vivo. The results of our in vitro experiments demonstrated that metformin significantly increased the effects of FuOx with respect to cell proliferation (p < 0.05), colony formation (p < 0.05), and migration (p < 0.01) and induced cell cycle arrest in the G0/G1 phase in HT29 cells and the S phase in SW480 and SW620 cells (p < 0.05). Flow cytometry analysis revealed that metformin combined with FuOx induced late apoptosis (p < 0.05) by mediating mitochondria-related Mcl-1 and Bim protein expression. Furthermore, in vivo, metformin combined with FuOx more notably reduced tumor volume than FuOx or metformin alone did in BALB/c mice (p < 0.05). These findings demonstrate that metformin may act as an adjunctive agent to enhance the chemosensitivity of CRC cells to FuOx. However, further clinical trials are warranted to validate the clinical implications of the findings.
Collapse
|
30
|
Zinngrebe J, Moepps B, Monecke T, Gierschik P, Schlichtig F, Barth TFE, Strauß G, Boldrin E, Posovszky C, Schulz A, Beringer O, Rieser E, Jacobsen E, Lorenz MR, Schwarz K, Pannicke U, Walczak H, Niessing D, Schuetz C, Fischer‐Posovszky P, Debatin K. Compound heterozygous variants in OTULIN are associated with fulminant atypical late-onset ORAS. EMBO Mol Med 2022; 14:e14901. [PMID: 35170849 PMCID: PMC8899767 DOI: 10.15252/emmm.202114901] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
Autoinflammatory diseases are a heterogenous group of disorders defined by fever and systemic inflammation suggesting involvement of genes regulating innate immune responses. Patients with homozygous loss-of-function variants in the OTU-deubiquitinase OTULIN suffer from neonatal-onset OTULIN-related autoinflammatory syndrome (ORAS) characterized by fever, panniculitis, diarrhea, and arthritis. Here, we describe an atypical form of ORAS with distinct clinical manifestation of the disease caused by two new compound heterozygous variants (c.258G>A (p.M86I)/c.500G>C (p.W167S)) in the OTULIN gene in a 7-year-old affected by a life-threatening autoinflammatory episode with sterile abscess formation. On the molecular level, we find binding of OTULIN to linear ubiquitin to be compromised by both variants; however, protein stability and catalytic activity is most affected by OTULIN variant p.W167S. These molecular changes together lead to increased levels of linear ubiquitin linkages in patient-derived cells triggering the disease. Our data indicate that the spectrum of ORAS patients is more diverse than previously thought and, thus, supposedly asymptomatic individuals might also be affected. Based on our results, we propose to subdivide the ORAS into classical and atypical entities.
Collapse
Affiliation(s)
- Julia Zinngrebe
- Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
| | - Barbara Moepps
- Institute of Pharmacology and ToxicologyUlm UniversityUlmGermany
| | - Thomas Monecke
- Institute of Pharmaceutical BiotechnologyUlm UniversityUlmGermany
| | - Peter Gierschik
- Institute of Pharmacology and ToxicologyUlm UniversityUlmGermany
| | - Ferdinand Schlichtig
- Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
| | | | - Gudrun Strauß
- Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
| | - Elena Boldrin
- Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
| | - Carsten Posovszky
- Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
| | - Ortraud Beringer
- Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
| | - Eva Rieser
- Institute of Biochemistry I & CECAD Research CenterUniversity of CologneCologneGermany
| | - Eva‐Maria Jacobsen
- Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
| | | | - Klaus Schwarz
- Institute for Transfusion MedicineUlm UniversityUlmGermany
- Institute for Clinical Transfusion Medicine and Immunogenetics UlmGerman Red Cross Blood Service Baden‐Wuerttemberg – HessenUlmGermany
| | | | - Henning Walczak
- Institute of Biochemistry I & CECAD Research CenterUniversity of CologneCologneGermany
- UCL Cancer InstituteLondonUK
| | - Dierk Niessing
- Institute of Pharmaceutical BiotechnologyUlm UniversityUlmGermany
| | | | | | - Klaus‐Michael Debatin
- Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
