1
|
Cao Z, Quazi S, Arora S, Osellame LD, Burvenich IJ, Janes PW, Scott AM. Cancer-associated fibroblasts as therapeutic targets for cancer: advances, challenges, and future prospects. J Biomed Sci 2025; 32:7. [PMID: 39780187 PMCID: PMC11715488 DOI: 10.1186/s12929-024-01099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/09/2024] [Indexed: 01/11/2025] Open
Abstract
Research into cancer treatment has been mainly focused on developing therapies to directly target cancer cells. Over the past decade, extensive studies have revealed critical roles of the tumour microenvironment (TME) in cancer initiation, progression, and drug resistance. Notably, cancer-associated fibroblasts (CAFs) have emerged as one of the primary contributors in shaping TME, creating a favourable environment for cancer development. Many preclinical studies have identified promising targets on CAFs, demonstrating remarkable efficacy of some CAF-targeted treatments in preclinical models. Encouraged by these compelling findings, therapeutic strategies have now advanced into clinical evaluation. We aim to provide a comprehensive review of relevant subjects on CAFs, including CAF-related markers and targets, their multifaceted roles, and current landscape of ongoing clinical trials. This knowledge can guide future research on CAFs and advocate for clinical investigations targeting CAFs.
Collapse
Affiliation(s)
- Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
| | - Sadia Quazi
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sakshi Arora
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Laura D Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ingrid J Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peter W Janes
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
- Department of Medicine, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
2
|
Xu H, Li Y, Guo N, Wu S, Liu C, Gui Z, Xue W, Jiang X, Ye M, Geng Q, Feng X, Zhang C, Jin L, Hu C. Caveolin-1 mitigates the advancement of metabolic dysfunction-associated steatotic liver disease by reducing endoplasmic reticulum stress and pyroptosis through the restoration of cholesterol homeostasis. Int J Biol Sci 2025; 21:490-506. [PMID: 39781461 PMCID: PMC11705642 DOI: 10.7150/ijbs.100794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide, which has the potential to advance to fibrosis. CAV1 has the effects of improving liver lipid deposition in MASLD, however, the potential mechanism is largely unknown. Here, we establish a MASLD mouse model in CAV1 knockout (KO) mice and perform transcriptome analysis on livers from mice to investigate the effects of CAV1 in MASLD progression. In addition, we evaluated the expression of CAV1 in human liver samples, and also conducted assays in vitro to investigate the molecular role of CAV1 in MASLD progression. The results illustrate that the expression of liver CAV1 in the decreases during MASLD progression, which aggravates the accumulation of cholesterol in the liver, leading to more severe endoplasmic reticulum (ER) stress and pyroptosis. Mechanistically, CAV1 regulates the expression of FXR/NR1H4 and its downstream cholesterol transporter, ABCG5/ABCG8, suppressing ER stress and alleviating pyroptosis. Our study confirms CAV1 is a crucial regulator of cholesterol homeostasis in MASLD and plays an important role in disease progression.
Collapse
Affiliation(s)
- Hanlin Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Ning Guo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Shuai Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Can Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongxuan Gui
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weiju Xue
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Xiangfu Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Mengjia Ye
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Qianqian Geng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Xiaowen Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Chao Zhang
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Lei Jin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengmu Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| |
Collapse
|
3
|
Fan J, Zheng S, Wang M, Yuan X. The critical roles of caveolin-1 in lung diseases. Front Pharmacol 2024; 15:1417834. [PMID: 39380904 PMCID: PMC11458383 DOI: 10.3389/fphar.2024.1417834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Caveolin-1 (Cav-1), a structural and functional component in the caveolae, plays a critical role in transcytosis, endocytosis, and signal transduction. Cav-1 has been implicated in the mediation of cellular processes by interacting with a variety of signaling molecules. Cav-1 is widely expressed in the endothelial cells, smooth muscle cells, and fibroblasts in the various organs, including the lungs. The Cav-1-mediated internalization and regulation of signaling molecules participate in the physiological and pathological processes. Particularly, the MAPK, NF-κB, TGFβ/Smad, and eNOS/NO signaling pathways have been involved in the regulatory effects of Cav-1 in lung diseases. The important effects of Cav-1 on the lungs indicate that Cav-1 can be a potential target for the treatment of lung diseases. A Cav-1 scaffolding domain peptide CSP7 targeting Cav-1 has been developed. In this article, we mainly discuss the structure of Cav-1 and its critical roles in lung diseases, such as pneumonia, acute lung injury (ALI), asthma, chronic obstructive pulmonary disease (COPD), pulmonary hypertension, pulmonary fibrosis, and lung cancer.
