1
|
Huang L, Zhan J, Li Y, Huang K, Zhu X, Li J. The roles of extracellular vesicles in gliomas: Challenge or opportunity? Life Sci 2024; 358:123150. [PMID: 39471898 DOI: 10.1016/j.lfs.2024.123150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/07/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Gliomas are increasingly becoming a major disease affecting human health, and current treatments are not as effective as expected. Deeper insights into glioma heterogeneity and the search for new diagnostic and therapeutic strategies appear to be urgent. Gliomas adapt to their surroundings and form a supportive tumor microenvironment (TME). Glioma cells will communicate with the surrounding cells through extracellular vesicles (EVs) carrying bioactive substances such as nucleic acids, proteins and lipids which is related to the modification to various metabolic pathways and regulation of biological behaviors, and this regulation can be bidirectional, widely existing between cells in the TME, constituting a complex network of interactions. This complex regulation can affect glioma therapy, leading to different types of resistance. Because of the feasibility of EVs isolation in various body fluids, they have a promising usage in the diagnosis and monitoring of gliomas. At the same time, the nature of EVs to cross the blood-brain barrier (BBB) confers potential for their use as drug delivery systems. In this review, we will focus on the roles and functions of EVs derived from different cellular origins in the glioma microenvironment and the intercellular regulatory networks, and explore possible clinical applications in glioma diagnosis and precision therapy.
Collapse
Affiliation(s)
- Le Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jianhao Zhan
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yao Li
- The 1st affiiated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Kai Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China.
| | - Xingen Zhu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The 2nd Affiliated Hospital, Jiangxi Medical University, Nanchang University, Nanchang, PR China.
| |
Collapse
|
2
|
Zhang L, Wang Y, Cai X, Mao X, Sun H. Deciphering the CNS-glioma dialogue: Advanced insights into CNS-glioma communication pathways and their therapeutic potential. J Cent Nerv Syst Dis 2024; 16:11795735241292188. [PMID: 39493257 PMCID: PMC11528668 DOI: 10.1177/11795735241292188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024] Open
Abstract
The field of cancer neuroscience has rapidly evolved, shedding light on the complex interplay between the nervous system and cancer, with a particular focus on the relationship between the central nervous system (CNS) and gliomas. Recent advancements have underscored the critical influence of CNS activity on glioma progression, emphasizing the roles of neurons and neuroglial cells in both the onset and evolution of gliomas. This review meticulously explores the primary communication pathways between the CNS and gliomas, encompassing neuro-glioma synapses, paracrine mechanisms, extracellular vesicles, tunneling nanotubes, and the integrative CNS-immune-glioma axis. It also evaluates current and emerging therapeutic interventions aimed at these pathways and proposes forward-looking perspectives for research in this domain.
Collapse
Affiliation(s)
- Lu Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yajing Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxi Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyuan Mao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Xie H, Wu F, Mao J, Wang Y, Zhu J, Zhou X, Hong K, Li B, Qiu X, Wen C. The role of microglia in neurological diseases with involvement of extracellular vesicles. Neurobiol Dis 2024; 202:106700. [PMID: 39401551 DOI: 10.1016/j.nbd.2024.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/20/2024] Open
Abstract
As a subset of mononuclear phagocytes in the central nervous system, microglia play a crucial role in immune defense and homeostasis maintenance. Microglia can regulate their states in response to specific signals of health and pathology. Microglia-mediated neuroinflammation is a pathological hallmark of neurodegenerative diseases, neurological damage and neurological tumors, underscoring its key immunoregulatory role in these conditions. Intriguingly, a substantial body of research has indicated that extracellular vesicles can mediate intercellular communication by transporting cargoes from parental cells, a property that is also reflected in microenvironmental signaling networks involving microglia. Based on the microglial characteristics, we briefly outline the biological features of extracellular vesicles and focus on summarizing the integrative role played by microglia in the maintenance of nervous system homeostasis and progression of different neurological diseases. Extracellular vesicles may engage in the homeostasis maintenance and pathological process as a medium of intercellular communication. Here, we aim to provide new insights for further exploration of neurological disease pathogenesis, which may provide theoretical foundations for cell-free therapies.
Collapse
Affiliation(s)
- Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
4
|
Liu J, Cao S, Imbach KJ, Gritsenko MA, Lih TSM, Kyle JE, Yaron-Barir TM, Binder ZA, Li Y, Strunilin I, Wang YT, Tsai CF, Ma W, Chen L, Clark NM, Shinkle A, Naser Al Deen N, Caravan W, Houston A, Simin FA, Wyczalkowski MA, Wang LB, Storrs E, Chen S, Illindala R, Li YD, Jayasinghe RG, Rykunov D, Cottingham SL, Chu RK, Weitz KK, Moore RJ, Sagendorf T, Petyuk VA, Nestor M, Bramer LM, Stratton KG, Schepmoes AA, Couvillion SP, Eder J, Kim YM, Gao Y, Fillmore TL, Zhao R, Monroe ME, Southard-Smith AN, Li YE, Jui-Hsien Lu R, Johnson JL, Wiznerowicz M, Hostetter G, Newton CJ, Ketchum KA, Thangudu RR, Barnholtz-Sloan JS, Wang P, Fenyö D, An E, Thiagarajan M, Robles AI, Mani DR, Smith RD, Porta-Pardo E, Cantley LC, Iavarone A, Chen F, Mesri M, Nasrallah MP, Zhang H, Resnick AC, Chheda MG, Rodland KD, Liu T, Ding L. Multi-scale signaling and tumor evolution in high-grade gliomas. Cancer Cell 2024; 42:1217-1238.e19. [PMID: 38981438 PMCID: PMC11337243 DOI: 10.1016/j.ccell.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/12/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Although genomic anomalies in glioblastoma (GBM) have been well studied for over a decade, its 5-year survival rate remains lower than 5%. We seek to expand the molecular landscape of high-grade glioma, composed of IDH-wildtype GBM and IDH-mutant grade 4 astrocytoma, by integrating proteomic, metabolomic, lipidomic, and post-translational modifications (PTMs) with genomic and transcriptomic measurements to uncover multi-scale regulatory interactions governing tumor development and evolution. Applying 14 proteogenomic and metabolomic platforms to 228 tumors (212 GBM and 16 grade 4 IDH-mutant astrocytoma), including 28 at recurrence, plus 18 normal brain samples and 14 brain metastases as comparators, reveals heterogeneous upstream alterations converging on common downstream events at the proteomic and metabolomic levels and changes in protein-protein interactions and glycosylation site occupancy at recurrence. Recurrent genetic alterations and phosphorylation events on PTPN11 map to important regulatory domains in three dimensions, suggesting a central role for PTPN11 signaling across high-grade gliomas.
Collapse
Affiliation(s)
- Jingxian Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Song Cao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Kathleen J Imbach
- Josep Carreras Leukaemia Research Institute, Badalona, Spain; Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tung-Shing M Lih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tomer M Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ilya Strunilin
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Natalie M Clark
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andrew Shinkle
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Nataly Naser Al Deen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Andrew Houston
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Faria Anjum Simin
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Liang-Bo Wang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Erik Storrs
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ritvik Illindala
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yuping D Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Reyka G Jayasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sandra L Cottingham
- Department of Pathology, Spectrum Health and Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tyler Sagendorf
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Michael Nestor
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kelly G Stratton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Sneha P Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Josie Eder
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Thomas L Fillmore
- Department of Pathology, Spectrum Health and Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Austin N Southard-Smith
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yang E Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rita Jui-Hsien Lu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, Poznań, Poland; Poznan University of Medical Sciences, Poznań, Poland
| | | | | | | | | | - Jill S Barnholtz-Sloan
- Center for Biomedical Informatics and Information Technology & Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20850, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Eunkyung An
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | | | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Antonio Iavarone
- Department of Neurological Surgery and Department of Biochemistry, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - MacLean P Nasrallah
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Adam C Resnick
- Center for Data Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Milan G Chheda
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Karin D Rodland
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97221, USA.