| |
Collapse
|
31
|
Yoon JY, Woo SM, Seo SU, Song SR, Lee SG, Kwon TK. Lucanthone, Autophagy Inhibitor, Enhances the Apoptotic Effects of TRAIL through miR-216a-5p-Mediated DR5 Upregulation and DUB3-Mediated Mcl-1 Downregulation. Int J Mol Sci 2021; 23:ijms23010017. [PMID: 35008442 PMCID: PMC8744864 DOI: 10.3390/ijms23010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
A lucanthone, one of the family of thioxanthenones, has been reported for its inhibitory effects of apurinic endonuclease-1 and autophagy. In this study, we investigated whether lucanthone could enhance tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in various cancer cells. Combined treatment with lucanthone and TRAIL significantly induced apoptosis in human renal carcinoma (Caki and ACHN), prostate carcinoma (PC3), and lung carcinoma (A549) cells. However, combined treatment did not induce apoptosis in normal mouse kidney cells (TCMK-1) and normal human skin fibroblast (HSF). Lucanthone downregulated protein expression of deubiquitinase DUB3, and a decreased expression level of DUB3 markedly led to enhance TRAIL-induced apoptosis. Ectopic expression of DUB3 inhibited combined treatment with lucanthone and TRAIL-induced apoptosis. Moreover, lucanthone increased expression level of DR5 mRNA via downregulation of miR-216a-5p. Transfection of miR-216a-5p mimics suppressed the lucanthone-induced DR5 upregulation. Taken together, these results provide the first evidence that lucanthone enhances TRAIL-induced apoptosis through DR5 upregulation by downregulation of miR-216a-5p and DUB3-dependent Mcl-1 downregulation in human renal carcinoma cells.
Collapse
Affiliation(s)
- Ji Yun Yoon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.Y.Y.); (S.M.W.); (S.U.S.); (S.R.S.); (S.G.L.)
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.Y.Y.); (S.M.W.); (S.U.S.); (S.R.S.); (S.G.L.)
| | - Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.Y.Y.); (S.M.W.); (S.U.S.); (S.R.S.); (S.G.L.)
| | - So Rae Song
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.Y.Y.); (S.M.W.); (S.U.S.); (S.R.S.); (S.G.L.)
| | - Seul Gi Lee
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.Y.Y.); (S.M.W.); (S.U.S.); (S.R.S.); (S.G.L.)
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.Y.Y.); (S.M.W.); (S.U.S.); (S.R.S.); (S.G.L.)
- Center for Forensic Pharmaceutical Science, College of Pharmacy, Keimyung University, Daegu 42601, Korea
- Correspondence: ; Tel.: +82-53-258-7358
| |
Collapse
|
32
|
Tang X, Sui X, Weng L, Liu Y. SNAIL1: Linking Tumor Metastasis to Immune Evasion. Front Immunol 2021; 12:724200. [PMID: 34917071 PMCID: PMC8669501 DOI: 10.3389/fimmu.2021.724200] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
The transcription factor Snail1, a key inducer of epithelial-mesenchymal transition (EMT), plays a critical role in tumor metastasis. Its stability is strictly controlled by multiple intracellular signal transduction pathways and the ubiquitin-proteasome system (UPS). Increasing evidence indicates that methylation and acetylation of Snail1 also affects tumor metastasis. More importantly, Snail1 is involved in tumor immunosuppression by inducing chemokines and immunosuppressive cells into the tumor microenvironment (TME). In addition, some immune checkpoints potentiate Snail1 expression, such as programmed death ligand 1 (PD-L1) and T cell immunoglobulin 3 (TIM-3). This mini review highlights the pathways and molecules involved in maintenance of Snail1 level and the significance of Snail1 in tumor immune evasion. Due to the crucial role of EMT in tumor metastasis and tumor immunosuppression, comprehensive understanding of Snail1 function may contribute to the development of novel therapeutics for cancer.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Laboratory Medicine, Binzhou Medical University, Binzhou, China
| | - Xue Sui
- Department of Laboratory Medicine, Binzhou Medical University, Binzhou, China
| | - Liang Weng
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Institute of Gerontological Cancer Research, National Clinical Research Center for Gerontology, Changsha, China.,Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, China