Collapse
Affiliation(s)
| | | | | | - Xiaoliang Yuan
- Department of Respiratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
4
|
Neagu AN, Josan CL, Jayaweera TM, Morrissiey H, Johnson KR, Darie CC. Bio-Pathological Functions of Posttranslational Modifications of Histological Biomarkers in Breast Cancer. Molecules 2024; 29:4156. [PMID: 39275004 PMCID: PMC11397409 DOI: 10.3390/molecules29174156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Proteins are the most common types of biomarkers used in breast cancer (BC) theranostics and management. By definition, a biomarker must be a relevant, objective, stable, and quantifiable biomolecule or other parameter, but proteins are known to exhibit the most variate and profound structural and functional variation. Thus, the proteome is highly dynamic and permanently reshaped and readapted, according to changing microenvironments, to maintain the local cell and tissue homeostasis. It is known that protein posttranslational modifications (PTMs) can affect all aspects of protein function. In this review, we focused our analysis on the different types of PTMs of histological biomarkers in BC. Thus, we analyzed the most common PTMs, including phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, palmitoylation, myristoylation, and glycosylation/sialylation/fucosylation of transcription factors, proliferation marker Ki-67, plasma membrane proteins, and histone modifications. Most of these PTMs occur in the presence of cellular stress. We emphasized that these PTMs interfere with these biomarkers maintenance, turnover and lifespan, nuclear or subcellular localization, structure and function, stabilization or inactivation, initiation or silencing of genomic and non-genomic pathways, including transcriptional activities or signaling pathways, mitosis, proteostasis, cell-cell and cell-extracellular matrix (ECM) interactions, membrane trafficking, and PPIs. Moreover, PTMs of these biomarkers orchestrate all hallmark pathways that are dysregulated in BC, playing both pro- and/or antitumoral and context-specific roles in DNA damage, repair and genomic stability, inactivation/activation of tumor-suppressor genes and oncogenes, phenotypic plasticity, epigenetic regulation of gene expression and non-mutational reprogramming, proliferative signaling, endocytosis, cell death, dysregulated TME, invasion and metastasis, including epithelial-mesenchymal/mesenchymal-epithelial transition (EMT/MET), and resistance to therapy or reversal of multidrug therapy resistance. PTMs occur in the nucleus but also at the plasma membrane and cytoplasmic level and induce biomarker translocation with opposite effects. Analysis of protein PTMs allows for the discovery and validation of new biomarkers in BC, mainly for early diagnosis, like extracellular vesicle glycosylation, which may be considered as a potential source of circulating cancer biomarkers.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Claudiu-Laurentiu Josan
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Taniya M. Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| |
Collapse
|
5
|
Wang X, Yang S, Zheng C, Huang C, Yao H, Guo Z, Wu Y, Wang Z, Wu Z, Ge R, Cheng W, Yan Y, Jiang S, Sun J, Li X, Xie Q, Wang H. Multi-Omics Profiles of Small Intestine Organoids in Reaction to Breast Milk and Different Infant Formula Preparations. Nutrients 2024; 16:2951. [PMID: 39275267 PMCID: PMC11397455 DOI: 10.3390/nu16172951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Ensuring optimal infant nutrition is crucial for the health and development of children. Many infants aged 0-6 months are fed with infant formula rather than breast milk. Research on cancer cell lines and animal models is limited to examining the nutrition effects of formula and breast milk, as it does not comprehensively consider absorption, metabolism, and the health and social determinants of the infant and its physiology. Our study utilized small intestine organoids induced from human embryo stem cell (ESC) to compare the nutritional effects of breast milk from five donors during their postpartum lactation period of 1-6 months and three types of Stage 1 infant formulae from regular retail stores. Using transcriptomics and untargeted metabolomics approaches, we focused on the differences such as cell growth and development, cell junctions, and extracellular matrix. We also analyzed the roles of pathways including AMPK, Hippo, and Wnt, and identified key genes such as ALPI, SMAD3, TJP1, and WWTR1 for small intestine development. Through observational and in-vitro analysis, our study demonstrates ESC-derived organoids might be a promising model for exploring nutritional effects and underlying mechanisms.
Collapse
Affiliation(s)
- Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shangzhi Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chengdong Zheng
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Chenxuan Huang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Haiyang Yao
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zimo Guo
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yilun Wu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zening Wang
- Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Zhenyang Wu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Ruihong Ge
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuanyuan Yan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shilong Jiang
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Jianguo Sun
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Xiaoguang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qinggang Xie
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
6
|
Bisht A, Dey S, Kulshreshtha R. Integrated meta-analyses of genome-wide effects of PM 2.5 in human cells identifies widespread dysregulation of genes and pathways associated with cancer progression and patient survival. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173448. [PMID: 38797421 DOI: 10.1016/j.scitotenv.2024.173448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Epidemiological studies have consistently shown a positive association between exposure to ambient PM2.5, a major component of air pollution, and various types of cancer. Previous biological research has primarily focused on the association between PM2.5 and lung cancer, with limited investigation into other cancer types. In this study, we conducted a meta-analysis on multiple PM2.5-treated normal human cell lines to identify potential molecular targets and pathways of PM2.5. Our analysis revealed 310 common differentially expressed genes (DEGs) that exhibited significant dysregulation upon exposure to PM2.5. These dysregulated genes covered a diverse range of functional categories, including oncogenes, tumor suppressor genes, and immune-related genes, which collectively contribute to PM2.5-induced carcinogenesis. Pathway enrichment analysis revealed the up-regulation of pathways associated with HIF-1, VEGF, and MAPK signalling, all of which have been implicated in various cancers. Induction in the levels of HIF pathway genes (HIF1⍺, HIF2⍺, VEGFA, BNIP3, EPO and PGK1) upon PM2.5 treatment was also confirmed by qRT-PCR. Furthermore, the construction of a protein-protein interaction (PPI) network unveiled hub genes, such as NQO1 and PDGFRB, that are known to be dysregulated and significantly correlated with overall survival in lung and breast cancer patients, suggesting their potential clinical significance. This study provides a deep insight into how PM2.5-mediated dysregulation of oncogenes or tumor suppressor genes across various human tissues may play an important role in PM2.5-induced carcinogenesis. Further exploration of these dysregulated molecular targets may enhance our understanding of the biological effects of PM2.5 and facilitate the development of preventive strategies and targeted therapies for PM2.5-associated cancers.
