1
|
Forbes AN, Xu D, Cohen S, Pancholi P, Khurana E. Discovery of therapeutic targets in cancer using chromatin accessibility and transcriptomic data. Cell Syst 2024; 15:824-837.e6. [PMID: 39236711 PMCID: PMC11415227 DOI: 10.1016/j.cels.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/22/2023] [Accepted: 08/08/2024] [Indexed: 09/07/2024]
Abstract
Most cancer types lack targeted therapeutic options, and when first-line targeted therapies are available, treatment resistance is a huge challenge. Recent technological advances enable the use of assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA sequencing (RNA-seq) on patient tissue in a high-throughput manner. Here, we present a computational approach that leverages these datasets to identify drug targets based on tumor lineage. We constructed gene regulatory networks for 371 patients of 22 cancer types using machine learning approaches trained with three-dimensional genomic data for enhancer-to-promoter contacts. Next, we identified the key transcription factors (TFs) in these networks, which are used to find therapeutic vulnerabilities, by direct targeting of either TFs or the proteins that they interact with. We validated four candidates identified for neuroendocrine, liver, and renal cancers, which have a dismal prognosis with current therapeutic options.
Collapse
Affiliation(s)
- Andre Neil Forbes
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Duo Xu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sandra Cohen
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Priya Pancholi
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ekta Khurana
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
2
|
Wang C, Wang M, Wang Y, Rej RK, Aguilar A, Xu T, Bai L, Tošović J, McEachern D, Li Q, Sarkari F, Wen B, Sun D, Wang S. Discovery of CW-3308 as a Potent, Selective, and Orally Efficacious PROTAC Degrader of BRD9. J Med Chem 2024; 67:14125-14154. [PMID: 39132814 DOI: 10.1021/acs.jmedchem.4c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The bromodomain-containing protein BRD9 has emerged as an attractive therapeutic target. In the present study, we successfully identified a number of highly potent BRD9 degraders by using two different cereblon ligands developed in our laboratory. Further optimization led to the discovery of CW-3308 as a potent, selective, and orally bioavailable BRD9 degrader. It displayed degradation potency (DC50) < 10 nM and efficiency (Dmax) > 90% against BRD9 in the G401 rhabdoid tumor and HS-SY-II synovial sarcoma cell lines and had a high degradation selectivity over BRD7 and BRD4 proteins. CW-3308 achieved 91% of oral bioavailability in mice. A single oral dose efficiently reduced the BRD9 protein by >90% in the synovial sarcoma HS-SY-II xenograft tumor tissue. Oral administration effectively inhibited HS-SY-II xenograft tumor growth in mice. CW-3308 is a promising lead compound for further optimization and extensive evaluation for the treatment of synovial sarcoma, rhabdoid tumor, and other BRD9-dependent human diseases.
Collapse
Affiliation(s)
- Changwei Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mi Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rohan Kalyan Rej
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Angelo Aguilar
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tianfeng Xu
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Longchuan Bai
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jelena Tošović
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Qiuxia Li
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Farzad Sarkari
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy,, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Chen X, Huang R, Zhang Z, Song X, Shen J, Wu Q. BET Bromodomain Inhibition Potentiates Ocular Melanoma Therapy by Inducing Cell Cycle Arrest. Invest Ophthalmol Vis Sci 2024; 65:11. [PMID: 38967943 PMCID: PMC11232900 DOI: 10.1167/iovs.65.8.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/30/2024] [Indexed: 07/06/2024] Open
Abstract
Purpose Ocular melanoma is a common primary malignant ocular tumor in adults with limited effective treatments. Epigenetic regulation plays an important role in tumor development. The switching/sucrose nonfermentation (SWI/SNF) chromatin remodeling complex and bromodomain and extraterminal domain family proteins are epigenetic regulators involved in several cancers. We aimed to screen a candidate small molecule inhibitor targeting these regulators and investigate its effect and mechanism in ocular melanoma. Methods We observed phenotypes caused by knockdown of the corresponding gene and synergistic effects with BRD inhibitor treatment and SWI/SNF complex knockdown. The effect of JQ-1 on ocular melanoma cell cycle and apoptosis was analyzed with flow cytometry. Via RNA sequencing, we also explored the mechanism of BRD4. Results The best tumor inhibitory effect was observed for the BRD4 inhibitor (JQ-1), although there were no statistically obvious changes in the shBRD4 and shBRD9 groups. Interestingly, the inhibitory effect of JQ-1 was decrease in the shBRD4 group. JQ-1 inhibits the growth of melanoma in various cell lines and in tumor-bearing mice. We found 17 of these 28 common differentially expressed genes were downregulated after MEL270 and MEL290 cells treated with JQ-1. Four of these 17 genes, TP53I11, SH2D5, SEMA5A, and MDGA1, were positively correlated with BRD4. In TCGA database, low expression of TP53I11, SH2D5, SEMA5A, and MDGA1 improved the overall survival rate of patients. Furthermore, the disease-free survival rate was increased in the groups with low expression of TP53I11, SH2D5, and SEMA5A. Conclusions JQ-1 may act downstream of BRD4 and suppress ocular melanoma growth by inducing G1 cell cycle arrest.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Zhe Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Qiang Wu
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
4
|
Rej RK, Allu SR, Roy J, Acharyya RK, Kiran INC, Addepalli Y, Dhamodharan V. Orally Bioavailable Proteolysis-Targeting Chimeras: An Innovative Approach in the Golden Era of Discovering Small-Molecule Cancer Drugs. Pharmaceuticals (Basel) 2024; 17:494. [PMID: 38675453 PMCID: PMC11054475 DOI: 10.3390/ph17040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) are an emerging therapeutic modality that show promise to open a target space not accessible to conventional small molecules via a degradation-based mechanism. PROTAC degraders, due to their bifunctional nature, which is categorized as 'beyond the Rule of Five', have gained attention as a distinctive therapeutic approach for oral administration in clinical settings. However, the development of PROTACs with adequate oral bioavailability remains a significant hurdle, largely due to their large size and less than ideal physical and chemical properties. This review encapsulates the latest advancements in orally delivered PROTACs that have entered clinical evaluation as well as developments highlighted in recent scholarly articles. The insights and methodologies elaborated upon in this review could be instrumental in supporting the discovery and refinement of novel PROTAC degraders aimed at the treatment of various human cancers.