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
5
|
Xu C, Hou P, Li X, Xiao M, Zhang Z, Li Z, Xu J, Liu G, Tan Y, Fang C. Comprehensive understanding of glioblastoma molecular phenotypes: classification, characteristics, and transition. Cancer Biol Med 2024; 21:j.issn.2095-3941.2023.0510. [PMID: 38712813 PMCID: PMC11131044 DOI: 10.20892/j.issn.2095-3941.2023.0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Among central nervous system-associated malignancies, glioblastoma (GBM) is the most common and has the highest mortality rate. The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently lead to tumor recurrence and sudden relapse in patients treated with temozolomide. In precision medicine, research on GBM treatment is increasingly focusing on molecular subtyping to precisely characterize the cellular and molecular heterogeneity, as well as the refractory nature of GBM toward therapy. Deep understanding of the different molecular expression patterns of GBM subtypes is critical. Researchers have recently proposed tetra fractional or tripartite methods for detecting GBM molecular subtypes. The various molecular subtypes of GBM show significant differences in gene expression patterns and biological behaviors. These subtypes also exhibit high plasticity in their regulatory pathways, oncogene expression, tumor microenvironment alterations, and differential responses to standard therapy. Herein, we summarize the current molecular typing scheme of GBM and the major molecular/genetic characteristics of each subtype. Furthermore, we review the mesenchymal transition mechanisms of GBM under various regulators.
Collapse
Affiliation(s)
- Can Xu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Pengyu Hou
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
| | - Xiang Li
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
| | - Menglin Xiao
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Ziqi Zhang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Ziru Li
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
| | - Jianglong Xu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Guoming Liu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Yanli Tan
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding 07100, China
| | - Chuan Fang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| |
Collapse
|
6
|
Guo Q, Zhou Y, Xie T, Yuan Y, Li H, Shi W, Zheng L, Li X, Zhang W. Tumor microenvironment of cancer stem cells: Perspectives on cancer stem cell targeting. Genes Dis 2024; 11:101043. [PMID: 38292177 PMCID: PMC10825311 DOI: 10.1016/j.gendis.2023.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/25/2023] [Indexed: 02/01/2024] Open
Abstract
There are few tumor cell subpopulations with stem cell characteristics in tumor tissue, defined as cancer stem cells (CSCs) or cancer stem-like cells (CSLCs), which can reconstruct neoplasms with malignant biological behaviors such as invasiveness via self-renewal and unlimited generation. The microenvironment that CSCs depend on consists of various cellular components and corresponding medium components. Among these factors existing at a variety of levels and forms, cytokine networks and numerous signal pathways play an important role in signaling transduction. These factors promote or maintain cancer cell stemness, and participate in cancer recurrence, metastasis, and resistance. This review aims to summarize the recent molecular data concerning the multilayered relationship between CSCs and CSC-favorable microenvironments. We also discuss the therapeutic implications of targeting this synergistic interplay, hoping to give an insight into targeting cancer cell stemness for tumor therapy and prognosis.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450003, China
| | - Yi Zhou
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tianyuan Xie
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yin Yuan
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Huilong Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Wanjin Shi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450003, China
| |
Collapse
|
7
|
Dai J, Jiang Y, Hu H, Zhang S, Chen Y. Extracellular vesicles as modulators of glioblastoma progression and tumor microenvironment. Pathol Oncol Res 2024; 30:1611549. [PMID: 38379858 PMCID: PMC10876843 DOI: 10.3389/pore.2024.1611549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024]
Abstract
Glioblastoma is the most aggressive brain tumor with extremely poor prognosis in adults. Routine treatments include surgery, chemotherapy, and radiotherapy; however, these may lead to rapid relapse and development of therapy-resistant tumor. Glioblastoma cells are known to communicate with macrophages, microglia, endothelial cells, astrocytes, and immune cells in the tumor microenvironment (TME) to promote tumor preservation. It was recently demonstrated that Glioblastoma-derived extracellular vesicles (EVs) participate in bidirectional intercellular communication in the TME. Apart from promoting glioblastoma cell proliferation, migration, and angiogenesis, EVs and their cargos (primarily proteins and miRNAs) can act as biomarkers for tumor diagnosis and prognosis. Furthermore, they can be used as therapeutic tools. In this review, the mechanisms of Glioblastoma-EVs biogenesis and intercellular communication with TME have been summarized. Moreover, there is discussion surrounding EVs as novel diagnostic structures and therapeutic tools for glioblastoma. Finally, unclear questions that require future investigation have been reviewed.
Collapse
Affiliation(s)
- Jie Dai
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Jiang
- Department of Neurosurgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Haoyue Hu
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shuang Zhang
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yue Chen
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Ma T, Su G, Wu Q, Shen M, Feng X, Zhang Z. Tumor-derived extracellular vesicles: how they mediate glioma immunosuppression. Mol Biol Rep 2024; 51:235. [PMID: 38282090 DOI: 10.1007/s11033-023-09196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
Gliomas, the most common malignant brain tumor, present a grim prognosis despite available treatments such as surgical resection, temozolomide (TMZ) therapy, and radiation therapy. This is due to their aggressive growth, high level of immunosuppression, and the blood-brain barrier (BBB), which obstruct the effective exchange of therapeutic drugs. Gliomas can significantly affect differentiation and function of immune cells by releasing extracellular vesicles (EVs), resulting in a systemic immunosuppressive state and a highly immunosuppressive microenvironment. In the tumor immune microenvironment (TIME), the primary immune cells are regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs). In particular, glioma-associated TAMs are chiefly composed of monocyte-derived macrophages and brain-resident microglia. These cells partially exhibit characteristics of a pro-tumorigenic, anti-inflammatory M2-type. Glioma-derived EVs can hijack TAMs to differentiate into tumor-supporting phenotypes or directly affect the maturation of peripheral blood monocytes (PBMCs) and promote the activation of MDSCs. In addition, EVs impair the ability of dendritic cells (DCs) to process antigens, subsequently hindering the activation of lymphocytes. EVs also impact the proliferation, differentiation, and activation of lymphocytes. This is primarily evident in the overall reduction of CD4 + helper T cells and CD8 + T cells, coupled with a relative increase in Tregs, which possess immunosuppressive characteristics. This study investigates thoroughly how tumor-derived EVs impair the function of immune cells and enhance immunosuppression in gliomas, shedding light on their potential implications for immunotherapy strategies in glioma treatment.
Collapse
Affiliation(s)
- Tianfei Ma
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qionghui Wu
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Minghui Shen
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xinli Feng
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Zhenchang Zhang
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China.
| |
Collapse
|
9
|
Yao Z, Zhang F, Qi C, Wang C, Mao M, Zhao C, Qi M, Wang Z, Zhou G, Jiang X, Xia H. SECTM1 promotes the development of glioblastoma and mesenchymal transition by regulating the TGFβ1/Smad signaling pathway. Int J Biol Sci 2024; 20:78-93. [PMID: 38164182 PMCID: PMC10750278 DOI: 10.7150/ijbs.84591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/29/2023] [Indexed: 01/03/2024] Open
Abstract
Objective: Secreted and transmembrane protein 1 (SECTM1) is a gene encoding a transmembrane protein. The role of SECTM1 in glioblastoma (GBM) is unclear. Here, we reported the abnormal expression of SECTM1 in GBM for the first time and studied the role and mechanism of SECTM1 in GBM. Methods: qRT-PCR, Western blotting and immunofluorescence were used to detect the expression of SECTM1 in gliomas of different grades and GBM cell lines. After the knockdown of SECTM1 expression in cell lines by shRNA, the effect of SECTM1 in GBM cell lines was verified by CCK-8, Transwell, EdU and wound healing experiments. We further investigated the effect and mechanism of SECTM1 on GBM in vitro and in vivo. The effect of SECTM1 on glioma growth was detected by subcutaneous tumor xenografts in nude mice in vivo. Results: The results showed that the knockdown of SECTM1 expression in cell lines significantly inhibited the proliferation, migration and invasion of GBM cells while inhibiting the progression of subcutaneous xenograft tumors in nude mice. However, the role and molecular mechanism of SECTM1 in GBM remain unclear. SECTM1 was found to promote GBM epithelial-mesenchymal transition (EMT) like processes. Bioinformatics analysis and Western blotting showed that SECTM1 regulates glioblastoma invasion and EMT-like processes mainly through the TGFβ1/Smad signaling pathway. Conclusion: The low expression of SECTM1 has an inhibitory effect on GBM and is a potential target for GBM treatment. SECTM1 may also be a promising biomarker for the diagnosis and prognosis of GBM.