Collapse
Affiliation(s)
- Anadi Bisht
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi, India; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Sagnik Dey
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India; Centre of Excellence for Research on Clean Air, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
7
|
Adapa SR, Sami A, Meshram P, Ferreira GC, Jiang RHY. Uncovering Porphyrin Accumulation in the Tumor Microenvironment. Genes (Basel) 2024; 15:961. [PMID: 39062740 PMCID: PMC11275590 DOI: 10.3390/genes15070961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Heme, an iron-containing tetrapyrrole, is essential in almost all organisms. Heme biosynthesis needs to be precisely regulated particularly given the potential cytotoxicity of protoporphyrin IX, the intermediate preceding heme formation. Here, we report on the porphyrin intermediate accumulation within the tumor microenvironment (TME), which we propose to result from dysregulation of heme biosynthesis concomitant with an enhanced cancer survival dependence on mid-step genes, a process we recently termed "Porphyrin Overdrive". Specifically, porphyrins build up in both lung cancer cells and stromal cells in the TME. Within the TME's stromal cells, evidence supports cancer-associated fibroblasts (CAFs) actively producing porphyrins through an imbalanced pathway. Conversely, normal tissues exhibit no porphyrin accumulation, and CAFs deprived of tumor cease porphyrin overproduction, indicating that both cancer and tumor-stromal porphyrin overproduction is confined to the cancer-specific tissue niche. The clinical relevance of our findings is implied by establishing a correlation between imbalanced porphyrin production and overall poorer survival in more aggressive cancers. These findings illuminate the anomalous porphyrin dynamics specifically within the tumor microenvironment, suggesting a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Swamy R. Adapa
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| | - Abdus Sami
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (G.C.F.)
| | - Pravin Meshram
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| | - Gloria C. Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (G.C.F.)
- Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Rays H. Y. Jiang
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
8
|
Chatzilakou E, Hu Y, Jiang N, Yetisen AK. Biosensors for melanoma skin cancer diagnostics. Biosens Bioelectron 2024; 250:116045. [PMID: 38301546 DOI: 10.1016/j.bios.2024.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
Skin cancer is a critical global public health concern, with melanoma being the deadliest variant, correlated to 80% of skin cancer-related deaths and a remarkable propensity to metastasize. Despite notable progress in skin cancer prevention and diagnosis, the limitations of existing methods accentuate the demand for precise diagnostic tools. Biosensors have emerged as valuable clinical tools, enabling rapid and reliable point-of-care (POC) testing of skin cancer. This review offers insights into skin cancer development, highlights essential cutaneous melanoma biomarkers, and assesses the current landscape of biosensing technologies for diagnosis. The comprehensive analysis in this review underscores the transformative potential of biosensors in revolutionizing melanoma skin cancer diagnosis, emphasizing their critical role in advancing patient outcomes and healthcare efficiency. The increasing availability of these approaches supports direct diagnosis and aims to reduce the reliance on biopsies, enhancing POC diagnosis. Recent advancements in biosensors for skin cancer diagnosis hold great promise, with their integration into healthcare expected to enhance early detection accuracy and reliability, thereby mitigating socioeconomic disparities.
Collapse
Affiliation(s)
- Eleni Chatzilakou
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; JinFeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
9
|
D’Alessio A. Unraveling the Cave: A Seventy-Year Journey into the Caveolar Network, Cellular Signaling, and Human Disease. Cells 2023; 12:2680. [PMID: 38067108 PMCID: PMC10705299 DOI: 10.3390/cells12232680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
In the mid-1950s, a groundbreaking discovery revealed the fascinating presence of caveolae, referred to as flask-shaped invaginations of the plasma membrane, sparking renewed excitement in the field of cell biology. Caveolae are small, flask-shaped invaginations in the cell membrane that play crucial roles in diverse cellular processes, including endocytosis, lipid homeostasis, and signal transduction. The structural stability and functionality of these specialized membrane microdomains are attributed to the coordinated activity of scaffolding proteins, including caveolins and cavins. While caveolae and caveolins have been long appreciated for their integral roles in cellular physiology, the accumulating scientific evidence throughout the years reaffirms their association with a broad spectrum of human disorders. This review article aims to offer a thorough account of the historical advancements in caveolae research, spanning from their initial discovery to the recognition of caveolin family proteins and their intricate contributions to cellular functions. Furthermore, it will examine the consequences of a dysfunctional caveolar network in the development of human diseases.
Collapse
Affiliation(s)
- Alessio D’Alessio
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
- Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy
| |
Collapse
|
10
|
Bhowmick S, Biswas T, Ahmed M, Roy D, Mondal S. Caveolin-1 and lipids: Association and their dualism in oncogenic regulation. Biochim Biophys Acta Rev Cancer 2023; 1878:189002. [PMID: 37848094 DOI: 10.1016/j.bbcan.2023.189002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Caveolin-1 (Cav-1) is a structural protein of caveolae that functions as a molecular organizer for different cellular functions including endocytosis and cellular signaling. Cancer cells take advantage of the physical position of Cav-1, as it can communicate with extracellular matrix, help to organize growth factor receptors, redistribute cholesterol and glycosphingolipids, and finally transduce signals within the cells for oncogenesis. Recent studies emphasize the exceeding involvement of Cav-1 with different lipid bodies and in altering the metabolism, especially lipid metabolism. However, the association of Cav-1 with different lipid bodies like lipid rafts, lipid droplets, cholesterols, sphingolipids, and fatty acids is remarkably dynamic. The lipid-Cav-1 alliance plays a dual role in carcinogenesis. Both cancer progression and regression are modified and affected by the type of lipid molecule's association with Cav-1. Accordingly, this Cav-1-lipid cooperation exemplifies a cancer-type-specific treatment strategy for a better prognosis of the disease. In this review, we first present Cav-1 as an oncogenic molecule and its communication via lipid raft. We discussed the involvement of Cav-1 with lipid droplets, Cholesterol, sphingolipids, gangliosides, and ceramides. Further, we describe the Cav-1-mediated altered Fatty acid metabolism in cancer and the strategic therapeutic approaches toward Cav-1 targeting.