Collapse
Affiliation(s)
- Rohan Kalyan Rej
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.A.); (R.K.A.)
| | - Srinivasa Rao Allu
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.A.); (R.K.A.)
| | - Joyeeta Roy
- Rogel Cancer Center, Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Ranjan Kumar Acharyya
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.A.); (R.K.A.)
| | - I. N. Chaithanya Kiran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA;
| | - Yesu Addepalli
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - V. Dhamodharan
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany;
| |
Collapse
|
5
|
Zhang F, Zhou H, Xue J, Zhang Y, Zhou L, Leng J, Fang G, Liu Y, Wang Y, Liu H, Wu Y, Qi L, Duan R, He X, Wang Y, Liu Y, Li L, Yang J, Liang D, Chen YH. Deficiency of Transcription Factor Sp1 Contributes to Hypertrophic Cardiomyopathy. Circ Res 2024; 134:290-306. [PMID: 38197258 DOI: 10.1161/circresaha.123.323272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disorder. However, the pathogenesis of HCM, especially its nongenetic mechanisms, remains largely unclear. Transcription factors are known to be involved in various biological processes including cell growth. We hypothesized that SP1 (specificity protein 1), the first purified TF in mammals, plays a role in the cardiomyocyte growth and cardiac hypertrophy of HCM. METHODS Cardiac-specific conditional knockout of Sp1 mice were constructed to investigate the role of SP1 in the heart. The echocardiography, histochemical experiment, and transmission electron microscope were performed to analyze the cardiac phenotypes of cardiac-specific conditional knockout of Sp1 mice. RNA sequencing, chromatin immunoprecipitation sequencing, and adeno-associated virus experiments in vivo were performed to explore the downstream molecules of SP1. To examine the therapeutic effect of SP1 on HCM, an SP1 overexpression vector was constructed and injected into the mutant allele of Myh6 R404Q/+ (Myh6 c. 1211C>T) HCM mice. The human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from a patient with HCM were used to detect the potential therapeutic effects of SP1 in human HCM. RESULTS The cardiac-specific conditional knockout of Sp1 mice developed a typical HCM phenotype, displaying overt myocardial hypertrophy, interstitial fibrosis, and disordered myofilament. In addition, Sp1 knockdown dramatically increased the cell area of hiPSC-CMs and caused intracellular myofibrillar disorganization, which was similar to the hypertrophic cardiomyocytes of HCM. Mechanistically, Tuft1 was identified as the key target gene of SP1. The hypertrophic phenotypes induced by Sp1 knockdown in both hiPSC-CMs and mice could be rescued by TUFT1 (tuftelin 1) overexpression. Furthermore, SP1 overexpression suppressed the development of HCM in the mutant allele of Myh6 R404Q/+ mice and also reversed the hypertrophic phenotype of HCM hiPSC-CMs. CONCLUSIONS Our study demonstrates that SP1 deficiency leads to HCM. SP1 overexpression exhibits significant therapeutic effects on both HCM mice and HCM hiPSC-CMs, suggesting that SP1 could be a potential intervention target for HCM.
Collapse
Affiliation(s)
- Fulei Zhang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Huixing Zhou
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Jinfeng Xue
- Department of Regenerative Medicine (J.X., L.Q.), Tongji University School of Medicine, Shanghai, China
| | - Yuemei Zhang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Liping Zhou
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Junwei Leng
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Guojian Fang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yuanyuan Liu
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Jinzhou Medical University, China (Yuanyuan Liu, Y. Wang, Yan Wang)
| | - Yan Wang
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Jinzhou Medical University, China (Yuanyuan Liu, Y. Wang, Yan Wang)
| | - Hongyu Liu
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yahan Wu
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Lingbin Qi
- Department of Regenerative Medicine (J.X., L.Q.), Tongji University School of Medicine, Shanghai, China
| | - Ran Duan
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Xiaoyu He
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yan Wang
- Jinzhou Medical University, China (Yuanyuan Liu, Y. Wang, Yan Wang)
| | - Yi Liu
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Li Li
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Pathology and Pathophysiology (L.L., J.Y., Y.-H.C.), Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| | - Jian Yang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Pathology and Pathophysiology (L.L., J.Y., Y.-H.C.), Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| | - Dandan Liang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| | - Yi-Han Chen
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Pathology and Pathophysiology (L.L., J.Y., Y.-H.C.), Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| |
Collapse
|
6
|
Chen Y, Gao Z, Mohd‐Ibrahim I, Yang H, Wu L, Fu Y, Deng Y. Pan-cancer analyses of bromodomain containing 9 as a novel therapeutic target reveals its diagnostic, prognostic potential and biological mechanism in human tumours. Clin Transl Med 2024; 14:e1543. [PMID: 38303608 PMCID: PMC10835192 DOI: 10.1002/ctm2.1543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Mutations in one or more genes responsible for encoding subunits within the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodelling complexes are found in approximately 25% of cancer patients. Bromodomain containing 9 (BRD9) is a more recently identified protein coding gene, which can encode SWI/SNF chromatin-remodelling complexes subunits. Although initial evaluations of the potential of BRD9-based targeted therapy have been explored in the clinical application of a small number of cancer types, more detailed study of the diagnostic and prognostic potential, as well as the detailed biological mechanism of BRD9 remains unreported. METHODS We used various bioinformatics tools to generate a comprehensive, pan-cancer analyses of BRD9 expression in multiple disease types described in The Cancer Genome Atlas (TCGA). Experimental validation was conducted in tissue microarrays and cell lines derived from lung and colon cancers. RESULTS Our study revealed that BRD9 exhibited elevated expression in a wide range of tumours. Analysis of survival data and DNA methylation for BRD9 indicated distinct conclusions for multiple tumours. mRNA splicing and molecular binding were involved in the functional mechanism of BRD9. BRD9 may affect cancer progression through different phosphorylation sites or N6 -methyladenosine site modifications. BRD9 could potentially serve as a novel biomarker for diagnosing different cancer types, especially could accurately forecast the prognosis of melanoma patients receiving anti-programmed cell death 1 immunotherapy. BRD9 has the potential to serve as a therapeutic target, when pairing with etoposide in patients with melanoma. The BRD9/SMARCD1 axis exhibited promising discriminative performance in forecasting the prognosis of patients afflicted with liver hepatocellular carcinoma (LIHC) and mesothelioma. Additionally, this axis appears to potentially influence the immune response in LIHC by regulating the programmed death-ligand 1 immune checkpoint. For experimental validation, high expression levels of BRD9 were observed in tumour tissue samples from both lung and colon cancer patients. Knocking down BRD9 led to the inhibition of lung and colon cancer development, likely via the Wnt/β-catenin signalling pathway. CONCLUSIONS These pan-cancer study revealed the diagnostic and prognostic potential, along with the biological mechanism of BRD9 as a novel therapeutic target in human tumours.