| | - Yongshuo Liu
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, China.,Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
33
|
BH3 Mimetics in Hematologic Malignancies. Int J Mol Sci 2021; 22:ijms221810157. [PMID: 34576319 PMCID: PMC8466478 DOI: 10.3390/ijms221810157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/28/2022] Open
Abstract
Hematologic malignancies (HM) comprise diverse cancers of lymphoid and myeloid origin, including lymphomas (approx. 40%), chronic lymphocytic leukemia (CLL, approx. 15%), multiple myeloma (MM, approx. 15%), acute myeloid leukemia (AML, approx. 10%), and many other diseases. Despite considerable improvement in treatment options and survival parameters in the new millennium, many patients with HM still develop chemotherapy-refractory diseases and require re-treatment. Because frontline therapies for the majority of HM (except for CLL) are still largely based on classical cytostatics, the relapses are often associated with defects in DNA damage response (DDR) pathways and anti-apoptotic blocks exemplified, respectively, by mutations or deletion of the TP53 tumor suppressor, and overexpression of anti-apoptotic proteins of the B-cell lymphoma 2 (BCL2) family. BCL2 homology 3 (BH3) mimetics represent a novel class of pro-apoptotic anti-cancer agents with a unique mode of action—direct targeting of mitochondria independently of TP53 gene aberrations. Consequently, BH3 mimetics can effectively eliminate even non-dividing malignant cells with adverse molecular cytogenetic alterations. Venetoclax, the nanomolar inhibitor of BCL2 anti-apoptotic protein has been approved for the therapy of CLL and AML. Numerous venetoclax-based combinatorial treatment regimens, next-generation BCL2 inhibitors, and myeloid cell leukemia 1 (MCL1) protein inhibitors, which are another class of BH3 mimetics with promising preclinical results, are currently being tested in several clinical trials in patients with diverse HM. These pivotal trials will soon answer critical questions and concerns about these innovative agents regarding not only their anti-tumor efficacy but also potential side effects, recommended dosages, and the optimal length of therapy as well as identification of reliable biomarkers of sensitivity or resistance. Effective harnessing of the full therapeutic potential of BH3 mimetics is a critical mission as it may directly translate into better management of the aggressive forms of HM and could lead to significantly improved survival parameters and quality of life in patients with urgent medical needs.
Collapse
|
34
|
Widden H, Placzek WJ. The multiple mechanisms of MCL1 in the regulation of cell fate. Commun Biol 2021; 4:1029. [PMID: 34475520 PMCID: PMC8413315 DOI: 10.1038/s42003-021-02564-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023] Open
Abstract
MCL1 (myeloid cell leukemia-1) is a widely recognized pro-survival member of the Bcl-2 (B-cell lymphoma protein 2) family and a promising target for cancer therapy. While the role MCL1 plays in apoptosis is well defined, its participation in emerging non-apoptotic signaling pathways is only beginning to be appreciated. Here, we synthesize studies characterizing MCL1s influence on cell proliferation, DNA damage response, autophagy, calcium handling, and mitochondrial quality control to highlight the broader scope that MCL1 plays in cellular homeostasis regulation. Throughout this review, we discuss which pathways are likely to be impacted by emerging MCL1 inhibitors, as well as highlight non-cancerous disease states that could deploy Bcl-2 homology 3 (BH3)-mimetics in the future. In this review Widden and Placzek synthesize studies characterizing the influence that myeloid cell leukemia-1 (MCL1) has on cell proliferation, DNA damage response, autophagy, calcium handling, and mitochondrial quality control to highlight the broader scope that it plays in cellular homeostasis regulation. They discuss which pathways are likely to be impacted by emerging MCL1 inhibitors, as well as highlight non-cancerous disease states that could deploy BH3-mimetics in the future.