Collapse
Affiliation(s)
- Sramana Bhowmick
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Tannishtha Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Mehnaz Ahmed
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Debarshi Roy
- Department of Biological Sciences, Alcorn State University, Lorman, MS 39096, USA
| | - Susmita Mondal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
11
|
Ersoz NS, Bakir-Gungor B, Yousef M. GeNetOntology: identifying affected gene ontology terms via grouping, scoring, and modeling of gene expression data utilizing biological knowledge-based machine learning. Front Genet 2023; 14:1139082. [PMID: 37671046 PMCID: PMC10476493 DOI: 10.3389/fgene.2023.1139082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/05/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction: Identifying significant sets of genes that are up/downregulated under specific conditions is vital to understand disease development mechanisms at the molecular level. Along this line, in order to analyze transcriptomic data, several computational feature selection (i.e., gene selection) methods have been proposed. On the other hand, uncovering the core functions of the selected genes provides a deep understanding of diseases. In order to address this problem, biological domain knowledge-based feature selection methods have been proposed. Unlike computational gene selection approaches, these domain knowledge-based methods take the underlying biology into account and integrate knowledge from external biological resources. Gene Ontology (GO) is one such biological resource that provides ontology terms for defining the molecular function, cellular component, and biological process of the gene product. Methods: In this study, we developed a tool named GeNetOntology which performs GO-based feature selection for gene expression data analysis. In the proposed approach, the process of Grouping, Scoring, and Modeling (G-S-M) is used to identify significant GO terms. GO information has been used as the grouping information, which has been embedded into a machine learning (ML) algorithm to select informative ontology terms. The genes annotated with the selected ontology terms have been used in the training part to carry out the classification task of the ML model. The output is an important set of ontologies for the two-class classification task applied to gene expression data for a given phenotype. Results: Our approach has been tested on 11 different gene expression datasets, and the results showed that GeNetOntology successfully identified important disease-related ontology terms to be used in the classification model. Discussion: GeNetOntology will assist geneticists and scientists to identify a range of disease-related genes and ontologies in transcriptomic data analysis, and it will also help doctors design diagnosis platforms and improve patient treatment plans.
Collapse
Affiliation(s)
- Nur Sebnem Ersoz
- Department of Bioengineering, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Türkiye
| | - Burcu Bakir-Gungor
- Department of Computer Engineering, Faculty of Engineering, Abdullah Gul University, Kayseri, Türkiye
- Department of Bioengineering, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Türkiye
| | - Malik Yousef
- Department of Information Systems, Zefat Academic College, Zefat, Israel
- Galilee Digital Health Research Center (GDH), Zefat Academic College, Zefat, Israel
| |
Collapse
|
12
|
Wu I, Wang X. A novel approach to topological network analysis for the identification of metrics and signatures in non-small cell lung cancer. Sci Rep 2023; 13:8223. [PMID: 37217594 DOI: 10.1038/s41598-023-35165-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/13/2023] [Indexed: 05/24/2023] Open
Abstract
Non-small cell lung cancer (NSCLC), the primary histological form of lung cancer, accounts for about 25%-the highest-of all cancer deaths. As NSCLC is often undetected until symptoms appear in the late stages, it is imperative to discover more effective tumor-associated biomarkers for early diagnosis. Topological data analysis is one of the most powerful methodologies applicable to biological networks. However, current studies fail to consider the biological significance of their quantitative methods and utilize popular scoring metrics without verification, leading to low performance. To extract meaningful insights from genomic data, it is essential to understand the relationship between geometric correlations and biological function mechanisms. Through bioinformatics and network analyses, we propose a novel composite selection index, the C-Index, that best captures significant pathways and interactions in gene networks to identify biomarkers with the highest efficiency and accuracy. Furthermore, we establish a 4-gene biomarker signature that serves as a promising therapeutic target for NSCLC and personalized medicine. The C-Index and biomarkers discovered were validated with robust machine learning models. The methodology proposed for finding top metrics can be applied to effectively select biomarkers and early diagnose many diseases, revolutionizing the approach to topological network research for all cancers.
Collapse
Affiliation(s)
- Isabella Wu
- Choate Rosemary Hall, Wallingford, 06492, USA.
| | - Xin Wang
- Electrical Engineering, Stony Brook University, Stony Brook, 11790, USA
| |
Collapse
|
13
|
Du S, Zhu C, Ren X, Chen X, Cui X, Guan S. Regulation of secretory pathway kinase or kinase-like proteins in human cancers. Front Immunol 2023; 14:942849. [PMID: 36825005 PMCID: PMC9941534 DOI: 10.3389/fimmu.2023.942849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Secretory pathway kinase or kinase-like proteins (SPKKPs) are effective in the lumen of the endoplasmic reticulum (ER), Golgi apparatus (GA), and extracellular space. These proteins are involved in secretory signaling pathways and are distinctive from typical protein kinases. Various reports have shown that SPKKPs regulate the tumorigenesis and progression of human cancer via the phosphorylation of various substrates, which is essential in physiological and pathological processes. Emerging evidence has revealed that the expression of SPKKPs in human cancers is regulated by multiple factors. This review summarizes the current understanding of the contribution of SPKKPs in tumorigenesis and the progression of immunity. With the epidemic trend of immunotherapy, targeting SPKKPs may be a novel approach to anticancer therapy. This study briefly discusses the recent advances regarding SPKKPs.