Collapse
Affiliation(s)
- Zhipeng Yao
- School of Chemistry and Chemical Engineering & Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu 241000, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering & Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu 241000, China
| | - Chenxue Qi
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Cheng Wang
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, China
| | - Min Mao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Chenhui Zhao
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu 241000, China
| | - Min Qi
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu 241000, China
| | - Zhichun Wang
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu 241000, China
| | - Guoren Zhou
- Department of Oncology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu 241000, China
| | - Hongping Xia
- School of Chemistry and Chemical Engineering & Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu 241000, China
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Ren J, Xu B, Ren J, Liu Z, Cai L, Zhang X, Wang W, Li S, Jin L, Ding L. The Importance of M1-and M2-Polarized Macrophages in Glioma and as Potential Treatment Targets. Brain Sci 2023; 13:1269. [PMID: 37759870 PMCID: PMC10526262 DOI: 10.3390/brainsci13091269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma is the most common and malignant tumor of the central nervous system. Glioblastoma (GBM) is the most aggressive glioma, with a poor prognosis and no effective treatment because of its high invasiveness, metabolic rate, and heterogeneity. The tumor microenvironment (TME) contains many tumor-associated macrophages (TAMs), which play a critical role in tumor proliferation, invasion, metastasis, and angiogenesis and indirectly promote an immunosuppressive microenvironment. TAM is divided into tumor-suppressive M1-like (classic activation of macrophages) and tumor-supportive M2-like (alternatively activated macrophages) polarized cells. TAMs exhibit an M1-like phenotype in the initial stages of tumor progression, and along with the promotion of lysing tumors and the functions of T cells and NK cells, tumor growth is suppressed, and they rapidly transform into M2-like polarized macrophages, which promote tumor progression. In this review, we discuss the mechanism by which M1- and M2-polarized macrophages promote or inhibit the growth of glioblastoma and indicate the future directions for treatment.
Collapse
Affiliation(s)
- Jiangbin Ren
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Bangjie Xu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Jianghao Ren
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China;
| | - Zhichao Liu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lingyu Cai
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Xiaotian Zhang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Weijie Wang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Shaoxun Li
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Luhao Jin
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lianshu Ding
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| |
Collapse
|
11
|
Tao JC, Yu D, Shao W, Zhou DR, Wang Y, Hou SQ, Deng K, Lin N. Interactions between microglia and glioma in tumor microenvironment. Front Oncol 2023; 13:1236268. [PMID: 37700840 PMCID: PMC10493873 DOI: 10.3389/fonc.2023.1236268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Gliomas, the most prevalent primary tumors in the central nervous system, are marked by their immunosuppressive properties and consequent poor patient prognosis. Current evidence emphasizes the pivotal role of the tumor microenvironment in the progression of gliomas, largely attributed to tumor-associated macrophages (brain-resident microglia and bone marrow-derived macrophages) that create a tumor microenvironment conducive to the growth and invasion of tumor cells. Yet, distinguishing between these two cell subgroups remains a challenge. Thus, our review starts by analyzing the heterogeneity between these two cell subsets, then places emphasis on elucidating the complex interactions between microglia and glioma cells. Finally, we conclude with a summary of current attempts at immunotherapy that target microglia. However, given that independent research on microglia is still in its initial stages and has many shortcomings at the present time, we express our related concerns and hope that further research will be carried out to address these issues in the future.
Collapse
Affiliation(s)
- Jin-Cheng Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dong Yu
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Wei Shao
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Dong-Rui Zhou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Yu Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Shi-Qiang Hou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Ke Deng
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| |
Collapse
|
12
|
Nizar R, Cazacu S, Xiang C, Krasner M, Barbiro-Michaely E, Gerber D, Schwartz J, Fried I, Yuval S, Brodie A, Kazimirsky G, Amos N, Unger R, Brown S, Rogers L, Penning DH, Brodie C. Propofol Inhibits Glioma Stem Cell Growth and Migration and Their Interaction with Microglia via BDNF-AS and Extracellular Vesicles. Cells 2023; 12:1921. [PMID: 37566001 PMCID: PMC10417602 DOI: 10.3390/cells12151921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 08/12/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor. GBM contains a small subpopulation of glioma stem cells (GSCs) that are implicated in treatment resistance, tumor infiltration, and recurrence, and are thereby considered important therapeutic targets. Recent clinical studies have suggested that the choice of general anesthetic (GA), particularly propofol, during tumor resection, affects subsequent tumor response to treatments and patient prognosis. In this study, we investigated the molecular mechanisms underlying propofol's anti-tumor effects on GSCs and their interaction with microglia cells. Propofol exerted a dose-dependent inhibitory effect on the self-renewal, expression of mesenchymal markers, and migration of GSCs and sensitized them to both temozolomide (TMZ) and radiation. At higher concentrations, propofol induced a large degree of cell death, as demonstrated using microfluid chip technology. Propofol increased the expression of the lncRNA BDNF-AS, which acts as a tumor suppressor in GBM, and silencing of this lncRNA partially abrogated propofol's effects. Propofol also inhibited the pro-tumorigenic GSC-microglia crosstalk via extracellular vesicles (EVs) and delivery of BDNF-AS. In conclusion, propofol exerted anti-tumor effects on GSCs, sensitized these cells to radiation and TMZ, and inhibited their pro-tumorigenic interactions with microglia via transfer of BDNF-AS by EVs.
Collapse
Affiliation(s)
- Rephael Nizar
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel; (R.N.); (M.K.); (E.B.-M.); (D.G.); (J.S.); (G.K.); (N.A.); (R.U.)
| | - Simona Cazacu
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Health, Detroit, MI 48202, USA; (S.C.); (C.X.); (D.H.P.)
| | - Cunli Xiang
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Health, Detroit, MI 48202, USA; (S.C.); (C.X.); (D.H.P.)
| | - Matan Krasner
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel; (R.N.); (M.K.); (E.B.-M.); (D.G.); (J.S.); (G.K.); (N.A.); (R.U.)
| | - Efrat Barbiro-Michaely
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel; (R.N.); (M.K.); (E.B.-M.); (D.G.); (J.S.); (G.K.); (N.A.); (R.U.)
| | - Doron Gerber
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel; (R.N.); (M.K.); (E.B.-M.); (D.G.); (J.S.); (G.K.); (N.A.); (R.U.)
| | - Jonathan Schwartz
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel; (R.N.); (M.K.); (E.B.-M.); (D.G.); (J.S.); (G.K.); (N.A.); (R.U.)
| | - Iris Fried
- Pediatric Hematology Oncology Unit, Shaare Zedek Hospital, Jerusalem 9103102, Israel; (I.F.); (S.Y.)
| | - Shira Yuval
- Pediatric Hematology Oncology Unit, Shaare Zedek Hospital, Jerusalem 9103102, Israel; (I.F.); (S.Y.)
| | | | - Gila Kazimirsky
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel; (R.N.); (M.K.); (E.B.-M.); (D.G.); (J.S.); (G.K.); (N.A.); (R.U.)
| | - Naama Amos
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel; (R.N.); (M.K.); (E.B.-M.); (D.G.); (J.S.); (G.K.); (N.A.); (R.U.)
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel; (R.N.); (M.K.); (E.B.-M.); (D.G.); (J.S.); (G.K.); (N.A.); (R.U.)
| | - Stephen Brown
- Radiation Oncology, Henry Ford Health, Detroit, MI 48202, USA;
| | - Lisa Rogers
- Department of Neurosurgery, Henry Ford Health, Detroit, MI 48202, USA;
| | - Donald H. Penning
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Health, Detroit, MI 48202, USA; (S.C.); (C.X.); (D.H.P.)
- Anesthesiology, Pain Management & Perioperative Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Chaya Brodie
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel; (R.N.); (M.K.); (E.B.-M.); (D.G.); (J.S.); (G.K.); (N.A.); (R.U.)