Collapse
Affiliation(s)
- Hayley Widden
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
35
|
Campbell KJ, Mason SM, Winder ML, Willemsen RBE, Cloix C, Lawson H, Rooney N, Dhayade S, Sims AH, Blyth K, Tait SWG. Breast cancer dependence on MCL-1 is due to its canonical anti-apoptotic function. Cell Death Differ 2021; 28:2589-2600. [PMID: 33785871 PMCID: PMC8408186 DOI: 10.1038/s41418-021-00773-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/01/2023] Open
Abstract
High levels of the anti-apoptotic BCL-2 family member MCL-1 are frequently found in breast cancer and, appropriately, BH3-mimetic drugs that specifically target MCL-1's function in apoptosis are in development as anti-cancer therapy. MCL-1 also has reported non-canonical roles that may be relevant in its tumour-promoting effect. Here we investigate the role of MCL-1 in clinically relevant breast cancer models and address whether the canonical role of MCL-1 in apoptosis, which can be targeted using BH3-mimetic drugs, is the major function for MCL-1 in breast cancer. We show that MCL-1 is essential in established tumours with genetic deletion inducing tumour regression and inhibition with the MCL-1-specific BH3-mimetic drug S63845 significantly impeding tumour growth. Importantly, we found that the anti-tumour functions achieved by MCL-1 deletion or inhibition were completely dependent on pro-apoptotic BAX/BAK. Interestingly, we find that MCL-1 is also critical for stem cell activity in human breast cancer cells and high MCL1 expression correlates with stemness markers in tumours. This strongly supports the idea that the key function of MCL-1 in breast cancer is through its anti-apoptotic function. This has important implications for the future use of MCL-1-specific BH3-mimetic drugs in breast cancer treatment.
Collapse
Affiliation(s)
- Kirsteen J Campbell
- CRUK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | - Matthew L Winder
- CRUK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Rosalie B E Willemsen
- CRUK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Catherine Cloix
- CRUK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hannah Lawson
- CRUK Beatson Institute, Glasgow, UK
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | | | - Andrew H Sims
- CRUK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Karen Blyth
- CRUK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Stephen W G Tait
- CRUK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
36
|
Choi SJ, Ahn CH, Hong KO, Kim JH, Hong SD, Shin JA, Cho SD. Molecular mechanism underlying the apoptotic modulation by ethanol extract of Pseudolarix kaempferi in mucoepidermoid carcinoma of the salivary glands. Cancer Cell Int 2021; 21:427. [PMID: 34391437 PMCID: PMC8364062 DOI: 10.1186/s12935-021-02134-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 11/11/2022] Open
Abstract
Background Pseudolarix kaempferi is a traditional Chinese natural product that possesses the potential cytotoxic effects against cancer. However, the precise molecular mechanism underlying its cytotoxic effects has not yet been completely elucidated. Here, we clarify the mechanism via which the ethanol extract of P. kaempferi (EEPK) leads to cytotoxicity mediated by apoptosis in mucoepidermoid carcinoma (MEC) originating from the salivary glands. Methods We investigated the mechanism underlying the anticancer efficacy of EEPK in human MEC in vitro by assessing mitochondrial dysfunction, mRNA levels, and morphological changes in apoptotic cell nuclei as well as by using a cytotoxicity assay, flow cytometric analysis, and western blotting. Results EEPK inhibited the growth of two human MEC cells and stimulated the induction of caspase-mediated apoptosis that was accompanied by mitochondrial membrane depolarization. Compared with the vehicle control groups, EEPK decreased myeloid cell leukemia-1 (Mcl-1) expression in both cells whereas it significantly decreased B cell lymphoma-2 (Bcl-2) expression in MC3 cells only. The EEPK-induced altered Mcl-1 expression was caused by translational inhibition and proteasomal degradation. Additionally, EEPK significantly increased p-Bcl-2 (Ser70) expression regardless of its total forms by facilitating the activation of the c-Jun N-terminal kinase (JNK) signaling pathway, which exhibited cell context dependency. Nevertheless, JNK activation following EEPK treatment was, at least in part, required for the proapoptotic efficacy of EEPK in both cells. Conclusions This study revealed that EEPK-induced alterations of Mcl-1 inhibition and JNK/Bcl-2 phosphorylation cause apoptosis and provided basic preclinical data for future clinical trials regarding therapy for patients with MEC. Graphic abstract ![]()
Collapse
Affiliation(s)
- Su-Jung Choi
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea
| | - Chi-Hyun Ahn
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea.,51-9, HLB Life Science Co., Ltd., Dongtancheomdansaneop 1-ro, 8f, Gyeonggi-do, 18469, Hwaseong-si, Republic of Korea
| | - Kyoung-Ok Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea.,, 412Ho, Healthcare Innovation Park, 172 Dolma-ro, Bundang-gu, Gyeonggi-do, 13605, Seongnam-si, Republic of Korea
| | - Ji-Hoon Kim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea.