Collapse
Affiliation(s)
- Yu Chen
- Department of Quantitative Health SciencesJohn A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluHawaiiUSA
- Department of Molecular Biosciences and BioengineeringCollege of Tropical Agriculture and Human ResourcesAgricultural SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Zitong Gao
- Department of Quantitative Health SciencesJohn A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluHawaiiUSA
- Department of Molecular Biosciences and BioengineeringCollege of Tropical Agriculture and Human ResourcesAgricultural SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Isam Mohd‐Ibrahim
- Department of Quantitative Health SciencesJohn A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluHawaiiUSA
- Department of Molecular Biosciences and BioengineeringCollege of Tropical Agriculture and Human ResourcesAgricultural SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Hua Yang
- Department of Quantitative Health SciencesJohn A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Lang Wu
- Cancer Epidemiology DivisionPopulation Sciences in the Pacific ProgramUniversity of Hawaii Cancer CenterUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Yuanyuan Fu
- Department of Quantitative Health SciencesJohn A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Youping Deng
- Department of Quantitative Health SciencesJohn A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| |
Collapse
|
7
|
Hipólito A, Xavier R, Brito C, Tomás A, Lemos I, Cabaço LC, Silva F, Oliva A, Barral DC, Vicente JB, Gonçalves LG, Pojo M, Serpa J. BRD9 status is a major contributor for cysteine metabolic remodeling through MST and EAAT3 modulation in malignant melanoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166983. [PMID: 38070581 DOI: 10.1016/j.bbadis.2023.166983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Cutaneous melanoma (CM) is the most aggressive skin cancer, showing globally increasing incidence. Hereditary CM accounts for a significant percentage (5-15 %) of all CM cases. However, most familial cases remain without a known genetic cause. Even though, BRD9 has been associated to CM as a susceptibility gene. The molecular events following BRD9 mutagenesis are still not completely understood. In this study, we disclosed BRD9 as a key regulator in cysteine metabolism and associated altered BRD9 to increased cell proliferation, migration and invasiveness, as well as to altered melanin levels, inducing higher susceptibility to melanomagenesis. It is evident that BRD9 WT and mutated BRD9 (c.183G>C) have a different impact on cysteine metabolism, respectively by inhibiting and activating MPST expression in the metastatic A375 cell line. The effect of the mutated BRD9 variant was more evident in A375 cells than in the less invasive WM115 line. Our data point out novel molecular and metabolic mechanisms dependent on BRD9 status that potentially account for the increased risk of developing CM and enhancing CM aggressiveness. Moreover, our findings emphasize the role of cysteine metabolism remodeling in melanoma progression and open new queues to follow to explore the role of BRD9 as a melanoma susceptibility or cancer-related gene.
Collapse
Affiliation(s)
- Ana Hipólito
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Renato Xavier
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Cheila Brito
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Ana Tomás
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Isabel Lemos
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal; Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Luís C Cabaço
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Fernanda Silva
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Abel Oliva
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Duarte C Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - João B Vicente
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Luís G Gonçalves
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marta Pojo
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| |
Collapse
|
8
|
Barman S, Bardhan I, Padhan J, Sudhamalla B. Integrated virtual screening and MD simulation approaches toward discovering potential inhibitors for targeting BRPF1 bromodomain in hepatocellular carcinoma. J Mol Graph Model 2024; 126:108642. [PMID: 37797430 DOI: 10.1016/j.jmgm.2023.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive and life-threatening cancers. Although multiple treatment options are available, the prognosis of HCC patients is poor due to metastasis and drug resistance. Hence, discovering novel targets is essential for better therapeutic development for HCC. In this study, we used the cancer genome atlas (TCGA) dataset to analyze the expression of bromodomain-containing proteins in HCC, as bromodomains are emerging attractive therapeutic targets. Our analysis identified BRPF1 as the most highly upregulated gene in HCC among the 43 bromodomain-containing genes. Upregulation of BRPF1 was significantly associated with poorer patient survival. Therefore, targeting BRPF1 may be an approach for HCC treatment. Previously, several potential inhibitors of BRPF1 bromodomain have been discovered. However, due to the limited clinical success of the current inhibitors, we aim to search for new inhibitors with high affinity and specificity for the BRPF1 bromodomain. In this study, we utilized high-throughput virtual screening methods to screen synthetic and natural compound databases against the BRPF1 bromodomain. In addition, we used machine learning-based QSAR modeling to predict the IC50 values of the selected BRPF1 bromodomain inhibitors. Extensive MD simulations were used to calculate the binding free energies of BRPF1 bromodomain and inhibitor complexes. Using this approach, we identified four lead scaffolds with a similar or better binding affinity towards the BRPF1 bromodomain than the previously reported inhibitors. Overall, this study discovered some promising compounds that have the potential to act as potent BRPF1 bromodomain inhibitors.
Collapse
Affiliation(s)
- Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Ishita Bardhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Jyotirmayee Padhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India.
| |
Collapse
|
9
|
Cazzanelli G, Vedove AD, Parolin E, D'Agostino VG, Unzue A, Nevado C, Caflisch A, Lolli G. Reevaluation of bromodomain ligands targeting BAZ2A. Protein Sci 2023; 32:e4752. [PMID: 37574751 PMCID: PMC10464297 DOI: 10.1002/pro.4752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/25/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
BAZ2A promotes migration and invasion in prostate cancer. Two chemical probes, the specific BAZ2-ICR, and the BAZ2/BRD9 cross-reactive GSK2801, interfere with the recognition of acetylated lysines in histones by the bromodomains of BAZ2A and of its BAZ2B paralog. The two chemical probes were tested in prostate cancer cell lines with opposite androgen susceptibility. BAZ2-ICR and GSK2801 showed different cellular efficacies in accordance with their unequal selectivity profiles. Concurrent inhibition of BAZ2 and BRD9 did not reproduce the effects observed with GSK2801, indicating possible off-targets for this chemical probe. On the other hand, the single BAZ2 inhibition by BAZ2-ICR did not phenocopy genetic ablation, demonstrating that bromodomain interference is not sufficient to strongly affect BAZ2A functionality and suggesting a PROTAC-based chemical ablation as an alternative optimization strategy and a possible therapeutic approach. In this context, we also present the crystallographic structures of BAZ2A in complex with the above chemical probes. Binding poses of TP-238 and GSK4027, chemical probes for the bromodomain subfamily I, and two ligands of the CBP/EP300 bromodomains identify additional headgroups for the development of BAZ2A ligands.
Collapse
Affiliation(s)
- Giulia Cazzanelli
- Department of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Andrea Dalle Vedove
- Department of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Eleonora Parolin
- Department of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Vito Giuseppe D'Agostino
- Department of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Andrea Unzue
- Department of ChemistryUniversity of ZürichZürichSwitzerland
| | - Cristina Nevado
- Department of ChemistryUniversity of ZürichZürichSwitzerland
| | - Amedeo Caflisch
- Department of BiochemistryUniversity of ZürichZürichSwitzerland
| | - Graziano Lolli
- Department of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| |
Collapse
|
10
|
Du X, Li Y, Lian B, Yin X. microRNA-128-3p inhibits proliferation and accelerates apoptosis of gastric cancer cells via inhibition of TUFT1. World J Surg Oncol 2023; 21:47. [PMID: 36797791 PMCID: PMC9936645 DOI: 10.1186/s12957-023-02906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/26/2022] [Indexed: 02/18/2023] Open
Abstract
OBJECTIVE Gastric cancer (GC) is a malignant tumor rooting in the gastric mucosal epithelium, ranking the first among various malignant tumors. Therefore, the influence of microRNA-128-3p (miR-128-3p) by regulation of Tuftelin1 (TUFT1) on GC cells was investigated. METHODS The expression levels of miR-128-3p and TUFT1 in GC tissues and cells were detected. The correlation between miR-128-3p expression and overall survival of GC patients was analyzed. Human GC cells MGC803 were transfected with miR-128-3p or TUFT1-related oligonucleotides to figure their roles in viability, apoptosis, invasion, as well as epithelial-mesenchymal transition (EMT). The relationship between miR-128-3p and TUFT1 was validated. RESULTS miR-128-3p expression was low and TUFT1 expression was high in GC tissues. miR-128-3p expression was positively correlated with the overall survival of patients with GC. miR-128-3p targeted TUFT1. Up-regulated miR-128-3p or suppressed TUFT1 repressed viability, invasion, and EMT, and accelerated apoptosis of GC cells. Overexpressed TUFT1 reduced miR-128-3p-mediated growth inhibition of GC cells. CONCLUSION The study stresses that miR-128-3p can inhibit TUFT1 expression, thereby repressing GC cell activities.