Collapse
Affiliation(s)
- Shaonan Du
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiaolin Ren
- Department of Neurosurgery, Shenyang Red Cross Hospital, Shenyang, China
| | - Xin Chen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guan
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Hu WY, Liu LF, Afradiasbagharani P, Lu RL, Chen ZL, Hu DP, Birch LA, Prins GS. Stem cells from a malignant rat prostate cell line generate prostate cancers in vivo: a model for prostate cancer stem cell propagated tumor growth. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:377-389. [PMID: 36636689 PMCID: PMC9831920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 01/14/2023]
Abstract
Cancer stem cells (CSCs) are resistant to conventional cancer therapies, permitting the repopulation of new tumor growth and driving disease progression. Models for testing prostate CSC-propagated tumor growth are presently limited yet necessary for therapeutic advancement. Utilizing the congenic nontumorigenic NRP152 and tumorigenic NRP154 rat prostate epithelial cell lines, the present study investigated the self-renewal, differentiation, and regenerative abilities of prostate stem/progenitor cells and developed a CSC-based PCa model. NRP154 cells expressed reduced levels of tumor suppressor caveolin-1 and increased p-Src as compared to NRP152 cells. Gene knockdown of caveolin-1 in NRP152 cells upregulated p-Src, implicating their role as potential oncogenic mediators in NRP154 cells. A FACS-based Hoechst exclusion assay revealed a side population of stem-like cells (0.1%) in both NRP152 and NRP154 cell lines. Using a 3D Matrigel culture system, stem cells from both cell lines established prostaspheres at a 0.1% efficiency through asymmetric self-renewal and rapid proliferation of daughter progenitor cells. Spheres derived from both cell lines contained CD117+ and CD133+ stem cell subpopulations and basal progenitor cell subpopulations (p63+ and CK5+) but were negative for luminal cell CK8 markers at day 7. While some NRP152 sphere cells were androgen receptor (AR) positive at this timepoint, NRP154 cells were AR- up to 30 days of 3D culture. The regenerative capacity of the stem/progenitor cells was demonstrated by in vivo tissue recombination with urogenital sinus mesenchyme (UGM) and renal grafting in nude mice. While stem/progenitor cells from NRP152 spheroids generated normal prostate structures, CSCs and progeny cells from NRP154 tumoroids generated tumor tissues that were characterized by immunohistochemistry. Atypical hyperplasia and prostatic intraepithelial neoplasia (PIN) lesions progressed to adenocarcinoma with kidney invasion over 4 months. This provides clear evidence that prostate CSCs can repopulate new tumor growth outside the prostate gland that rapidly progresses to poorly differentiated adenocarcinoma with invasive capabilities. The dual in vitro/in vivo CSC model system presented herein provides a novel platform for screening therapeutic agents that target prostate CSCs for effective combined treatment protocols for local and advanced disease stages.
Collapse
Affiliation(s)
- Wen-Yang Hu
- Department of Urology, University of Illinois at ChicagoChicago, IL 60612, USA
| | - Li-Feng Liu
- Department of Urology, University of Illinois at ChicagoChicago, IL 60612, USA
| | | | - Ran-Li Lu
- Department of Urology, University of Illinois at ChicagoChicago, IL 60612, USA
| | - Zhen-Long Chen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical CenterBoston, MA 02215, USA
| | - Dan-Ping Hu
- Department of Urology, University of Illinois at ChicagoChicago, IL 60612, USA
| | - Lynn A Birch
- Department of Urology, University of Illinois at ChicagoChicago, IL 60612, USA
| | - Gail S Prins
- Department of Urology, University of Illinois at ChicagoChicago, IL 60612, USA
| |
Collapse
|
15
|
Pouliquen DL, Malloci M, Boissard A, Henry C, Guette C. Proteomes of Residual Tumors in Curcumin-Treated Rats Reveal Changes in Microenvironment/Malignant Cell Crosstalk in a Highly Invasive Model of Mesothelioma. Int J Mol Sci 2022; 23:ijms232213732. [PMID: 36430209 PMCID: PMC9691155 DOI: 10.3390/ijms232213732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Curcumin exhibits both immunomodulatory properties and anticarcinogenic effects which have been investigated in different experimental tumor models and cancer types. Its interactions with multiple signaling pathways have been documented through proteomic studies on malignant cells in culture; however, in vivo approaches are scarce. In this study, we used a rat model of highly invasive peritoneal mesothelioma to analyze the residual tumor proteomes of curcumin-treated rats in comparison with untreated tumor-bearing rats (G1) and provide insights into the modifications in the tumor microenvironment/malignant cell crosstalk. The cross-comparing analyses of the histological sections of residual tumors from two groups of rats given curcumin twice on days 21 and 26 after the tumor challenge (G2) or four times on days 7, 9, 11 and 14 (G3), in comparison with G1, identified a common increase in caveolin-1 which linked with significant abundance changes affecting 115 other proteins. The comparison of G3 vs. G2 revealed additional features for 65 main proteins, including an increase in histidine-rich glycoprotein and highly significant abundance changes for 22 other proteins regulating the tumor microenvironment, linked with the presence of numerous activated T cells. These results highlight new features in the multiple actions of curcumin on tumor microenvironment components and cancer cell invasiveness.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Université d’Angers, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
- Correspondence: ; Tel.: +33-2-41352854
| | - Marine Malloci
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, F-44000 Nantes, France
| | - Alice Boissard
- Université d’Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Cécile Henry
- Université d’Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Catherine Guette
- Université d’Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| |
Collapse
|
16
|
Enyong EN, Gurley JM, De Ieso ML, Stamer WD, Elliott MH. Caveolar and non-Caveolar Caveolin-1 in ocular homeostasis and disease. Prog Retin Eye Res 2022; 91:101094. [PMID: 35729002 PMCID: PMC9669151 DOI: 10.1016/j.preteyeres.2022.101094] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Caveolae, specialized plasma membrane invaginations present in most cell types, play important roles in multiple cellular processes including cell signaling, lipid uptake and metabolism, endocytosis and mechanotransduction. They are found in almost all cell types but most abundant in endothelial cells, adipocytes and fibroblasts. Caveolin-1 (Cav1), the signature structural protein of caveolae was the first protein associated with caveolae, and in association with Cavin1/PTRF is required for caveolae formation. Genetic ablation of either Cav1 or Cavin1/PTRF downregulates expression of the other resulting in loss of caveolae. Studies using Cav1-deficient mouse models have implicated caveolae with human diseases such as cardiomyopathies, lipodystrophies, diabetes and muscular dystrophies. While caveolins and caveolae are extensively studied in extra-ocular settings, their contributions to ocular function and disease pathogenesis are just beginning to be appreciated. Several putative caveolin/caveolae functions are relevant to the eye and Cav1 is highly expressed in retinal vascular and choroidal endothelium, Müller glia, the retinal pigment epithelium (RPE), and the Schlemm's canal endothelium and trabecular meshwork cells. Variants at the CAV1/2 gene locus are associated with risk of primary open angle glaucoma and the high risk HTRA1 variant for age-related macular degeneration is thought to exert its effect through regulation of Cav1 expression. Caveolins also play important roles in modulating retinal neuroinflammation and blood retinal barrier permeability. In this article, we describe the current state of caveolin/caveolae research in the context of ocular function and pathophysiology. Finally, we discuss new evidence showing that retinal Cav1 exists and functions outside caveolae.