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Health, Detroit, MI 48202, USA; (S.C.); (C.X.); (D.H.P.)
| |
Collapse
|
13
|
Wang J, Liu Y, Liu F, Gan S, Roy S, Hasan I, Zhang B, Guo B. Emerging extracellular vesicle-based carriers for glioblastoma diagnosis and therapy. NANOSCALE 2023. [PMID: 37337814 DOI: 10.1039/d3nr01667f] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Glioblastoma (GBM) treatment is still a big clinical challenge because of its highly malignant, invasive, and lethal characteristics. After treatment with the conventional therapeutic paradigm of surgery combined with radio- and chemotherapy, patients bearing GBMs generally exhibit a poor prognosis, with high mortality and a high disability rate. The main reason is the existence of the formidable blood-brain barrier (BBB), aggressive growth, and the infiltration nature of GBMs. Especially, the BBB suppresses the delivery of imaging and therapeutic agents to lesion sites, and thus this leads to difficulties in achieving a timely diagnosis and treatment. Recent studies have demonstrated that extracellular vesicles (EVs) exhibit favorable merits including good biocompatibility, a strong drug loading capacity, long circulation time, good BBB crossing efficiency, specific targeting to lesion sites, and high efficiency in the delivery of a variety of cargos for GBM therapy. Importantly, EVs inherit physiological and pathological molecules from the source cells, which are ideal biomarkers for molecularly tracking the malignant progression of GBMs. Herein, we start by introducing the pathophysiology and physiology of GBMs, followed by presenting the biological functions of EVs in GBMs with a special focus on their role as biomarkers for GBM diagnosis and as messengers in the modulation of the GBM microenvironment. Furthermore, we provide an update on the recent progress of using EVs in biology, functionality, and isolation applications. More importantly, we systematically summarize the most recent advances of EV-based carriers for GBM therapy by delivering different drugs including gene/RNA-based drugs, chemotherapy drugs, imaging agents, and combinatory drugs. Lastly, we point out the challenges and prospects of future research on EVs for diagnosing and treating GBMs. We hope this review will stimulate interest from researchers with different backgrounds and expedite the progress of GBM treatment paradigms.
Collapse
Affiliation(s)
- Jingjing Wang
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yue Liu
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Fengbo Liu
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shaoyan Gan
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shubham Roy
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ikram Hasan
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Baozhu Zhang
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Bing Guo
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
14
|
Li M, Lin C, Cai Z. Downregulation of the long noncoding RNA DSCR9 (Down syndrome critical region 9) delays breast cancer progression by modulating microRNA-504-5p-dependent G protein-coupled receptor 65. Hum Cell 2023:10.1007/s13577-023-00916-4. [PMID: 37248366 DOI: 10.1007/s13577-023-00916-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
Possible roles of long noncoding RNAs (lncRNAs) in cancer stem cells (CSCs) have often been reported. Here, we focused on the regulatory function of the lncRNA Down syndrome critical region 9 (DSCR9) in breast cancer stem cells (BCSCs). Through bioinformatics analysis, DSCR9, microRNA-504-5p (miR-504-5p), and G protein-coupled receptor 65 (GPR65) were identified as targets implicated in breast cancer development. Then, clinical tissue samples, breast cancer cells, and isolated BCSCs were used to determine the expression of DSCR9, miR-504-5p, and GPR65. The results confirmed the overexpression of DSCR9 and GPR65 but low expression of miR-504-5p in breast cancer tissues and cells as well as in BCSCs. Following mechanistic investigation, it was found that DSCR9 targeted miR-504-5p, and that silencing DSCR9 inhibited the proliferation of BCSCs by elevating the expression of miR-504-5p. Additionally, miR-504-5p targeted GPR65 and inhibited its expression. Moreover, GPR65 activated the MEK/ERK signaling pathway to regulate BCSC proliferation. Finally, animal study verified that depletion of DSCR9 inhibited the proliferation of BCSCs in vivo and that BCSC proliferation was restored by overexpression of GPR65. Altogether, our findings revealed that DSCR9 elevated GPR65 expression by targeting miR-504-5p to exacerbate breast cancer, highlighting a new treatment modality for breast cancer.
Collapse
Affiliation(s)
- Mingzhu Li
- Area N4 of Surgical Oncology, Quanzhou First Hospital Affiliated Fujian Medical University, No. 1028, Anji South Road, Fengze District, Quanzhou, 362000, Fujian Province, China.
| | - Conglin Lin
- Area N4 of Surgical Oncology, Quanzhou First Hospital Affiliated Fujian Medical University, No. 1028, Anji South Road, Fengze District, Quanzhou, 362000, Fujian Province, China
| | - Zhibing Cai
- Area N4 of Surgical Oncology, Quanzhou First Hospital Affiliated Fujian Medical University, No. 1028, Anji South Road, Fengze District, Quanzhou, 362000, Fujian Province, China
| |
Collapse
|
15
|
Kopper TJ, Yu X, Graner MW. Immunopathology of Extracellular Vesicles in Macrophage and Glioma Cross-Talk. J Clin Med 2023; 12:jcm12103430. [PMID: 37240536 DOI: 10.3390/jcm12103430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Glioblastomas (GBM) are a devastating disease with extremely poor clinical outcomes. Resident (microglia) and infiltrating macrophages are a substantial component of the tumor environment. In GBM and other cancers, tumor-derived extracellular vesicles (EVs) suppress macrophage inflammatory responses, impairing their ability to identify and phagocytose cancerous tissues. Furthermore, these macrophages then begin to produce EVs that support tumor growth and migration. This cross-talk between macrophages/microglia and gliomas is a significant contributor to GBM pathophysiology. Here, we review the mechanisms through which GBM-derived EVs impair macrophage function, how subsequent macrophage-derived EVs support tumor growth, and the current therapeutic approaches to target GBM/macrophage EV crosstalk.
Collapse
Affiliation(s)
- Timothy J Kopper
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12700 E 19th Ave., Aurora, CO 80045, USA
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12700 E 19th Ave., Aurora, CO 80045, USA
| | - Michael W Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12700 E 19th Ave., Aurora, CO 80045, USA
| |
Collapse
|
16
|
Contreras H, Alarcón-Zapata P, Nova-Lamperti E, Ormazabal V, Varas-Godoy M, Salomon C, Zuniga FA. Comparative study of size exclusion chromatography for isolation of small extracellular vesicle from cell-conditioned media, plasma, urine, and saliva. FRONTIERS IN NANOTECHNOLOGY 2023. [DOI: 10.3389/fnano.2023.1146772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Introduction: Extracellular vesicles (EVs) are secreted from all types of cells and are involved in the trafficking of proteins, metabolites, and genetic material from cell to cell. According to their biogenesis and physical properties, EVs are often classified as small EVs (including exosomes) or large EVs, and large oncosomes. A variety of methods are used for isolated EVs; however, they have several limitations, including vesicle deformation, reduced particle yield, and co-isolate protein contaminants. Here we present an optimized fast and low-cost methodology to isolate small EVs (30–150 nm) from biological fluids comparing two SEC stationary phases, G200/120 and G200/140 columns.Methods: The optimization parameters considered were a) the selection of the stationary phase, b) the eluate volume per fraction, and c) the selection of the enriched 30–150 nm EVs-fractions. The efficiency and separation profile of each UF/SEC fraction was evaluated by Nanoparticle tracking analysis (NTA), flow cytometry, total protein quantification, and Western blot.Results: Both columns can isolate predominantly small EVs with low protein contaminants from plasma, urine, saliva, and HEK293-derived EV from collection medium. Column G200/ 40 offers a more homogeneous enrichment of vesicles between 30 and 150 nm than G200/120 [76.1 ± 4.4% with an average size of 85.9 ± 3.6 nm (Mode: 72.8 nm)] in the EV collection medium. The enrichment, estimated as the vesicle-to-protein ratio, was 1.3 × 1010 particles/mg protein for G200/40, obtaining a more significant EVs enrichment compared to G200/120. The optimized method delivers 0.8 ml of an EVs-enriched-outcome, taking only 30 min per sample. Using plasma, the enrichment of small EVs from the optimized method was 70.5 ± 0.18%, with an average size of 119.4 ± 6.9 nm (Mode: 120.3 nm), and the enrichment of the vesicle isolation was 4.8 × 1011 particles/mg protein. The average size of urine and saliva -EVs samples was 147.5 ± 3.4 and 111.9 ± 2.5 nm, respectively. All the small EVs isolated from the samples exhibit the characteristic cup-shaped morphology observed by Transmission electron microscopy (TEM).Discussion: This study suggests that the combination of methods is a robust, fast, and improved strategy for isolating small EVs.