Collapse
Affiliation(s)
- Xiong Du
- grid.507892.10000 0004 8519 1271Department of Pathology, Yanan University Affiliated Hospital, Yan’an, 716000 Shaanxi China
| | - Yanxin Li
- grid.507892.10000 0004 8519 1271Department of Pathology, Yanan University Affiliated Hospital, Yan’an, 716000 Shaanxi China
| | - Bin Lian
- Guangzhou Huayin Medical Laboratory Center. Ltd., Guangdong 510000 Guangzhou, China
| | - Xiangli Yin
- Department of Pathology, Xi'an International Medical Center Hospital, No.777, Xitai Road, High-Tech Zone, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
11
|
Circ_CSPP1 Regulates the Development of Non-small Cell Lung Cancer via the miR-486-3p/BRD9 Axis. Biochem Genet 2023; 61:1-20. [PMID: 35678942 DOI: 10.1007/s10528-022-10231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/18/2022] [Indexed: 01/24/2023]
Abstract
In this study, we explored the role of circ_CSPP1 in non-small cell lung cancer (NSCLC) using NSCLC cell lines (A549 and H1299) and human bronchial epithelioid cells (16HBE). The differential expression of circ_CSPP1, miR-486-3p and BRD9 in NSCLC by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot in A549 cells, H1299 cells, 16HBE cells, NSCLC tissues and healthy lung tissues. Dual-luciferase reporter assay was conducted to verify the interaction between circ_CSPP1 and miR-486-3p or miR-486-3p and BRD9. The effect of circ_CSPP1/miR-486-3p/BRD9 axis on NSCLC cell proliferation was evaluated using cell counting kit-8 assay, colony formation assay, and 5-ethynyl-2'-deoxyuridine assay. Additionally, transwell assays were performed to evaluate the effect of circ_CSPP1/miR-486-3p/BRD9 axis on A549 and H1299 cell migration and invasion. The effect of circ_CSPP1 on tumor tumorigenesis of A549 cells in vivo was determined by xenograft tumor model and immunohistochemistry assay. Circ_CSPP1 and BRD9 expression were upregulated, while miR-486-3p expression was downregulated in tumor tissues of NSCCL patients and A549 and H1299 cells. Circ_CSPP1 specifically bound miR-486-3p, and miR-486-3p could target BRD9. Circ_CSPP1 upregulation promoted proliferation, invasion and migration of NSCLC cells, circ_CSPP1 knockdown or miR-486-3p upregulation had the opposite effects. Circ_CSPP1 knockdown-induced effects were reverted by miR-486-3p inhibition. Similarly, the effects of miR-486-3p upregulation on NSCLC cell proliferation, invasion and migration were reversed by BRD9 overexpression. In addition, circ_CSPP1 silencing inhibited tumor growth in nude mice. Circ_CSPP1 promoted A549 and H1299 cell malignancy by competitively inhibiting BRD9 and binding to miR-486-3p.
Collapse
|
12
|
Czerwinska P, Mackiewicz AA. Bromodomain (BrD) Family Members as Regulators of Cancer Stemness-A Comprehensive Review. Int J Mol Sci 2023; 24:995. [PMID: 36674511 PMCID: PMC9861003 DOI: 10.3390/ijms24020995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Epigenetic mechanisms involving DNA methylation and chromatin modifications have emerged as critical facilitators of cancer heterogeneity, substantially affecting cancer development and progression, modulating cell phenotypes, and enhancing or inhibiting cancer cell malignant properties. Not surprisingly, considering the importance of epigenetic regulators in normal stem cell maintenance, many chromatin-related proteins are essential to maintaining the cancer stem cell (CSC)-like state. With increased tumor-initiating capacities and self-renewal potential, CSCs promote tumor growth, provide therapy resistance, spread tumors, and facilitate tumor relapse after treatment. In this review, we characterized the epigenetic mechanisms that regulate the acquisition and maintenance of cancer stemness concerning selected epigenetic factors belonging to the Bromodomain (BrD) family of proteins. An increasing number of BrD proteins reinforce cancer stemness, supporting the maintenance of the cancer stem cell population in vitro and in vivo via the utilization of distinct mechanisms. As bromodomain possesses high druggable potential, specific BrD proteins might become novel therapeutic targets in cancers exhibiting de-differentiated tumor characteristics.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
13
|
Wang T, Min L, Gao Y, Zhao M, Feng S, Wang H, Wang Y, Zheng Y. SUMOylation of TUFT1 is essential for gastric cancer progression through AKT/mTOR signaling pathway activation. Cancer Sci 2022; 114:533-545. [PMID: 36380570 PMCID: PMC9899612 DOI: 10.1111/cas.15618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
Tuftelin (TUFT1) is highly expressed in various tumor types and promotes tumor growth and metastasis by activating AKT and other core signaling pathways. However, the effects of post-translational modifications of TUFT1 on its oncogenic function remain unexplored. In this study, we found that TUFT1 was SUMOylated at K79. SUMOylation deficiency significantly impaired the ability of TUFT1 to promote the proliferation, migration, and invasion of gastric cancer (GC) cells by blocking AKT/mTOR signaling pathway activation. SUMOylation of TUFT1 is mediated by the E3 SUMO ligase tripartite motif-containing protein 27 (TRIM27), and these two proteins regulate the malignant behavior of GC cells and AKT activation in the same pathway. TUFT1 binds to TRIM27 through its N-terminus, and decreased binding affinity of TUFT1 to TRIM27 significantly impairs its oncogenic effect. In addition, data collected from GC clinical samples indicated that the combined detection of TUFT1 and TRIM27 expression reflected tumor malignancy and patient survival with higher precision. In addition, we proved that SUMOylated TUFT1 is not only an upstream signal for AKT activation but also directly activates mTOR by forming a complex with Rab GTPase activating protein 1, which further inhibits Rab GTPases and promotes the perinuclear accumulation of mTORC1. Altogether, these data indicate that SUMOylated TUFT1 is the active form that affects GC progression through the AKT/mTOR signaling pathway and might be a promising therapeutic target or biomarker for GC progression.