Collapse
Affiliation(s)
- Eric N Enyong
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jami M Gurley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael L De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Michael H Elliott
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
17
|
Zeng R, Wu H, Qiu X, Zhuo Z, Sha W, Chen H. Predicting survival and immune microenvironment in colorectal cancer: a STAT signaling-related signature. QJM 2022; 115:596-604. [PMID: 34978566 DOI: 10.1093/qjmed/hcab334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Despite research advances, studies on predictive models of colorectal cancer (CRC) remain scarce and none have evaluated signal transducer and activator of transcription (STAT) signaling. AIM To develop an effective prognostic signature for and evaluate its association with immune microenvironment. DESIGN Comprehensive analysis based on The Cancer Genome Atlas and Gene Expression Omnibus databases with experimental validation. METHODS Gene expression and clinical profiles of CRC patients were extracted from the databases. Differentially expressed genes with prognostic values were used to construct a signature. Immune cell infiltration and composition were further evaluated by TIMER, single-sample gene set enrichment and CIBERSORT analyses. The impact of the hub gene Caveolin-1 (CAV1) on cell proliferation, apoptosis, senescence and tumor angiogenesis was experimentally validated. RESULTS The five-gene-based STAT signaling-related prognostic signature was significantly associated with CRC survival, and the nomogram was with improved prognostic efficacy than the conventional TNM stage. The STAT signaling-related signature was correlated with tumor immune microenvironment. CAV1 was further identified as the hub gene within the signature. CAV1 inhibits the proliferation and induces the apoptosis as well as senescence of CRC cells. In addition, the tumor angiogenesis of CRC can be suppressed by CAV1 overexpression. CONCLUSIONS The STAT signaling-related signature effectively predicts the prognosis and regulates tumor immune microenvironment in CRC. Our study underscores the role of STAT regulator, CAV1, as an important tumor suppressor in CRC carcinogenesis. Modulating STAT and its regulators could be a promising strategy for CRC in clinical practice.
Collapse
Affiliation(s)
- R Zeng
- From the Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Yuexiu District, Guangdong, China
- Shantou University Medical College, Shantou 515041, Jinping District, Guangdong, China
| | - H Wu
- From the Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Yuexiu District, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou 510006, Panyu District, Guangdong, China
| | - X Qiu
- Zhuguang Community Healthcare Center, Guangzhou 510080, Yuexiu District, Guangdong, China
| | - Z Zhuo
- From the Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Yuexiu District, Guangdong, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, Panyu District, Guangdong, China
| | - W Sha
- From the Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Yuexiu District, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Baiyun District, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou 510006, Panyu District, Guangdong, China
| | - H Chen
- From the Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Yuexiu District, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Baiyun District, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou 510006, Panyu District, Guangdong, China
| |
Collapse
|
18
|
Cui J, Shibata Y, Itaka K, Zhou J, Zhang J. Unbiased comparison and modularization identify time-related transcriptomic reprogramming in exercised rat cartilage: Integrated data mining and experimental validation. Front Physiol 2022; 13:974266. [PMID: 36187764 PMCID: PMC9520919 DOI: 10.3389/fphys.2022.974266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Exercise is indispensable for maintaining cartilage integrity in healthy joints and remains a recommendation for knee osteoarthritis. Although the effects of exercise on cartilage have been implied, the detailed mechanisms, such as the effect of exercise time which is important for exercise prescription, remain elusive. In this study, bioinformatic analyses, including unbiased comparisons and modularization, were performed on the transcriptomic data of rat cartilage to identify the time-related genes and signaling pathways. We found that exercise had a notable effect on cartilage transcriptome. Exercise prominently suppressed the genes related to cell division, hypertrophy, catabolism, inflammation, and immune response. The downregulated genes were more prominent and stable over time than the upregulated genes. Although exercise time did not prominently contribute to the effects of exercise, it was a factor related to a batch of cellular functions and signaling pathways, such as extracellular matrix (ECM) homeostasis and cellular response to growth factors and stress. Two clusters of genes, including early and late response genes, were identified according to the expression pattern over time. ECM organization, BMP signaling, and PI3K-Akt signaling were early responsive in the exercise duration. Moreover, time-related signaling pathways, such as inositol phosphate metabolism, nicotinate/nicotinamide metabolism, cell cycle, and Fc epsilon RI signaling pathway, were identified by unbiased mapping and polarization of the highly time-correlated genes. Immunohistochemistry staining showed that Egfr was a late response gene that increased on day 15 of exercise. This study elucidated time-related transcriptomic reprogramming induced by exercise in cartilage, advancing the understanding of cartilage homeostasis.