Collapse
|
17
|
Liu CG, Chen J, Goh RMWJ, Liu YX, Wang L, Ma Z. The role of tumor-derived extracellular vesicles containing noncoding RNAs in mediating immune cell function and its implications from bench to bedside. Pharmacol Res 2023; 191:106756. [PMID: 37019192 DOI: 10.1016/j.phrs.2023.106756] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Extracellular vesicles (EVs) are membrane-encapsulated vesicles released by almost all cell types, which participate in intercellular communication by delivering different types of molecular cargoes, such as non-coding RNAs (ncRNAs). Accumulating evidence suggests that tumor-derived EVs act as a bridge for intercellular crosstalk between tumor cells and surrounding cells, including immune cells. Tumor-derived EVs containing ncRNAs (TEV-ncRNAs) mediate intercellular crosstalk to manipulate immune responses and affect the malignant phenotypes of cancer cells. In this review, we summarize the double-edged roles and the underlying mechanisms of TEV-ncRNAs in regulating innate and adaptive immune cells. We also highlight the advantages of using TEV-ncRNAs in liquid biopsies for cancer diagnosis and prognosis. Moreover, we outline the use of engineered EVs to deliver ncRNAs and other therapeutic agents for cancer therapy.
Collapse
|
18
|
Ren LL, Wang ZW, Sen R, Dai ZT, Liao XH, Shen LJ. GRB10 is a novel factor associated with gastric cancer proliferation and prognosis. Aging (Albany NY) 2023; 15:3394-3409. [PMID: 37179120 PMCID: PMC10449302 DOI: 10.18632/aging.204603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 05/15/2023]
Abstract
GRB10 and its family members GRB7 and GRB14 were important adaptor proteins. They regulated many cellular functions by interacting with various tyrosine kinase receptors and other phosphorus-containing amino acid proteins. More and more studies have shown that the abnormal expression of GRB10 is closely related to the occurrence and development of cancer. In our current research, expression data for 33 cancers from the TCGA database was downloaded for analysis. It was found that GRB10 was up-regulated in cholangiocarcinoma, colon adenocarcinoma, head and neck squamous carcinoma, renal chromophobe, clear renal carcinoma, hepatocellular carcinoma, lung adenocarcinoma, lung squamous carcinoma, gastric adenocarcinoma and thyroid carcinoma. Especially in gastric cancer, the high GRB10 expression was closely associated with poorer overall survival. Further research showed that the knockdown of GRB10 inhibited proliferation and migration ability in gastric cancer. Also, there was a potential binding site for miR-379-5p on the 3'UTR of GRB10. Overexpression of miR-379-5p in gastric cancer cells reduced GRB10-regulated gastric cancer proliferation and migration capacity. In addition, we found that tumor growth was slower in a mice xenograft model with knock down of GRB10 expression. These findings suggested that miR-379-5p suppresses gastric cancer development by downregulating GRB10 expression. Therefore, miR-379-5p and GRB10 were expected to be potential targets for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Li-Li Ren
- School of Food and Drug, Shenzhen Polytechnic, Guangdong 518055, China
| | - Zhi-Wen Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
| | - Ren Sen
- Clinical Academy, Changsha Health Vocational College, Hunan 410100, China
| | - Zhou-Tong Dai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
| | - Li-Juan Shen
- Longgang District People's Hospital of Shenzhen, Guangdong 518172, China
| |
Collapse
|
19
|
Giambra M, Di Cristofori A, Valtorta S, Manfrellotti R, Bigiogera V, Basso G, Moresco RM, Giussani C, Bentivegna A. The peritumoral brain zone in glioblastoma: where we are and where we are going. J Neurosci Res 2023; 101:199-216. [PMID: 36300592 PMCID: PMC10091804 DOI: 10.1002/jnr.25134] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 10/01/2022] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and invasive primary brain tumor. Current therapies are not curative, and patients' outcomes remain poor with an overall survival of 20.9 months after surgery. The typical growing pattern of GBM develops by infiltrating the surrounding apparent normal brain tissue within which the recurrence is expected to appear in the majority of cases. Thus, in the last decades, an increased interest has developed to investigate the cellular and molecular interactions between GBM and the peritumoral brain zone (PBZ) bordering the tumor tissue. The aim of this review is to provide up-to-date knowledge about the oncogenic properties of the PBZ to highlight possible druggable targets for more effective treatment of GBM by limiting the formation of recurrence, which is almost inevitable in the majority of patients. Starting from the description of the cellular components, passing through the illustration of the molecular profiles, we finally focused on more clinical aspects, represented by imaging and radiological details. The complete picture that emerges from this review could provide new input for future investigations aimed at identifying new effective strategies to eradicate this still incurable tumor.
Collapse
Affiliation(s)
- Martina Giambra
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Andrea Di Cristofori
- PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Silvia Valtorta
- Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Roberto Manfrellotti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Vittorio Bigiogera
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Gianpaolo Basso
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rosa Maria Moresco
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy
| | - Carlo Giussani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
20
|
Stem Cells for Cancer Therapy: Translating the Uncertainties and Possibilities of Stem Cell Properties into Opportunities for Effective Cancer Therapy. Int J Mol Sci 2023; 24:ijms24021012. [PMID: 36674525 PMCID: PMC9864033 DOI: 10.3390/ijms24021012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Cancer recurrence and drug resistance following treatment, as well as metastatic forms of cancer, are trends that are commonly encountered in cancer management. Amidst the growing popularity of personalized medicine and targeted therapy as effective cancer treatment, studies involving the use of stem cells in cancer therapy are gaining ground as promising translational treatment options that are actively pursued by researchers due to their unique tumor-homing activities and anti-cancer properties. Therefore, this review will highlight cancer interactions with commonly studied stem cell types, namely, mesenchymal stroma/stem cells (MSC), induced pluripotent stem cells (iPSC), iPSC-derived MSC (iMSC), and cancer stem cells (CSC). A particular focus will be on the effects of paracrine signaling activities and exosomal miRNA interaction released by MSC and iMSCs within the tumor microenvironment (TME) along with their therapeutic potential as anti-cancer delivery agents. Similarly, the role of exosomal miRNA released by CSCs will be further discussed in the context of its role in cancer recurrence and metastatic spread, which leads to a better understanding of how such exosomal miRNA could be used as potential forms of non-cell-based cancer therapy.
Collapse
|
21
|
Rajabi A, Kayedi M, Rahimi S, Dashti F, Mirazimi SMA, Homayoonfal M, Mahdian SMA, Hamblin MR, Tamtaji OR, Afrasiabi A, Jafari A, Mirzaei H. Non-coding RNAs and glioma: Focus on cancer stem cells. Mol Ther Oncolytics 2022; 27:100-123. [PMID: 36321132 PMCID: PMC9593299 DOI: 10.1016/j.omto.2022.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma and gliomas can have a wide range of histopathologic subtypes. These heterogeneous histologic phenotypes originate from tumor cells with the distinct functions of tumorigenesis and self-renewal, called glioma stem cells (GSCs). GSCs are characterized based on multi-layered epigenetic mechanisms, which control the expression of many genes. This epigenetic regulatory mechanism is often based on functional non-coding RNAs (ncRNAs). ncRNAs have become increasingly important in the pathogenesis of human cancer and work as oncogenes or tumor suppressors to regulate carcinogenesis and progression. These RNAs by being involved in chromatin remodeling and modification, transcriptional regulation, and alternative splicing of pre-mRNA, as well as mRNA stability and protein translation, play a key role in tumor development and progression. Numerous studies have been performed to try to understand the dysregulation pattern of these ncRNAs in tumors and cancer stem cells (CSCs), which show robust differentiation and self-regeneration capacity. This review provides recent findings on the role of ncRNAs in glioma development and progression, particularly their effects on CSCs, thus accelerating the clinical implementation of ncRNAs as promising tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrdad Kayedi
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rahimi
- School of Medicine,Fasa University of Medical Sciences, Fasa, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Amin Mahdian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Afrasiabi
- Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
22
|
Microglia and Brain Macrophages as Drivers of Glioma Progression. Int J Mol Sci 2022; 23:ijms232415612. [PMID: 36555253 PMCID: PMC9779147 DOI: 10.3390/ijms232415612] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Evidence is accumulating that the tumour microenvironment (TME) has a key role in the progression of gliomas. Non-neoplastic cells in addition to the tumour cells are therefore finding increasing attention. Microglia and other glioma-associated macrophages are at the centre of this interest especially in the context of therapeutic considerations. New ideas have emerged regarding the role of microglia and, more recently, blood-derived brain macrophages in glioblastoma (GBM) progression. We are now beginning to understand the mechanisms that allow malignant glioma cells to weaken microglia and brain macrophage defence mechanisms. Surface molecules and cytokines have a prominent role in microglia/macrophage-glioma cell interactions, and we discuss them in detail. The involvement of exosomes and microRNAs forms another focus of this review. In addition, certain microglia and glioma cell pathways deserve special attention. These "synergistic" (we suggest calling them "Janus") pathways are active in both glioma cells and microglia/macrophages where they act in concert supporting malignant glioma progression. Examples include CCN4 (WISP1)/Integrin α6β1/Akt and CHI3L1/PI3K/Akt/mTOR. They represent attractive therapeutic targets.