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Li F, Aljahdali IAM, Zhang R, Nastiuk KL, Krolewski JJ, Ling X. Kidney cancer biomarkers and targets for therapeutics: survivin (BIRC5), XIAP, MCL-1, HIF1α, HIF2α, NRF2, MDM2, MDM4, p53, KRAS and AKT in renal cell carcinoma. J Exp Clin Cancer Res 2021; 40:254. [PMID: 34384473 PMCID: PMC8359575 DOI: 10.1186/s13046-021-02026-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence of renal cell carcinoma (RCC) is increasing worldwide with an approximate 20% mortality rate. The challenge in RCC is the therapy-resistance. Cancer resistance to treatment employs multiple mechanisms due to cancer heterogeneity with multiple genetic and epigenetic alterations. These changes include aberrant overexpression of (1) anticancer cell death proteins (e.g., survivin/BIRC5), (2) DNA repair regulators (e.g., ERCC6) and (3) efflux pump proteins (e.g., ABCG2/BCRP); mutations and/or deregulation of key (4) oncogenes (e.g., MDM2, KRAS) and/or (5) tumor suppressor genes (e.g., TP5/p53); and (6) deregulation of redox-sensitive regulators (e.g., HIF, NRF2). Foci of tumor cells that have these genetic alterations and/or deregulation possess survival advantages and are selected for survival during treatment. We will review the significance of survivin (BIRC5), XIAP, MCL-1, HIF1α, HIF2α, NRF2, MDM2, MDM4, TP5/p53, KRAS and AKT in treatment resistance as the potential therapeutic biomarkers and/or targets in RCC in parallel with our analized RCC-relevant TCGA genetic results from each of these gene/protein molecules. We then present our data to show the anticancer drug FL118 modulation of these protein targets and RCC cell/tumor growth. Finally, we include additional data to show a promising FL118 analogue (FL496) for treating the specialized type 2 papillary RCC.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
- Genitourinary Disease Site Research Group, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
- Kidney Cancer Research Interest Group, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
- Developmental Therapeutics (DT) Program, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
| | - Ieman A. M. Aljahdali
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
- Department of Cellular & Molecular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
| | - Renyuan Zhang
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
| | - Kent L. Nastiuk
- Genitourinary Disease Site Research Group, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
| | - John J. Krolewski
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
- Canget BioTekpharma LLC, Buffalo, New York 14203 USA
| |
Collapse
|
38
|
Mittal P, Singh S, Sinha R, Shrivastava A, Singh A, Singh IK. Myeloid cell leukemia 1 (MCL-1): Structural characteristics and application in cancer therapy. Int J Biol Macromol 2021; 187:999-1018. [PMID: 34339789 DOI: 10.1016/j.ijbiomac.2021.07.166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022]
Abstract
Apoptosis, a major hallmark of cancer cells, regulates cellular fate and homeostasis. BCL-2 (B-cell CLL/Lymphoma 2) protein family is popularly known to mediate the intrinsic mode of apoptosis, of which MCL-1 is a crucial member. Myeloid cell leukemia 1 (MCL-1) is an anti-apoptotic oncoprotein and one of the most investigated members of the BCL-2 family. It is commonly known to be genetically altered, aberrantly overexpressed, and primarily associated with drug resistance in various human cancers. Recent advancements in the development of selective MCL-1 inhibitors and evaluating their effectiveness in cancer treatment establish its popularity as a molecular target. The overall aim is the selective induction of apoptosis in cancer cells by using a single or combination of BCL-2 family inhibitors. Delineating the precise molecular mechanisms associated with MCL-1-mediated cancer progression will certainly improve the efficacy of clinical interventions aimed at MCL-1 and hence patient survival. This review is structured to highlight the structural characteristics of MCL-1, its specific interactions with NOXA, MCL-1-regulatory microRNAs, and at the same time focus on the emerging therapeutic strategies targeting our protein of interest (MCL-1), alone or in combination with other treatments.