Collapse
Affiliation(s)
- Jiarui Cui
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yo Shibata
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Jun Zhou
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- *Correspondence: Jun Zhou, ; Jiaming Zhang,
| | - Jiaming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Zhou, ; Jiaming Zhang,
| |
Collapse
|
19
|
Guo H, Hu R, Huang G, Pu W, Chu X, Xing C, Zhang C. Molybdenum and cadmium co-exposure induces endoplasmic reticulum stress-mediated apoptosis by Th1 polarization in Shaoxing duck (Anas platyrhyncha) spleens. CHEMOSPHERE 2022; 298:134275. [PMID: 35278442 DOI: 10.1016/j.chemosphere.2022.134275] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Excessive molybdenum (Mo) and cadmium (Cd) are deleterious to animals, but immunotoxicity co-induced by Mo and Cd remains unclear. To ascertain the confederate impacts of Mo and Cd on endoplasmic reticulum (ER) stress-mediated apoptosis by Helper T (Th) cells 1 polarization in the spleen of ducks, we randomly allocated forty 8-day-old Shaoxing ducks (Anas platyrhyncha) into 4 groups and reared them with having different doses of Mo and/or Cd basic diet. At the 16th week of the experiment, serum and spleen tissues were extracted. Data confirmed that Mo and/or Cd strikingly promoted their levels in spleen, caused histological abnormality and trace elements imbalance, and disrupted Th1/Th2 balance to divert toward Th1, then triggered ER stress by increasing three branches PERK/eIF2α/CHOP, IRE1/Caspase-12 and TRAF2/JNK signaling pathways-related genes mRNA and proteins levels, which stimulated apoptosis by elevating Bak-1, Bax, Caspase-9, Caspase-3 mRNA expression, and cleaved-Caspase-9/Caspase-9, cleaved-Caspase-3/Caspase-3 proteins expression as well as apoptosis rate, and decreasing Bcl-xL, Bcl-2 mRNA expression and Bcl-2/Bax ratio. Besides, the variation in combined group was most evident. Briefly, the study indicates that Mo and/or Cd exposure trigger ER stress-induced apoptosis via Th1 polarization in duck spleens, and its mechanism is somehow closely linked with the deposition of Cd and Mo, which may aggravate toxic damage to spleen.
Collapse
Affiliation(s)
- Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gang Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
20
|
Feng S, Lou K, Zou X, Zou J, Zhang G. The Potential Role of Exosomal Proteins in Prostate Cancer. Front Oncol 2022; 12:873296. [PMID: 35747825 PMCID: PMC9209716 DOI: 10.3389/fonc.2022.873296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer is the most prevalent malignant tumor in men across developed countries. Traditional diagnostic and therapeutic methods for this tumor have become increasingly difficult to adapt to today’s medical philosophy, thus compromising early detection, diagnosis, and treatment. Prospecting for new diagnostic markers and therapeutic targets has become a hot topic in today’s research. Notably, exosomes, small vesicles characterized by a phospholipid bilayer structure released by cells that is capable of delivering different types of cargo that target specific cells to regulate biological properties, have been extensively studied. Exosomes composition, coupled with their interactions with cells make them multifaceted regulators in cancer development. Numerous studies have described the role of prostate cancer-derived exosomal proteins in diagnosis and treatment of prostate cancer. However, so far, there is no relevant literature to systematically summarize its role in tumors, which brings obstacles to the later research of related proteins. In this review, we summarize exosomal proteins derived from prostate cancer from different sources and summarize their roles in tumor development and drug resistance.
Collapse
Affiliation(s)
- Shangzhi Feng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
| | - Kecheng Lou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Junrong Zou, ; Guoxi Zhang,
| | - Guoxi Zhang
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Junrong Zou, ; Guoxi Zhang,
| |
Collapse
|
21
|
Pherez-Farah A, López-Sánchez RDC, Villela-Martínez LM, Ortiz-López R, Beltrán BE, Hernández-Hernández JA. Sphingolipids and Lymphomas: A Double-Edged Sword. Cancers (Basel) 2022; 14:2051. [PMID: 35565181 PMCID: PMC9104519 DOI: 10.3390/cancers14092051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
Lymphomas are a highly heterogeneous group of hematological neoplasms. Given their ethiopathogenic complexity, their classification and management can become difficult tasks; therefore, new approaches are continuously being sought. Metabolic reprogramming at the lipid level is a hot topic in cancer research, and sphingolipidomics has gained particular focus in this area due to the bioactive nature of molecules such as sphingoid bases, sphingosine-1-phosphate, ceramides, sphingomyelin, cerebrosides, globosides, and gangliosides. Sphingolipid metabolism has become especially exciting because they are involved in virtually every cellular process through an extremely intricate metabolic web; in fact, no two sphingolipids share the same fate. Unsurprisingly, a disruption at this level is a recurrent mechanism in lymphomagenesis, dissemination, and chemoresistance, which means potential biomarkers and therapeutical targets might be hiding within these pathways. Many comprehensive reviews describing their role in cancer exist, but because most research has been conducted in solid malignancies, evidence in lymphomagenesis is somewhat limited. In this review, we summarize key aspects of sphingolipid biochemistry and discuss their known impact in cancer biology, with a particular focus on lymphomas and possible therapeutical strategies against them.