Collapse
|
23
|
Kang X, Chen J, Hou JF. HSP90 facilitates stemness and enhances glycolysis in glioma cells. BMC Neurol 2022; 22:420. [DOI: 10.1186/s12883-022-02924-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Glioma is one of the most commonly occurring malignant brain cancers with high recurrence and mortality. Glioma stem cells (SCs) are a rare sub-group of glioma cells that play a critical role in tumor progression. Heat shock protein 90 (HSP90) is known to promote the stemness of glioma SCs. Here, we investigated the role of HSP90 in glioma SC metabolism, to reveal its potential as a novel therapeutic target.
Methods
Self-renewal assays were used to assess stemness. Cell migration, invasion and viability were measured using Transwell and CCK-8 assays, respectively. Tumor growth was evaluated in xenograft nude mouse models. The expression of known markers of stemness including CD44, A2B5, Oct4, Nestin, Lgr5, Sox2, CD24 were assessed by western blotting. HSP90 expression was assessed by western blotting and immunohistochemistry (IHC). Glucose consumption, lactic acid production and ATP levels were measured using commercially available kits. Extracellular acidification rates (ECAR) were measured using the Seahorse XFe/XF analyzer.
Results
HSP90 was upregulated in spheroid cells compared to parental cells. HSP90 facilitated the characteristics of SCs through enhancing self-renewal capacity, glucose consumption, lactic acid production, total ATP, ECAR and glycolysis. 2-DG, an inhibitor of glycolysis, reduced HSP90 expression and inhibited the stemness of glioma cells.
Conclusions
We show that HSP90 accelerates stemness and enhances glycolysis in glioma cells. Inhibition of glycolysis with 2DG prevented stemness. This reveals new roles for HSP90 during glioma progression and highlights this protein as a potential target for much-needed anti-glioma therapeutics.
Collapse
|
24
|
Microglial Extracellular Vesicles as Modulators of Brain Microenvironment in Glioma. Int J Mol Sci 2022; 23:ijms232113165. [PMID: 36361947 PMCID: PMC9656645 DOI: 10.3390/ijms232113165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Microglial cells represent the resident immune elements of the central nervous system, where they exert constant monitoring and contribute to preserving neuronal activity and function. In the context of glioblastoma (GBM), a common type of tumor originating in the brain, microglial cells deeply modify their phenotype, lose their homeostatic functions, invade the tumoral mass and support the growth and further invasion of the tumoral cells into the surrounding brain parenchyma. These modifications are, at least in part, induced by bidirectional communication among microglial and tumoral cells through the release of soluble molecules and extracellular vesicles (EVs). EVs produced by GBM and microglial cells transfer different kinds of biological information to receiving cells, deeply modifying their phenotype and activity and could represent important diagnostic markers and therapeutic targets. Recent evidence demonstrates that in GBM, microglial-derived EVs contribute to the immune suppression of the tumor microenvironment (TME), thus favoring GBM immune escape. In this review, we report the current knowledge on EV formation, biogenesis, cargo and functions, with a focus on the effects of microglia-derived EVs in GBM. What clearly emerges from this analysis is that we are at the beginning of a full understanding of the complete picture of the biological effects of microglial-derived EVs and that further investigations using multidisciplinary approaches are necessary to validate their use in GBM diagnosis and therapy.
Collapse
|
25
|
Mafi A, Rahmati A, Babaei Aghdam Z, Salami R, Salami M, Vakili O, Aghadavod E. Recent insights into the microRNA-dependent modulation of gliomas from pathogenesis to diagnosis and treatment. Cell Mol Biol Lett 2022; 27:65. [PMID: 35922753 PMCID: PMC9347108 DOI: 10.1186/s11658-022-00354-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022] Open
Abstract
Gliomas are the most lethal primary brain tumors in adults. These highly invasive tumors have poor 5-year survival for patients. Gliomas are principally characterized by rapid diffusion as well as high levels of cellular heterogeneity. However, to date, the exact pathogenic mechanisms, contributing to gliomas remain ambiguous. MicroRNAs (miRNAs), as small noncoding RNAs of about 20 nucleotides in length, are known as chief modulators of different biological processes at both transcriptional and posttranscriptional levels. More recently, it has been revealed that these noncoding RNA molecules have essential roles in tumorigenesis and progression of multiple cancers, including gliomas. Interestingly, miRNAs are able to modulate diverse cancer-related processes such as cell proliferation and apoptosis, invasion and migration, differentiation and stemness, angiogenesis, and drug resistance; thus, impaired miRNAs may result in deterioration of gliomas. Additionally, miRNAs can be secreted into cerebrospinal fluid (CSF), as well as the bloodstream, and transported between normal and tumor cells freely or by exosomes, converting them into potential diagnostic and/or prognostic biomarkers for gliomas. They would also be great therapeutic agents, especially if they could cross the blood–brain barrier (BBB). Accordingly, in the current review, the contribution of miRNAs to glioma pathogenesis is first discussed, then their glioma-related diagnostic/prognostic and therapeutic potential is highlighted briefly.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Basic Science, Neyshabur University of Medical Science, Neyshabur, Iran
| | - Zahra Babaei Aghdam
- Imaging Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran. .,Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
26
|
MicroRNA-147a Targets SLC40A1 to Induce Ferroptosis in Human Glioblastoma. Anal Cell Pathol 2022; 2022:2843990. [PMID: 35942174 PMCID: PMC9356897 DOI: 10.1155/2022/2843990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/18/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022] Open
Abstract
Objective. Glioblastoma is one of the most common malignant tumors in the brain, and these glioblastoma patients have very poor prognosis. Ferroptosis is involved in the progression of various tumors, including the glioblastoma. This study aims to determine the involvement of microRNA (miR)-147a in regulating ferroptosis of glioblastoma in vitro. Methods. Human glioblastoma cell lines were transfected with the inhibitor, mimic and matched negative controls of miR-147a in the presence or absence of ferroptotic inducers. To knock down the endogenous solute carrier family 40 member 1 (SLC40A1), cells were transfected with the small interfering RNA against SLC40A1. In addition, cells with or without the miR-147a mimic treatment were also incubated with temozolomide (TMZ) to investigate whether miR-147a overexpression could sensitize human glioblastoma cells to TMZ chemotherapy in vitro. Results. We found that miR-147a level was decreased in human glioblastoma tissues and cell lines and that the miR-147a mimic significantly suppressed the growth of glioblastoma cells in vitro. In addition, miR-147a expression was elevated in human glioblastoma cells upon erastin or RSL3 stimulation. Treatment with the miR-147a mimic significantly induced ferroptosis of glioblastoma cells, and the ferroptotic inhibitors could block the miR-147a mimic-mediated tumor suppression in vitro. Conversely, the miR-147a inhibitor prevented erastin- or RSL3-induced ferroptosis and increased the viability of glioblastoma cells in vitro. Mechanistically, we determined that miR-147a directly bound to the 3
-untranslated region of SLC40A1 and inhibited SLC40A1-mediated iron export, thereby facilitating iron overload, lipid peroxidation, and ferroptosis. Furthermore, miR-147a mimic-treated human glioblastoma cells exhibited higher sensitivity to TMZ chemotherapy than those treated with the mimic control in vitro. Conclusion. We for the first time determine that miR-147a targets SLC40A1 to induce ferroptosis in human glioblastoma in vitro.