Collapse
Affiliation(s)
- Tianning Wang
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina,Research Center of Translational MedicineJinan Central Hospital, Shandong UniversityJinanChina
| | - Lingyuan Min
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Yan Gao
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Mengmeng Zhao
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina,Research Center of Translational MedicineJinan Central Hospital, Shandong UniversityJinanChina
| | - Shaojie Feng
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina,Research Center of Translational MedicineJinan Central Hospital, Shandong UniversityJinanChina
| | - Huiyun Wang
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Yunshan Wang
- Research Center of Translational MedicineJinan Central Hospital, Shandong UniversityJinanChina
| | - Yan Zheng
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina,Research Center of Translational MedicineJinan Central Hospital, Shandong UniversityJinanChina
| |
Collapse
|
14
|
Shen G, Wang H, Zhu N, Lu Q, Liu J, Xu Q, Huang D. HIF-1/2α-Activated RNF146 Enhances the Proliferation and Glycolysis of Hepatocellular Carcinoma Cells via the PTEN/AKT/mTOR Pathway. Front Cell Dev Biol 2022; 10:893888. [PMID: 35721496 PMCID: PMC9200061 DOI: 10.3389/fcell.2022.893888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Hypoxia microenvironment, a critical feature of hepatocellular carcinoma, contributes to hepatocarcinogenesis, tumor progression and therapeutic resistance. Hypoxia-inducible factors (HIFs)-activated target genes are the main effectors in hypoxia-induced HCC progression. In this study, we identified ubiquitin E3 ligase ring finger protein 146 (RNF146) as a novel HIFs target gene. Either HIF-1α or HIF-2α knockdown significantly repressed hypoxia-induced RNF146 upregulation in Hep3B and Huh7 cells. TCGA data and our immunohistochemistry analysis consistently revealed the overexpression of RNF146 in HCC tissues. The upregulated expression of RNF146 was also detected in HCC cell lines. The high RNF146 level was correlated with poor clinical features and predicted a shorter overall survival of patients with HCC. RNF146 knockdown suppressed the proliferation, colony formation and glycolysis of HCC cells, but suppressed but RNF146 overexpression promoted these malignant behaviors. Moreover, RNF146 silencing weakened HCC growth in mice. RNF146 inversely regulated phosphatase and tensin homolog (PTEN) protein level, thereby activating the AKT/mechanistic target of rapamycin kinase (mTOR) pathway in HCC cells. MG132 reversed RNF146 overexpression-induced PTEN reduction. RNF146 knockdown decreased the ubiquitination and degradation of PTEN in HCC cells. Therefore, we clarified that PTEN knockdown notably abolished the effects of RNF146 silencing on the AKT/mTOR pathway and Hep3B cells’ proliferation, colony formation and glycolysis. To conclude, our data confirmed that RNF146 was transcriptionally regulated by HIF-1/2α and activated the AKT/mTOR pathway by promoting the ubiquitin proteolysis of PTEN, thereby contributing to HCC progression. RNF146 may be a potential new drug target for anti-HCC.
Collapse
Affiliation(s)
- Guoliang Shen
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou, China.,Department of General Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hao Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ning Zhu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiliang Lu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Junwei Liu
- Department of General Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
15
|
Zhou X, Zhang YN, Li FF, Zhang Z, Cui LY, He HY, Yan X, He WB, Sun HS, Feng ZP, Chu SF, Chen NH. Neuronal chemokine-like-factor 1 (CKLF1) up-regulation promotes M1 polarization of microglia in rat brain after stroke. Acta Pharmacol Sin 2022; 43:1217-1230. [PMID: 34385606 PMCID: PMC9061752 DOI: 10.1038/s41401-021-00746-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 07/16/2021] [Indexed: 11/10/2022] Open
Abstract
The phenotypic transformation of microglia in the ischemic penumbra determines the outcomes of ischemic stroke. Our previous study has shown that chemokine-like-factor 1 (CKLF1) promotes M1-type polarization of microglia. In this study, we investigated the cellular source and transcriptional regulation of CKLF1, as well as the biological function of CKLF1 in ischemic penumbra of rat brain. We showed that CKLF1 was significantly up-regulated in cultured rat cortical neurons subjected to oxygen-glucose deprivation/reoxygenation (ODG/R) injury, but not in cultured rat microglia, astrocytes and oligodendrocytes. In a rat model of middle cerebral artery occlusion, we found that CKLF1 was up-regulated and co-localized with neurons in ischemic penumbra. Furthermore, the up-regulated CKLF1 was accompanied by the enhanced nuclear accumulation of NF-κB. The transcriptional activity of CKLF1 was improved by overexpression of NF-κB in HEK293T cells, whereas application of NF-κB inhibitor Bay 11-7082 (1 μM) abolished it, caused by OGD/R. By using chromatin-immunoprecipitation (ChIP) assay we demonstrated that NF-κB directly bound to the promoter of CKLF1 (at a binding site located at -249 bp to -239 bp of CKLF1 promoter region), and regulated the transcription of human CKLF1. Moreover, neuronal conditional medium collected after OGD/R injury or CKLF1-C27 (a peptide obtained from secreted CKLF1) induced the M1-type polarization of microglia, whereas the CKLF1-neutralizing antibody (αCKLF1) or NF-κB inhibitor Bay 11-7082 abolished the M1-type polarization of microglia. Specific knockout of neuronal CKLF1 in ischemic penumbra attenuated neuronal impairments and M1-type polarization of microglia caused by ischemic/reperfusion injury, evidenced by inhibited levels of M1 marker CD16/32 and increased expression of M2 marker CD206. Application of CKLF1-C27 (200 nM) promoted the phosphorylation of p38 and JNK in microglia, whereas specific depletion of neuronal CKLF1 in ischemic penumbra abolished ischemic/reperfusion-induced p38 and JNK phosphorylation. In summary, CKLF1 up-regulation in neurons regulated by NF-κB is one of the crucial mechanisms to promote M1-type polarization of microglia in ischemic penumbra.