Collapse
Affiliation(s)
- Alfredo Pherez-Farah
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico
| | | | - Luis Mario Villela-Martínez
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80030, Sinaloa, Mexico
- Hospital Fernando Ocaranza, ISSSTE, Hermosillo 83190, Sonora, Mexico
- Centro Médico Dr. Ignacio Chávez, ISSSTESON, Hermosillo 83000, Sonora, Mexico
| | - Rocío Ortiz-López
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico
| | - Brady E Beltrán
- Hospital Edgardo Rebagliati Martins, Lima 15072, Peru
- Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima 1801, Peru
| | | |
Collapse
|
22
|
Yin D, Qiu J, Hu S, Cheng L, Li H, Cheng X, Wang S, Lu J. CAV1 is a prognostic predictor for patients with idiopathic pulmonary fibrosis and lung cancer. J Biosci 2022. [DOI: 10.1007/s12038-021-00245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
The Effect of Fatty Acids on Ciprofloxacin Cytotoxic Activity in Prostate Cancer Cell Lines. Does Lipid Component Enhance Anticancer Ciprofloxacin Potential? Cancers (Basel) 2022; 14:cancers14020409. [PMID: 35053570 PMCID: PMC8773529 DOI: 10.3390/cancers14020409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Most prostate cancers are initially hormone-dependent but later gain a hormone-independent phenotype associated with changes in lipid metabolism, including enhanced absorption of extracellular fatty acids. The aim of our study was to assess the effect of ciprofloxacin conjugates with fatty acids on different type of prostate cancer (LNCaP and DU-145) and normal (RWPE-1) cells, as well as their influence on cell lipid metabolism by proteomic analysis. All tested conjugates exhibited cytotoxic potential, the most powerful for oleic, elaidic and docosahexaenoic acids. The hormone-independent DU145 line was more sensitive to derivatives than the hormone-dependent LNCaP line. These results are consistent with previously observed pronounced cytotoxic effect of conjugates on a hormone-insensitive PC3 line. Tested derivatives decreased intensity of proteins involved in prostate cancer lipid metabolism. Our findings confirm the involvement of lipid metabolism in prostate carcinogenesis indicating a target for fatty acids as drug carriers. Abstract Purpose: To assess cytotoxic effect of ciprofloxacin conjugates with fatty acids on prostate cancer cells (LNCaP and DU-145) with different hormone sensitivity, based on previous promising results from the PC3 cells. Methods: Cytotoxicity were estimated using MTT and LDH tests, whereas its mechanisms were estimated by apoptosis and IL-6 assays. The intensity of proteins involved in lipid metabolism was determined using ML-CS assay. Results: The hormone insensitive DU-145 cells were more vulnerable than the hormone sensitive LNCaP cells. The IC50 values for oleic (4), elaidic (5) and docosahexaenoic acid (8) conjugates were 20.2 µM, 17.8 µM and 16.5 µM, respectively, in DU-145 cells, whereas in LNCaP cells IC50 exceeded 20 µM. The strong conjugate cytotoxicity was confirmed in the LDH test, the highest (70.8%) for compound (5) and 64.2% for compound (8) in DU-145 cells. This effect was weaker for LNCaP cells (around 60%). The cytotoxic effect of unconjugated ciprofloxacin and fatty acids was weaker. The early apoptosis was predominant in LNCaP while in DU-145 cells both early and late apoptosis was induced. The tested conjugates decreased IL-6 release in both cancer cell lines by almost 50%. Proteomic analysis indicated influence of the ciprofloxacin conjugates on lipid metabolic proteins in prostatic cancer. Conclusion: Our findings suggested the cytotoxic potential of ciprofloxacin conjugates with reduction in proteins involved in prostate cancer progress.
Collapse
|
24
|
Links between the unfolded protein response and the DNA damage response in hypoxia: a systematic review. Biochem Soc Trans 2021; 49:1251-1263. [PMID: 34003246 PMCID: PMC8286837 DOI: 10.1042/bst20200861] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Hypoxia is a feature of most solid tumours and predicts for poor prognosis. In radiobiological hypoxia (<0.1% O2) cells become up to three times more resistant to radiation. The biological response to radiobiological hypoxia is one of few physiologically relevant stresses that activates both the unfolded protein and DNA damage responses (UPR and DDR). Links between these pathways have been identified in studies carried out in normoxia. Based in part on these previous studies and recent work from our laboratory, we hypothesised that the biological response to hypoxia likely includes overlap between the DDR and UPR. While inhibition of the DDR is a recognised strategy for improving radiation response, the possibility of achieving this through targeting the UPR has not been realised. We carried out a systematic review to identify links between the DDR and UPR, in human cell lines exposed to <2% O2. Following PRISMA guidance, literature from January 2010 to October 2020 were retrieved via Ovid MEDLINE and evaluated. A total of 202 studies were included. LAMP3, ULK1, TRIB3, CHOP, NOXA, NORAD, SIAH1/2, DYRK2, HIPK2, CREB, NUPR1, JMJD2B, NRF2, GSK-3B, GADD45a, GADD45b, STAU1, C-SRC, HK2, CAV1, CypB, CLU, IGFBP-3 and SP1 were highlighted as potential links between the hypoxic DDR and UPR. Overall, we identified very few studies which demonstrate a molecular link between the DDR and UPR in hypoxia, however, it is clear that many of the molecules highlighted warrant further investigation under radiobiological hypoxia as these may include novel therapeutic targets to improve radiotherapy response.
Collapse
|
25
|
Kadioglu O, Saeed MEM, Mahmoud N, Hussein Azawi SS, Rincic M, Liehr T, Efferth T. Identification of metastasis-related genes by genomic and transcriptomic studies in murine melanoma. Life Sci 2020; 267:118922. [PMID: 33358905 DOI: 10.1016/j.lfs.2020.118922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/10/2023]
Abstract
AIMS We systematically characterized metastatic murine B16-F10 melanoma, a sub-line derived from murine melanoma B16-F1 cells. MATERIALS AND METHODS RNA-sequencing and network analyses (Ingenuity Pathway Analysis) were performed to identify novel potential metastasis mechanisms. Chromosomal aberrations were identified by multicolor fluorescence in situ hybridization (mFISH) using all 21 murine whole chromosome painting probes. KEY FINDINGS Numerous genes were overexpressed in B16-F10 cells, some of which have been already described as being metastasis-linked. Nr5a1/sf1, a known prognostic marker for adrenal tumors, was 177-fold upregulated in B16-F10 cells compared to B16-F1 cells. Hoxb8 was 75-fold upregulated, which was previously associated with gastric cancer progression and metastasis. Ptk7, which is linked with tumorigenesis and metastasis of esophageal squamous carcinoma, was 67-fold upregulated. B16-F10 cells acquired additional chromosomal aberrations compared to B16-F1 cells, including dic(4)(pter->qter:qter->pter), +dic(6;15), +der(10)t(10;?1;16). SIGNIFICANCE In addition to well-known metastatic genes, numerous novel genes and genomic aberrations were identified, which may serve as targets for treatment in the future. Transcriptomic and genetic analyses in B16-F10 cells unraveled a range of novel metastasis mechanisms, which may also have important implications for future treatment strategies.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Nuha Mahmoud
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Shaymaa S Hussein Azawi
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Martina Rincic
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|