Collapse
|
27
|
lncRNA MEG3 Inhibits the Proliferation and Growth of Glioma Cells by Downregulating Bcl-xL in the PI3K/Akt/NF-κB Signal Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3729069. [PMID: 35860793 PMCID: PMC9293524 DOI: 10.1155/2022/3729069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022]
Abstract
This study was conducted to investigate the impact and mechanisms of lncRNA MEG3 on glioma cells. lncRNA MEG3 was lowly expressed in glioma cells as compared to noncancer cells. Overexpression of MEG3 significantly downregulated the expression of Bcl-xL, slightly upregulated the expression of NF-κB p65 and IκBα, and reduced the proliferation of glioma cells with increased apoptosis and the migration and invasion ability. Subsequently, glioma cells overexpressing MEG3 had less tumorgenicity in xenograft mouse models. It is likely that MEG3 induces apoptosis in glioma cells via downregulating the Bcl-xL gene in the PI3K/Akt/NF-κB signal pathway to reduce the development of glioma.
Collapse
|
28
|
Rodrigues-Junior DM, Tsirigoti C, Lim SK, Heldin CH, Moustakas A. Extracellular Vesicles and Transforming Growth Factor β Signaling in Cancer. Front Cell Dev Biol 2022; 10:849938. [PMID: 35493080 PMCID: PMC9043557 DOI: 10.3389/fcell.2022.849938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Complexity in mechanisms that drive cancer development and progression is exemplified by the transforming growth factor β (TGF-β) signaling pathway, which suppresses early-stage hyperplasia, yet assists aggressive tumors to achieve metastasis. Of note, several molecules, including mRNAs, non-coding RNAs, and proteins known to be associated with the TGF-β pathway have been reported as constituents in the cargo of extracellular vesicles (EVs). EVs are secreted vesicles delimited by a lipid bilayer and play critical functions in intercellular communication, including regulation of the tumor microenvironment and cancer development. Thus, this review aims at summarizing the impact of EVs on TGF-β signaling by focusing on mechanisms by which EV cargo can influence tumorigenesis, metastatic spread, immune evasion and response to anti-cancer treatment. Moreover, we emphasize the potential of TGF-β-related molecules present in circulating EVs as useful biomarkers of prognosis, diagnosis, and prediction of response to treatment in cancer patients.
Collapse
Affiliation(s)
| | - Chrysoula Tsirigoti
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (A*-STAR), Singapore, Singapore
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- *Correspondence: Aristidis Moustakas,
| |
Collapse
|
29
|
Liu L, Cheng M, Zhang T, Chen Y, Wu Y, Wang Q. Mesenchymal stem cell-derived extracellular vesicles prevent glioma by blocking M2 polarization of macrophages through a miR-744-5p/TGFB1-dependent mechanism. Cell Biol Toxicol 2022; 38:649-665. [PMID: 34978010 DOI: 10.1007/s10565-021-09652-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022]
Abstract
AIM Our current study is conducted with intention to explore the regulatory mechanism of mesenchymal stem cell (MSC)-derived extracellular vesicle (EV)-miR-744-5p in glioma. METHODS Expression patterns of TGFB1, TGFBR1, and miR-744-5p were determined. EVs were isolated from human MSCs, which were characterized. Then, macrophages were co-cultured with MSCs with ectopic miR-744-5p expression to explore its role in cell proliferation, invasion, and migration capabilities. A nude mouse model of glioma xenograft was developed to observe the tumorigenesis and metastasis ability of glioma in vivo. RESULTS TGFB1 and TGFBR1 were upregulated in glioma. TGFB1 promoted M2 polarization of macrophages through theMAPK signaling, thereby promoting the progression of glioma. MSC-EVs suppressed TGFB1 expression in macrophages and inhibited M2 polarization of macrophages. MSC-EVs-miR-744-5p/TGFB1/MAPK axis inhibited M2 polarization of macrophages and reduced the malignant phenotypes of glioma cells. In vivo experiments verified that MSC-EVs-miR-744-5p inhibited the polarization of macrophage M2 and prevented glioma progression. CONCLUSION Taken together, MSC-EVs-miR-744-5p may suppress the MAPK signaling activity by downregulating TGFB1, and then inhibit polarization of macrophages M2, thereby preventing the progression of glioma. Graphical Headlights 1. TGFB1 promotes the M2 polarization of macrophages via the MAPK signaling. 2. miR-744-5p carried by MSC-EVs targets and inhibits TGFB1. 3. MSC-EV-miR-744-5p inhibits M2 polarization of macrophages to prevent glioma progression. 4. miR-744-5p loaded by MSC-EVs may be a preventive strategy against glioma.
Collapse
Affiliation(s)
- Ling Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Section 2, 1st Ring Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Meixiong Cheng
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Section 2, 1st Ring Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Tian Zhang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Section 2, 1st Ring Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Yong Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Section 2, 1st Ring Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Yaqiu Wu
- Department of Neurosurgery Intensive Care Unit, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Section 2, 1st Ring Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| | - Qi Wang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Section 2, 1st Ring Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
30
|
Lessi F, Aretini P, Rizzo M, Morelli M, Menicagli M, Franceschi S, Mazzanti CM. Analysis of exosome-derived microRNAs reveals insights of intercellular communication during invasion of breast, prostate and glioblastoma cancer cells. Cell Adh Migr 2021; 15:180-201. [PMID: 34157951 PMCID: PMC8224203 DOI: 10.1080/19336918.2021.1935407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/08/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022] Open
Abstract
MiRNAs represent a mechanism that regulates gene expression in many pathological conditions. Exosomes are known to be secreted from all types of cells, and the exosomes-released molecules are crucial messengers that can regulate cellular processes. We investigated the miRNAs content of exosomes released by cancer cells during the invasion . An invasion stimulus has been generated through scratches created on the confluent cells of cancer cell lines: glioblastoma, breast and prostate cancers.Several miRNAs were found to be significantly differentially abundant during the cell invasion , both in common among different cell lines and exclusive. Understanding the language codes among cells involved in invasion can lead to the development of therapies that can inhibit cellular communication, slowing or eventually stopping their activity.
Collapse
Affiliation(s)
| | | | - Milena Rizzo
- Institute of Clinical Physiology (IFC), CNR, Pisa, Italy
| | | | | | | | | |
Collapse
|
31
|
Fan X, Fan J, Yang H, Zhao C, Niu W, Fang Z, Chen X. Heterogeneity of subsets in glioblastoma mediated by Smad3 palmitoylation. Oncogenesis 2021; 10:72. [PMID: 34707087 PMCID: PMC8551152 DOI: 10.1038/s41389-021-00361-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most common and deadly of the primary intracranial tumors and is comprised of subsets that show plasticity and marked heterogeneity, contributing to the lack of success in genomic profiling to guide development of precision medicine for these tumors. In this study, a mutation in isocitrate dehydrogenase 1 was found to suppress the transforming growth factor-beta signaling pathway and E2F4 interacted with Smad3 to inhibit expression of mesenchymal markers. However, palmitoylation of Smad3 mediated by palmitoyltransferase ZDHHC19 promoted activation of the transforming growth factor-beta signaling pathway, and its interaction with EP300 promoted expression of mesenchymal markers in the mesenchymal subtype of GBM. Smad3 and hypoxia-inducible factor 1-alpha may be important molecular targets for treatment of glioma because they appear to coordinate the basic aspects of cancer stem cell biology.