Collapse
Affiliation(s)
- Pooja Mittal
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Sujata Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Rajesh Sinha
- Department of Dermatology, University of Alabama, Birmingham 35205, United States of America
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Archana Singh
- Department of Botany, Hans Raj College, University of Delhi, New Delhi 110007, India.
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India.
| |
Collapse
|
39
|
Basu-Shrivastava M, Kozoriz A, Desagher S, Lassot I. To Ubiquitinate or Not to Ubiquitinate: TRIM17 in Cell Life and Death. Cells 2021; 10:1235. [PMID: 34069831 PMCID: PMC8157266 DOI: 10.3390/cells10051235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
TRIM17 is a member of the TRIM family, a large class of RING-containing E3 ubiquitin-ligases. It is expressed at low levels in adult tissues, except in testis and in some brain regions. However, it can be highly induced in stress conditions which makes it a putative stress sensor required for the triggering of key cellular responses. As most TRIM members, TRIM17 can act as an E3 ubiquitin-ligase and promote the degradation by the proteasome of substrates such as the antiapoptotic protein MCL1. Intriguingly, TRIM17 can also prevent the ubiquitination of other proteins and stabilize them, by binding to other TRIM proteins and inhibiting their E3 ubiquitin-ligase activity. This duality of action confers several pivotal roles to TRIM17 in crucial cellular processes such as apoptosis, autophagy or cell division, but also in pathological conditions as diverse as Parkinson's disease or cancer. Here, in addition to recent data that endorse this duality, we review what is currently known from public databases and the literature about TRIM17 gene regulation and expression, TRIM17 protein structure and interactions, as well as its involvement in cell physiology and human disorders.
Collapse
Affiliation(s)
| | - Alina Kozoriz
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| | - Solange Desagher
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| | - Iréna Lassot
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| |
Collapse
|
40
|
Induction of Apoptosis, Inhibition of MCL-1, and VEGF-A Expression Are Associated with the Anti-Cancer Efficacy of Magnolol Combined with Regorafenib in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13092066. [PMID: 33922992 PMCID: PMC8123296 DOI: 10.3390/cancers13092066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
While regorafenib was approved for the treatment of advanced HCC in 2017, with a partial response and survival benefit; other combination agents to facilitate the efficacy of regorafenib still need to be explored. Magnolol is a potential natural anti-tumor compound for many types of cancers. Combination indexes calculated on the basis of both in vitro and in vivo models have indicated a synergistic effect of the combination of regorafenib and magnolol. The overexpression of the VEGF-A protein significantly diminished regorafenib's inhibition of cell viability, while the transient knockdown of VEGF-A by siRNA effectively sensitized HCC cells to regorafenib. In addition, the inhibition of MCL-1 by siRNA combined with regorafenib allowed for a significantly greater inhibition of cell growth, compared to regorafenib alone. A lower protein expression level for VEGF-A and MCL-1 was found for the combination treatment of HCC in vitro and in vivo. A superior metastasis inhibition was also found in the combination group, as compared to the single-treatment groups, using a transwell assay, wound healing assay, and Western blotting. The caspase-dependent and -independent and DNA damage effects, as determined by flow cytometry and a comet assay, were increased by the combination therapy. Taken together, magnolol sensitized HCC to regorafenib, which was correlated with the reduction of VEGF-A and MCL-1 and the induction of apoptosis.