Collapse
Affiliation(s)
- Xin Zhou
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Ya-ni Zhang
- grid.411866.c0000 0000 8848 7685Institute of Clinical Pharmacology & Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Fang-fang Li
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Zhao Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Li-yuan Cui
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Hong-yuan He
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China ,grid.33763.320000 0004 1761 2484Tianjin University of Tradition Chinese Medicine, Tianjin, 301617 China
| | - Xu Yan
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Wen-bin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Hong-shuo Sun
- grid.17063.330000 0001 2157 2938Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Zhong-ping Feng
- grid.17063.330000 0001 2157 2938Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Shi-feng Chu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Nai-hong Chen
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China ,grid.411866.c0000 0000 8848 7685Institute of Clinical Pharmacology & Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China ,grid.33763.320000 0004 1761 2484Tianjin University of Tradition Chinese Medicine, Tianjin, 301617 China ,Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| |
Collapse
|
16
|
Exploring the Value of BRD9 as a Biomarker, Therapeutic Target and Co-Target in Prostate Cancer. Biomolecules 2021; 11:biom11121794. [PMID: 34944438 PMCID: PMC8698755 DOI: 10.3390/biom11121794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
Background and aims: Despite recent advances in advanced prostate cancer treatments, clinical biomarkers or treatments for men with such cancers are imperfect. Targeted therapies have shown promise, but there remain fewer actionable targets in prostate cancer than in other cancers. This work aims to characterise BRD9, currently understudied in prostate cancer, and investigate its co-expression with other genes to assess its potential as a biomarker and therapeutic target in human prostate cancer. Materials and methods: Omics data from a total of 2053 prostate cancer patients across 11 independent datasets were accessed via Cancertool and cBioPortal. mRNA M.expression and co-expression, mutations, amplifications, and deletions were assessed with respect to key clinical parameters including survival, Gleason grade, stage, progression, and treatment. Network and pathway analysis was carried out using Genemania, and heatmaps were constructed using Morpheus. Results: BRD9 is overexpressed in prostate cancer patients, especially those with metastatic disease. BRD9 expression did not differ in patients treated with second generation antiandrogens versus those who were not. BRD9 is co-expressed with many genes in the SWI/SNF and BET complexes, as well as those in common signalling pathways in prostate cancer. Summary and conclusions: BRD9 has potential as a diagnostic and prognostic biomarker in prostate cancer. BRD9 also shows promise as a therapeutic target, particularly in advanced prostate cancer, and as a co-target alongside other genes in the SWI/SNF and BET complexes, and those in common prostate cancer signalling pathways. These promising results highlight the need for wider experimental inhibition and co-targeted inhibition of BRD9 in vitro and in vivo, to build on the limited inhibition data available.
Collapse
|
17
|
Liu Y, Liu R, Zhao J, Zeng Z, Shi Z, Lu Q, Guo J, Li L, Yao Y, Liu X, Xu Q. LncRNA TMEM220-AS1 suppresses hepatocellular carcinoma cell proliferation and invasion by regulating the TMEM220/β-catenin axis. J Cancer 2021; 12:6805-6813. [PMID: 34659569 PMCID: PMC8517989 DOI: 10.7150/jca.63351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are critical drivers and suppressors of human hepatocellular carcinoma (HCC). The downregulation of transmembrane protein 220 antisense RNA 1 (TMEM220-AS1) is correlated with poor prognosis in HCC. Nevertheless, the role of TMEM220-AS1 in HCC and the underlying mechanism remains unclear. In this study, TMEM220-AS1 levels were markedly reduced in HCC tissues compared with noncancerous tissues. TMEM220-AS1 downregulation was confirmed in HCC cell lines. TMEM220-AS1 expression was associated with tumor stage, venous infiltration, tumor size, and survival of HCC patients. TMEM220-AS1 overexpression suppressed the migration, invasion, and proliferation of HCC cells. Interestingly, ectopic expression of TMEM220-AS1 increased TMEM220 levels in HCC cells. Decreased TMEM220 levels were observed in HCC tissues and cell lines. TMEM220 expression was positively correlated with TMEM220-AS1 levels in HCC tissue samples and TMEM220 downregulation was significantly correlated with reduced patient survival. TMEM220 overexpression suppressed HCC cell proliferation and mobility. TMEM220 knockdown eliminated the suppressive effect of TMEM220-AS1 in HCCLM3 cells. Mechanistically, TMEM220 overexpression reduced the nuclear accumulation of β-catenin and decreased MYC, Cyclin D1, and Snail1 mRNA levels in HCCLM3 cells. BIO, a GSK3β inhibitor, eliminated TMEM220-induced Wnt/β-catenin pathway inactivation and inhibited HCC cell proliferation and mobility. In conclusion, TMEM220-AS1 and TMEM220 were expressed at low levels in HCC patients. TMEM220-AS1 inhibited the malignant behavior of HCC cells by enhancing TMEM220 expression and subsequently inactivating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yang Liu
- The Medical College of Qingdao University, Qingdao, 266071, China.,The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Junjun Zhao
- Graduate Department, Bengbu Medical College, Bengbu 233030, China
| | - Zhi Zeng
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Zhan Shi
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiliang Lu
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Jinhui Guo
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Lijie Li
- Department of Obstetrics and Gynaecology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Yingmin Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xin Liu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
18
|
Mu J, Sun X, Zhao Z, Sun H, Sun P. BRD9 inhibition promotes PUMA-dependent apoptosis and augments the effect of imatinib in gastrointestinal stromal tumors. Cell Death Dis 2021; 12:962. [PMID: 34667163 PMCID: PMC8526701 DOI: 10.1038/s41419-021-04186-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 12/20/2022]
Abstract
Gastrointestinal stromal tumors (GISTs) are primarily characterized by activating mutations of tyrosine kinase or platelet-derived growth factor receptor alpha. Although the revolutionary therapeutic outcomes of imatinib are well known, the long-term benefits of imatinib are still unclear. The effects of BRD9, a recently identified subunit of noncanonical BAF complex (ncBAF) chromatin remodeling complexes, in GISTs are not clear. In the current study, we evaluated the functional role of BRD9 in GIST progression. Our findings demonstrated that the expression of BRD9 was upregulated in GIST tissues. The downregulation or inhibition of BRD9 could significantly reduce cellular proliferation, and facilitates apoptosis in GISTs. BRD9 inhibition could promote PUMA-dependent apoptosis in GISTs and enhance imatinib activity in vitro and in vivo. BRD9 inhibition synergizes with imatinib in GISTs by inducing PUMA upregulation. Mechanism study revealed that BRD9 inhibition promotes PUMA induction via the TUFT1/AKT/GSK-3β/p65 axis. Furthermore, imatinib also upregulates PUMA by targeting AKT/GSK-3β/p65 axis. In conclusion, our results indicated that BRD9 plays a key role in the progression of GISTs. Inhibition of BRD9 is a novel therapeutic strategy in GISTs treated alone or in combination with imatinib.