Collapse
Affiliation(s)
- Xiaoqing Fan
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China. MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230027, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230031, China.,Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), No. 17, Lu Jiang Road, Hefei, Anhui, 230001, China
| | - Junqi Fan
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China. MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230027, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230031, China
| | - Haoran Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China. MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230027, China.,Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), No. 17, Lu Jiang Road, Hefei, Anhui, 230001, China.,Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China. MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230027, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230031, China
| | - Wanxiang Niu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China. MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230027, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230031, China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China. MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230027, China. .,Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, China.
| | - Xueran Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China. MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230027, China. .,Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, China.
| |
Collapse
|
32
|
Penning DH, Cazacu S, Brodie A, Jevtovic-Todorovic V, Kalkanis SN, Lewis M, Brodie C. Neuron-Glia Crosstalk Plays a Major Role in the Neurotoxic Effects of Ketamine via Extracellular Vesicles. Front Cell Dev Biol 2021; 9:691648. [PMID: 34604212 PMCID: PMC8481868 DOI: 10.3389/fcell.2021.691648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/06/2021] [Indexed: 02/02/2023] Open
Abstract
Background: There is a compelling evidence from animal models that early exposure to clinically relevant general anesthetics (GAs) interferes with brain development, resulting in long-lasting cognitive impairments. Human studies have been inconclusive and are challenging due to numerous confounding factors. Here, we employed primary human neural cells to analyze ketamine neurotoxic effects focusing on the role of glial cells and their activation state. We also explored the roles of astrocyte-derived extracellular vesicles (EVs) and different components of the brain-derived neurotrophic factor (BDNF) pathway. Methods: Ketamine effects on cell death were analyzed using live/dead assay, caspase 3 activity and PARP-1 cleavage. Astrocytic and microglial cell differentiation was determined using RT-PCR, ELISA and phagocytosis assay. The impact of the neuron-glial cell interactions in the neurotoxic effects of ketamine was analyzed using transwell cultures. In addition, the role of isolated and secreted EVs in this cross-talk were studied. The expression and function of different components of the BDNF pathway were analyzed using ELISA, RT-PCR and gene silencing. Results: Ketamine induced neuronal and oligodendrocytic cell apoptosis and promoted pro-inflammatory astrocyte (A1) and microglia (M1) phenotypes. Astrocytes and microglia enhanced the neurotoxic effects of ketamine on neuronal cells, whereas neurons increased oligodendrocyte cell death. Ketamine modulated different components in the BDNF pathway: decreasing BDNF secretion in neurons and astrocytes while increasing the expression of p75 in neurons and that of BDNF-AS and pro-BDNF secretion in both neurons and astrocytes. We demonstrated an important role of EVs secreted by ketamine-treated astrocytes in neuronal cell death and a role for EV-associated BDNF-AS in this effect. Conclusions: Ketamine exerted a neurotoxic effect on neural cells by impacting both neuronal and non-neuronal cells. The BDNF pathway and astrocyte-derived EVs represent important mediators of ketamine effects. These results contribute to a better understanding of ketamine neurotoxic effects in humans and to the development of potential approaches to decrease its neurodevelopmental impact.
Collapse
Affiliation(s)
- Donald H Penning
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | - Simona Cazacu
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | | | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Steve N Kalkanis
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | - Michael Lewis
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Chaya Brodie
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States.,Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
33
|
Unterman I, Bloch I, Cazacu S, Kazimirsky G, Ben-Zeev B, Berman BP, Brodie C, Tabach Y. Expanding the MECP2 network using comparative genomics reveals potential therapeutic targets for Rett syndrome. eLife 2021; 10:e67085. [PMID: 34355696 PMCID: PMC8346285 DOI: 10.7554/elife.67085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Inactivating mutations in the Methyl-CpG Binding Protein 2 (MECP2) gene are the main cause of Rett syndrome (RTT). Despite extensive research into MECP2 function, no treatments for RTT are currently available. Here, we used an evolutionary genomics approach to construct an unbiased MECP2 gene network, using 1028 eukaryotic genomes to prioritize proteins with strong co-evolutionary signatures with MECP2. Focusing on proteins targeted by FDA-approved drugs led to three promising targets, two of which were previously linked to MECP2 function (IRAK, KEAP1) and one that was not (EPOR). The drugs targeting these three proteins (Pacritinib, DMF, and EPO) were able to rescue different phenotypes of MECP2 inactivation in cultured human neural cell types, and appeared to converge on Nuclear Factor Kappa B (NF-κB) signaling in inflammation. This study highlights the potential of comparative genomics to accelerate drug discovery, and yields potential new avenues for the treatment of RTT.
Collapse
Affiliation(s)
- Irene Unterman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| | - Idit Bloch
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| | - Simona Cazacu
- Hermelin Brain Tumor Center, Henry Ford HospitalDetroitUnited States
| | - Gila Kazimirsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Bruria Ben-Zeev
- Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical CenterRamat GanIsrael
| | - Benjamin P Berman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| | - Chaya Brodie
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| |
Collapse
|
34
|
Prrx1 promotes stemness and angiogenesis via activating TGF-β/smad pathway and upregulating proangiogenic factors in glioma. Cell Death Dis 2021; 12:615. [PMID: 34131109 PMCID: PMC8206106 DOI: 10.1038/s41419-021-03882-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
Glioma is one of the most lethal cancers with highly vascularized networks and growing evidences have identified glioma stem cells (GSCs) to account for excessive angiogenesis in glioma. Aberrant expression of paired-related homeobox1 (Prrx1) has been functionally associated with cancer stem cells including GSCs. In this study, Prrx1 was found to be markedly upregulated in glioma specimens and elevated Prrx1 expression was inversely correlated with prognosis of glioma patients. Prrx1 potentiated stemness acquisition in non-stem tumor cells (NSTCs) and stemness maintenance in GSCs, accompanied with increased expression of stemness markers such as SOX2. Prrx1 also promoted glioma angiogenesis by upregulating proangiogenic factors such as VEGF. Consistently, silencing Prrx1 markedly inhibited glioma proliferation, stemness, and angiogenesis in vivo. Using a combination of subcellular proteomics and in vitro analyses, we revealed that Prrx1 directly bound to the promoter regions of TGF-β1 gene, upregulated TGF-β1 expression, and ultimately activated the TGF-β/smad pathway. Silencing TGF-β1 mitigated the malignant behaviors induced by Prrx1. Activation of this pathway cooperates with Prrx1 to upregulate the expression of stemness-related genes and proangiogenic factors. In summary, our findings revealed that Prrx1/TGF-β/smad signal axis exerted a critical role in glioma stemness and angiogeneis. Disrupting the function of this signal axis might represent a new therapeutic strategy in glioma patients.
Collapse
|
35
|
Altieri R, Barbagallo D, Certo F, Broggi G, Ragusa M, Di Pietro C, Caltabiano R, Magro G, Peschillo S, Purrello M, Barbagallo G. Peritumoral Microenvironment in High-Grade Gliomas: From FLAIRectomy to Microglia-Glioma Cross-Talk. Brain Sci 2021; 11:200. [PMID: 33561993 PMCID: PMC7915863 DOI: 10.3390/brainsci11020200] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Cellular composition and molecular signatures of the glioma core compared with infiltrative margins are different, and it is well known that the tumor edge is enriched in microglia. In this review of the literature, we summarize the role of the peritumoral area in high-grade gliomas (HGGs) from surgical and biological points of view. There is evidence on the dual role of microglia in HGGs-a scavenger-tumoricidal role when microglia are activated in an M1 phenotype and a role favoring tumor growth and infiltration/migration when microglia are activated in an M2 phenotype. Microglia polarization is mediated by complex pathways involving cross-talk with glioma cells. In this scenario, extracellular vesicles and their miRNA cargo seem to play a central role. The switch to a specific phenotype correlates with prognosis and the pathological assessment of a specific microglial setting can predict a patient's outcome. Some authors have designed an engineered microglial cell as a biologically active vehicle for the delivery of intraoperative near-infrared fluorescent dye with the aim of helping surgeons detect peritumoral infiltrated areas during resection. Furthermore, the pharmacological modulation of microglia-glioma cross-talk paves the way to more effective therapies.
Collapse
Affiliation(s)
- Roberto Altieri
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (S.P.); (G.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy; (D.B.); (M.R.); (M.P.)
| | - Davide Barbagallo
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy; (D.B.); (M.R.); (M.P.)
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy;
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (S.P.); (G.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy; (D.B.); (M.R.); (M.P.)
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.); (G.M.)
| | - Marco Ragusa
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy; (D.B.); (M.R.); (M.P.)
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy;
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy;
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.); (G.M.)
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.); (G.M.)
| | - Simone Peschillo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (S.P.); (G.B.)
| | - Michele Purrello
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy; (D.B.); (M.R.); (M.P.)
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy;
| | - Giuseppe Barbagallo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (S.P.); (G.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy; (D.B.); (M.R.); (M.P.)
| |
Collapse
|