Collapse
|
41
|
E3 Ubiquitin Ligase ASB17 Promotes Apoptosis by Ubiquitylating and Degrading BCLW and MCL1. BIOLOGY 2021; 10:biology10030234. [PMID: 33803505 PMCID: PMC8003104 DOI: 10.3390/biology10030234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary B-cell lymphoma-2 family proteins have been widely accepted as the critical regulators in cell apoptosis, often found to be abnormally expressed in many cancers. Among them, B-cell leukemia/lymphoma w and myeloid cell leukemia-1 are two pro-survival proteins. Here, we reported that the ankyrin repeat and SOCS box protein 17 can degrade the two proteins in a ubiquitylation -dependent way. Furthermore, we generated the first ASB17 knockout C57BL/6J mice line. The results revealed that ASB17 deficiency inhibited apoptosis but did not affect testes development. Moreover, the ASB17-deficient mice were more resistant to the stimuli of etoposide, Altogether, these findings indicate that ASB17 is a novel positive mediator of cell apoptosis. Abstract Apoptosis is a very important process of cell death controlled by multiple genes during which cells undergo certain events before dying. Apoptosis helps to clean the unnecessary cells and has critical physiological significance. Altered apoptosis results in a disorder of cell death and is associated with many diseases such as neurodegenerative diseases and cancers. Here, we reported that the ankyrin repeat and SOCS box protein 17 (ASB17) was mainly expressed in the testis and promoted apoptosis both in vivo and in vitro. Analyzing ASB17-deficient mice generated by using the CRISPR/Cas9 system, we demonstrated that ASB17 deficiency resulted in the reduction of apoptosis in spermatogenic cells, but it did not affect the development of spermatozoa or normal fertility. Next, in an in vivo model, ASB17 deficiency prevented the apoptosis of spermatogonia induced by etoposide in male mice. We noted that ASB17 promoted apoptosis in a caspase-dependent manner in vitro. Moreover, ASB17 interacted with the members of the BCL2 family, including BCL2, BCLX, BCLW, and MCL1. Interestingly, ASB17 specifically degraded the two anti-apoptotic factors, BCLW and MCL1, in a ubiquitylation-dependent fashion. Collectively, our findings suggested that ASB17 acted as a distinct positive regulator of cell apoptosis.
Collapse
|
42
|
It's time to die: BH3 mimetics in solid tumors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118987. [PMID: 33600840 DOI: 10.1016/j.bbamcr.2021.118987] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/31/2022]
Abstract
The removal of cells by apoptosis is an essential process regulating tissue homeostasis. Cancer cells acquire the ability to circumvent apoptosis and survive in an unphysiological tissue context. Thereby, the Bcl-2 protein family plays a key role in the initiation of apoptosis, and overexpression of the anti-apoptotic Bcl-2 proteins is one of the molecular mechanisms protecting cancer cells from apoptosis. Recently, small molecules targeting the anti-apoptotic Bcl-2 family proteins have been identified, and with venetoclax the first of these BH3 mimetics has been approved for the treatment of leukemia. In solid tumors the anti-apoptotic Bcl-2 family proteins Mcl-1 and Bcl-xL are frequently overexpressed or genetically amplified. In this review, we summarize the role of Mcl-1 and Bcl-xL in solid tumors and compare the different BH3 mimetics targeting Mcl-1 or Bcl-xL.
Collapse
|
43
|
Li S, Guo W, Wu H. The role of post-translational modifications in the regulation of MCL1. Cell Signal 2021; 81:109933. [PMID: 33508399 DOI: 10.1016/j.cellsig.2021.109933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/25/2022]
Abstract
Apoptosis is an evolutionarily conserved form of programed cell death (PCD) that has a vital effect on early embryonic development, tissue homeostasis and clearance of damaged cells. Dysregulation of apoptosis can lead to many diseases, such as Alzheimer's disease, cancer, AIDS and heart disease. The anti-apoptotic protein MCL1, a member of the BCL2 family, plays important roles in these physiological and pathological processes. Its high expression is closely related to drug resistances in the treatment of tumor. This review summarizes the structure and function of MCL1, the types of post-translational modifications of MCL1 and their effects on the functions of MCL1, as well as the treatment strategies targeting MCL1 in cancer therapy. The research on the fine regulation of MCL1 will be favorable to the provision of a promising future for the design and screening of MCL1 inhibitors.