Collapse
Affiliation(s)
- Jianfeng Mu
- Department of Gastric and Colorectal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xuezeng Sun
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Zhipeng Zhao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hao Sun
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Pengda Sun
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
19
|
Lou W, Gao K, Xu C, Li Q. Bromodomain-containing protein 9 is a prognostic biomarker associated with immune infiltrates and promotes tumor malignancy through activating notch signaling pathway in negative HIF-2α clear cell renal cell carcinoma. IUBMB Life 2021; 73:1334-1347. [PMID: 34415102 DOI: 10.1002/iub.2547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/15/2021] [Indexed: 12/30/2022]
Abstract
HIF-2α selective inhibitor showed successful efficacy in sensitive clear cell renal cell carcinoma (ccRCC) presenting higher levels of HIF-2α compared to resistant tumors with low level of HIF-2α (negative HIF-2α ccRCC). Currently, negative HIF-2α ccRCC lacks truly effective therapeutic agents to improve the outcomes. Bromodomain-containing protein 9 (BRD9) plays a critical role in human hepatocellular carcinoma, squamous cell lung cancer, acute myeloid leukemia, and so on. However, expression and biological role of BRD9 in negative HIF-2α ccRCC is poorly understood. Clinically, we demonstrated that expression of BRD9 in negative HIF-2α ccRCC tissues was higher than that in positive HIF-2α ccRCC. Moreover, high BRD9 expression was correlated with unfavorable clinicopathological features and predicted the poor overall survival of negative HIF-2α ccRCC patients. Functionally, BRD9 knockout resulted in reduced proliferation, migration and invasion of negative HIF-2α ccRCC cells (Caki-2). In addition, BRD9 was related to the TIIC infiltration level in negative HIF-2α ccRCC tissues. Mechanistically, Gene set enrichment analysis (GSEA) showed that BRD9 was closely related to Notch signaling pathway. BRD9 knockout resulted in reduced mRNA level of Hes1 and Notch1 in negative HIF-2α ccRCC in vitro. The overexpression of NICD (Notch intracellular domain) enhanced malignant behaviors of Caki-2 cells with BRD9 knockout. And Notch inhibition led to attenuation of cell growth and reduced migration and invasion in Caki-2 cells. Overall, our results identified that BRD9 promotes the proliferation, migration and invasion of negative HIF-2α ccRCC cells by targeting Notch signaling pathway and serve as a promising biomarker for negative HIF-2α ccRCC.
Collapse
Affiliation(s)
- Weijuan Lou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ke Gao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chenyue Xu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qingquan Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Fang D, Wang MR, Guan JL, Han YY, Sheng JQ, Tian DA, Li PY. Bromodomain-containing protein 9 promotes hepatocellular carcinoma progression via activating the Wnt/β-catenin signaling pathway. Exp Cell Res 2021; 406:112727. [PMID: 34370992 DOI: 10.1016/j.yexcr.2021.112727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/08/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Epigenetic dysregulation participates in the initiation and progression of hepatocellular carcinoma (HCC). Bromodomain-containing protein 9 (BRD9) can identify acetylated lysine residues, contributing to several cancers. The function and molecular mechanism of BRD9 in HCC remain poorly understood. METHODS BRD9 levels in tissues and cells of HCC and normal liver were evaluated using bioinformatic analysis, real-time PCR, and western blot. BRD9's association with clinical outcomes was investigated via survival analyses. Biological behaviors and pathways related to BRD9 were predicted using gene set enrichment analysis. BRD9's role in proliferation was verified via cell counting kit 8, colony formation, and 5-Ethynyl-2'-deoxyuridine assays. Its role in the cell cycle and apoptosis was assessed using flow cytometry. The role of BRD9 in vivo was investigated using xenograft tumor models. A rescue assay was performed to investigate the molecular mechanism of BRD9. RESULTS BRD9 was markedly upregulated in HCC and higher BRD9 expression was associated with higher grade, advanced stage, greater tumor size, and poorer prognosis. BRD9 overexpression enhanced cell proliferation, cell cycle progress, but impeded cell apoptosis. BRD9 downregulation had the opposite effects. In vivo, BRD9 promoted xenograft tumor growth. Mechanistically, BRD9 activated Wnt/β-catenin signaling, obstruction of which abrogated BRD9-mediated tumorigenesis. CONCLUSION Increased BRD9 in HCC correlated with poor prognosis, which functioned via activating Wnt/β-catenin signaling. Thus, BRD9 might be a promising biomarker and therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Dan Fang
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Mu-Ru Wang
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jia-Lun Guan
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ying-Ying Han
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jia-Qi Sheng
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China.
| | - De-An Tian
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Pei-Yuan Li
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Gastroenterology, Wenchang People's Hospital, Hainan, China.
| |
Collapse
|
21
|
Wu MN, Zheng WJ, Ye WX, Wang L, Chen Y, Yang J, Yao DF, Yao M. Oncogenic tuftelin 1 as a potential molecular-targeted for inhibiting hepatocellular carcinoma growth. World J Gastroenterol 2021; 27:3327-3341. [PMID: 34163115 PMCID: PMC8218352 DOI: 10.3748/wjg.v27.i23.3327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/06/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Abnormal tuftelin 1 (TUFT1) has been reported in multiple cancers and exhibits oncogenic roles in tumor progression. However, limited data are available on the relationship between TUFT1 and hepatocellular carcinoma (HCC), and the exact biological mechanism of TUFT1 is still poorly understood in HCC.
AIM To investigate TUFT1 expression in HCC and how interfering TUFT1 transcription affects HCC growth.
METHODS TUFT1 in HCC and non-HCC tissues based on databases of the Cancer Genome Atlas and Oncomine were analyzed, and TUFT1 in human HCC tissues on microarray were detected by immunohistochemistry for clinicopathological features, overall survival, and disease-free survival. HCC cells were transfected with constructed vectors of TUFT1 that interfere or over-express TUFT1 for analyzing the biological behaviors of HCC cells. Proliferation, invasion, migration, and apoptosis of cells were detected by cell counting kit-8, scratch assay, transwell tests, and flow cytometry and confirmed by Western blotting, respectively.
RESULTS Abnormal TUFT1 levels in databases expressed in HCC at messenger RNA (mRNA) level and HCC tissues were mainly located in cytoplasm and membrane. The level of TUFT1 expression in the HCC group was significantly higher (χ2 = 18.563, P < 0.001) than that in the non-cancerous group, closely related to clinical staging, size, vascular invasion of tumor, hepatitis B e-antigen positive, and ascites (P < 0.01) of HCC patients, and negatively to HCC patients’ overall survival and disease-free survival (P < 0.001). After interfering with TUFT1 transcription at mRNA level in the MHCC-97H cells by the specific TUFT1-short hairpin RNA, cell proliferation, invasion, and metastasis were significantly inhibited with increasing apoptosis rate. In contrast, proliferation, invasion, and migration were significantly enhanced after over-expression of TUFT1 mRNA in Hep3B cells in vitro.
CONCLUSION Oncogenic TUFT1 was associated with the progression of HCC and could be a potential molecular-target for inhibiting HCC growth.