Collapse
Affiliation(s)
- Shujing Li
- School of Bioengineering & Province Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, China
| | - Wanping Guo
- School of Bioengineering & Province Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, China
| | - Huijian Wu
- School of Bioengineering & Province Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, China.
| |
Collapse
|
44
|
Yu Q, Sun Y. Targeting Protein Neddylation to Inactivate Cullin-RING Ligases by Gossypol: A Lucky Hit or a New Start? DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1-8. [PMID: 33442232 PMCID: PMC7797302 DOI: 10.2147/dddt.s286373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/16/2020] [Indexed: 01/26/2023]
Abstract
Cullin-RING E3 ligases (CRLs) are the largest family of E3 ubiquitin ligases, responsible for about 20% of the protein degradation by the ubiquitin-proteasome system (UPS). Given their vital roles in multiple cellular processes, and over-activation in many human cancers, CRLs are validated as promising targets for anti-cancer therapies. Activation of CRLs requires cullin neddylation, a process catalysed by three neddylation enzymes. Recently, our group established an AlphaScreen-based in vitro cullin neddylation assay and employed it for high-throughput screening to search for small-molecule inhibitors targeting cullin neddylation. During our pilot screen, gossypol, a natural product extracted from cottonseeds, was identified as one of the most potent neddylation inhibitors of cullin-1 and cullin-5. We further demonstrated that gossypol blocks cullin neddylation by binding to cullin-1/-5 to inactivate CRL1/5 ligase activity, leading to accumulation of MCL-1 and NOXA, the substrates of CRL1 and CRL5, respectively. The combination of gossypol and an MCL-1 inhibitor synergistically enhanced the anti-proliferative effect in multiple human cancer cell lines. Our study unveiled a rational combination of two previously known inhibitors of the Bcl-2 family for enhanced anti-cancer efficacy and identified a novel activity of gossypol as an inhibitor of CRL1 and CRL5 E3s, thus providing a new possibility in the development of novel CRL inhibitors for anti-cancer therapy.
Collapse
Affiliation(s)
- Qing Yu
- Department of Head and Neck Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.,Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
45
|
Bolomsky A, Vogler M, Köse MC, Heckman CA, Ehx G, Ludwig H, Caers J. MCL-1 inhibitors, fast-lane development of a new class of anti-cancer agents. J Hematol Oncol 2020; 13:173. [PMID: 33308268 PMCID: PMC7731749 DOI: 10.1186/s13045-020-01007-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022] Open
Abstract
Cell death escape is one of the most prominent features of tumor cells and closely linked to the dysregulation of members of the Bcl-2 family of proteins. Among those, the anti-apoptotic family member myeloid cell leukemia-1 (MCL-1) acts as a master regulator of apoptosis in various human malignancies. Irrespective of its unfavorable structure profile, independent research efforts recently led to the generation of highly potent MCL-1 inhibitors that are currently evaluated in clinical trials. This offers new perspectives to target a so far undruggable cancer cell dependency. However, a detailed understanding about the tumor and tissue type specific implications of MCL-1 are a prerequisite for the optimal (i.e., precision medicine guided) use of this novel drug class. In this review, we summarize the major functions of MCL-1 with a special focus on cancer, provide insights into its different roles in solid vs. hematological tumors and give an update about the (pre)clinical development program of state-of-the-art MCL-1 targeting compounds. We aim to raise the awareness about the heterogeneous role of MCL-1 as drug target between, but also within tumor entities and to highlight the importance of rationale treatment decisions on a case by case basis.
Collapse
Affiliation(s)
- Arnold Bolomsky
- Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| | - Meike Vogler
- Department of Clinical Hematology, GIGA-I3, University of Liège, CHU De Liège, 35, Dom Univ Sart Tilman B, 4000, Liège, Belgium
| | - Murat Cem Köse
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland-FIMM, HiLIFE-Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Grégory Ehx
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Heinz Ludwig
- Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| | - Jo Caers
- Department of Clinical Hematology, GIGA-I3, University of Liège, CHU De Liège, 35, Dom Univ Sart Tilman B, 4000, Liège, Belgium.
| |
Collapse
|