Collapse
Affiliation(s)
- Meng-Na Wu
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Jie Zheng
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Xin Ye
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Ying Chen
- Department of Oncology, The Affiliated Second Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jie Yang
- Department of Molecular Biology, Life Science School of Nantong University, Nantong 226009, Jiangsu Province, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Min Yao
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
22
|
He F, Song K, Guan G, Huo J, Xin Y, Li T, Liu C, Zhu Q, Fan N, Guo Y, Wu L. The Phenomenon of Gene Rearrangement is Frequently Associated with TP53 Mutations and Poor Disease-Free Survival in Hepatocellular Carcinoma. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:723-736. [PMID: 34188519 PMCID: PMC8233541 DOI: 10.2147/pgpm.s313848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023]
Abstract
Purpose Gene rearrangements (GRs) have been reported to be related to adverse prognosis in some tumours, but the relationship in hepatocellular carcinoma (HCC) remains less studied. The objective of our study was to explore the clinicopathological characteristics and prognosis of HCC patients (HCCs) with GRs (GR-HCCs). Patients and Methods This retrospective study included 297 HCCs who underwent hepatectomy and had their tumours sequenced by next-generation sequencing. Categorical variables between groups were compared by the chi-square test. The impact of variables on disease-free survival (DFS) and survival after relapse (SAR) was analysed by the Kaplan–Meier method and Cox regression. Results We observed four repetitive GR events in 297 HCCs: BRD9/TERT, ARID2/intergenic, CDKN2A/intergenic and OBSCN truncation. GR-HCCs frequently presented with low tumour differentiation, tumour necrosis, microvascular invasion, elevated AFP and gene mutations (TP53, NTRK3 and BRD9). The 1-, 2-, and 3-year cumulative DFS rates in GR-HCCs were 45.1%, 31.9%, 31.9%, respectively, which were significantly lower than those of GR-negative HCCs (NGR-HCCs) (72.5%, 57.9%, and 49.0%, respectively; P = 0.001). GR was identified as an independent risk factor for inferior DFS in HCCs (HR = 1.980, 95% CI = 1.246–3.147; P = 0.004). However, there was no significant difference in SAR between GR-HCCs and NGR-HCCs receiving targeted therapy or immunotherapy. Conclusion GR is frequently associated with TP53 mutations and significantly affects DFS following radical resection for HCC. We recommend that GR-HCCs should be closely followed up as a high-risk group for postoperative recurrence.
Collapse
Affiliation(s)
- Fu He
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China.,Department of Clinical Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Kangjian Song
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China.,Department of Clinical Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Ge Guan
- Organ Transplant Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Junyu Huo
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China.,Department of Clinical Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Yang Xin
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Tianxiang Li
- Organ Transplant Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Chao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Qingwei Zhu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China.,Department of Clinical Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Ning Fan
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Yuan Guo
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Liqun Wu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| |
Collapse
|
23
|
Dou C, Mo H, Chen T, Liu J, Zeng Y, Li S, Guo C, Zhang C. ZMYND8 promotes the growth and metastasis of hepatocellular carcinoma by promoting HK2-mediated glycolysis. Pathol Res Pract 2021; 219:153345. [PMID: 33517164 DOI: 10.1016/j.prp.2021.153345] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
The bromodomain protein zinc finger MYND-type containing 8 (ZMYND8) plays a critical role in human breast cancer. However, the expression and biological function of ZMYND8 in hepatocellular carcinoma (HCC) are poorly understood. In this study, ZMYND8 expression was found to be elevated in HCC based on the cancer genome atlas (TCGA) and gene expression omnibus (GEO) databases. Next, we confirmed that ZMYND8 was frequently overexpressed in HCC tissues compared with adjacent non-tumor tissues. The up-regulated level of ZMYND8 was also observed in HCC cell lines. Elevated ZMYND8 expression was correlated with unfavorable clinicopathological features and poor prognosis of HCC patients. Functionally, ectopic expression of ZMYND8 potentiated the proliferation, migration, and invasion of Hep3B cells. Conversely, ZMYND8 knockdown led to the reduced proliferation and invasiveness of HCCLM3 cells. ZMYND8 silencing restrained the growth of HCCLM3 cells in vivo. Mechanistically, ZMYND8 enhanced glucose consumption, lactate production, and ATP level in HCC cells. Pharmacological inhibition of glycolysis using 2-DG blocked the promoting effects of ZMYND8 on HCC cell proliferation and mobility. Furthermore, hexokinase 2 (HK2), a key enzyme of glycolysis, was identified as the downstream target of ZMYND8 in HCC cells. ZMYND8 promoted HK2 transcription by recruiting bromodomain containing 4 (BRD4) to its promoter. Knockdown of HK2 abrogated the oncogenic functions of ZMYND8 in HCC. Altogether, these data indicated that ZMYND8 promoted the growth and metastasis of HCC by promoting HK2-mediated glycolysis and might serve as a promising biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Changwei Dou
- Department of Hepatopancreatobiliary Surgery & Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China.
| | - Huanye Mo
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Jie Liu
- Department of Hepatopancreatobiliary Surgery & Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China.
| | - Yuqun Zeng
- Department of Nephrology, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province 310014, China.
| | - Shuangshuang Li
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China.
| | - Cheng Guo
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Chengwu Zhang
- Department of Hepatopancreatobiliary Surgery & Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China.
| |
Collapse
|
24
|
Shi Z, Liu R, Lu Q, Zeng Z, Liu Y, Zhao J, Liu X, Li L, Huang H, Yao Y, Huang D, Xu Q. UBE2O promotes hepatocellular carcinoma cell proliferation and invasion by regulating the AMPKα2/mTOR pathway. Int J Med Sci 2021; 18:3749-3758. [PMID: 34790050 PMCID: PMC8579295 DOI: 10.7150/ijms.63220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
The ubiquitin-conjugating enzyme (E2) is a critical component of the ubiquitin-proteasome system and regulates hepatocarcinogenesis by controlling protein degradation. Ubiquitin-conjugating enzyme E2 O (UBE2O), a member of the E2 family, functions as an oncogene in human cancers. Nevertheless, the role of UBE2O in hepatocellular carcinoma (HCC) remains unknown yet. Here, we demonstrated that the UBE2O level was markedly upregulated in HCC compared with adjacent noncancerous tissues. UBE2O overexpression was also confirmed in HCC cell lines. UBE2O overexpression was prominently associated with advanced tumor stage, high tumor grade, venous infiltration, and reduced HCC patients' survivals. UBE2O knockdown inhibited the migration, invasion, and proliferation of HCCLM3 cells. UBE2O overexpression enhanced the proliferation and mobility of Huh7 cells. Mechanistically, UBE2O mediated the ubiquitination and degradation of AMP-activated protein kinase α2 (AMPKα2) in HCC cells. UBE2O silencing prominently increased AMPKα2 level and reduced phosphorylated mechanistic target of rapamycin kinase (p-mTOR), MYC, Cyclin D1, HIF1α, and SREBP1 levels in HCCLM3 cells. UBE2O depletion markedly activated the AMPKα2/mTOR pathway in Huh7 cells. Moreover, AMPKα2 silencing reversed UBE2O downregulation-induced mTOR pathway inactivation. Rapamycin, an inhibitor of mTOR, remarkably abolished UBE2O-induced mTOR phosphorylation and HCC cell proliferation and mobility. To conclude, UBE2O was highly expressed in HCC and its overexpression conferred to the poor clinical outcomes of patients. UBE2O contributed to the malignant behaviors of HCC cells, including cell proliferation, migration, and invasion, by reducing AMPKα2 stability and activating the mTOR pathway.
Collapse
Affiliation(s)
- Zhan Shi
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China.,The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiliang Lu
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Zhi Zeng
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Yang Liu
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Junjun Zhao
- Graduate Department, Bengbu Medical College, Bengbu 233030, China
| | - Xin Liu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Lijie Li
- Department of Obstetrics and Gynaecology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Hui Huang
- Affiliated Quzhou People's Hospital, Zhejiang Chinese Medical University, Quzhou 324002, China
| | - Yingmin Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|