1
|
Jiang W, Wu Y, Pang A, Li P, Mei S. M1-type microglia-derived exosomes contribute to blood-brain barrier damage. Brain Res 2024; 1835:148919. [PMID: 38588846 DOI: 10.1016/j.brainres.2024.148919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND As a key substance for intercellular communication, exosomes could be a potential strategy for stroke treatment. Activated microglia disrupt the integrity of blood-brain barrier (BBB) to facilitate the stroke process. Hence, this study was designed to investigate the effect of microglia-derived exosomes on BBB cell model injury and to explore the underlying molecular mechanisms. METHODS M1 polarization of BV2 cells was induced with LPS and their derived exosomes were isolated. Astrocytes were cultured in primary culture and constructed with End3 cells as a BBB cell model. After co-culture with exosomes, the BBB cell model was examined for changes in TEER, permeability, and expression of BBB-related proteins (Claudin-1, Occludin, ZO-1 and JAM). Resting and M1-type BV2 cell-derived exosomes perform small RNA sequences and differentially expressed miRNAs (DE-miRNAs) are identified by bioinformatics. RESULTS M1-type BV2 cell-derived exosomes decreased End3 cell viability, and increased their apoptotic ratio. Moreover, M1 type BV2 cell-derived exosomes dramatically enhanced the permeability of BBB cell model, and diminished the TEER and BBB-related protein (Claudin-1, Occludin, ZO-1) expression. Notably, resting BV2 cell-derived exosomes had no effect on the integrity of BBB cell model. Sequencing results indicated that 71 DE-miRNAs were present in M1 BV2 cell-derived exosomes, and their targets mediated neurological development and signaling pathways such as MAPK and cAMP. RT-qPCR confirmed the differential expression of mmu-miR-125a-5p, mmu-miR-122b-3p, mmu-miR-139-3p, mmu-miR-330-3p, mmu-miR-3057-5p and mmu-miR-342-3p consistent with the small RNA sequence. Furthermore, Creb1, Jun, Mtor, Frk, Pabpc1 and Sdc1 are the most well-connected proteins in the PPI network. CONCLUSION M1-type microglia-derived exosomes contribute to the injury of BBB cell model, which has the involvement of miRNAs. Our findings provide new perspectives and potential mechanisms for future M1 microglia-derived exosomes as therapeutic targets in stroke.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming 650032, Yunnan, China; The Yunnan Province Clinical Research Center for Neurological Diseases, No.295 Xichang Road, Kunming 650032, Yunnan, China
| | - Yan Wu
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming 650032, Yunnan, China
| | - Ailan Pang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming 650032, Yunnan, China
| | - Peiyao Li
- Department of Pain Medicine, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming 650032, Yunnan, China
| | - Song Mei
- Department of Cardiac Surgery, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming 650032, Yunnan, China.
| |
Collapse
|
2
|
Zhang L, Zhu B, Zhou X, Ning H, Zhang F, Yan B, Chen J, Ma T. ZNF787 and HDAC1 Mediate Blood-Brain Barrier Permeability in an In Vitro Model of Alzheimer's Disease Microenvironment. Neurotox Res 2024; 42:12. [PMID: 38329647 DOI: 10.1007/s12640-024-00693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/19/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
The permeability of the blood-brain barrier (BBB) is increased in Alzheimer's disease (AD). This plays a key role in the instigation and maintenance of chronic inflammation during AD. Experiments using AD models showed that the increased permeability of the BBB was mainly caused by the decreased expression of tight junction-related proteins occludin and claudin-5. In this study, we found that ZNF787 and HDAC1 were upregulated in β-amyloid (Aβ)1-42-incubated endothelial cells, resulting in increased BBB permeability. Conversely, the silencing of ZNF787 and HDAC1 by RNAi led to reduced BBB permeability. The silencing of ZNF787 and HDAC1 enhanced the expression of occludin and claudin-5. Mechanistically, ZNF787 binds to promoter regions for occludin and claudin-5 and functions as a transcriptional regulator. Furthermore, we demonstrate that ZNF787 interacts with HDAC1, and this resulted in the downregulation of the expression of genes encoding tight junction-related proteins to increase in BBB permeability. Taken together, our study identifies critical roles for the interaction between ZNF787 and HDAC1 in regulating BBB permeability and the pathogenesis of AD.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Baicheng Zhu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Xinxin Zhou
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110034, China
| | - Hao Ning
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Fengying Zhang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, China
| | - Bingju Yan
- Department of Cardiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Jiajia Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
3
|
Zhang FF, Zhang L, Zhao L, Lu Y, Dong X, Liu YQ, Li Y, Guo S, Zheng SY, Xiao Y, Jiang YZ. The circular RNA Rap1b promotes Hoxa5 transcription by recruiting Kat7 and leading to increased Fam3a expression, which inhibits neuronal apoptosis in acute ischemic stroke. Neural Regen Res 2023; 18:2237-2245. [PMID: 37056143 PMCID: PMC10328278 DOI: 10.4103/1673-5374.369115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/15/2022] [Accepted: 12/30/2022] [Indexed: 02/17/2023] Open
Abstract
Circular RNAs can regulate the development and progression of ischemic cerebral disease. However, it remains unclear whether they play a role in acute ischemic stroke. To investigate the role of the circular RNA Rap1b (circRap1b) in acute ischemic stroke, in this study we established an in vitro model of acute ischemia and hypoxia by subjecting HT22 cells to oxygen and glucose deprivation and a mouse model of acute ischemia and hypoxia by occluding the right carotid artery. We found that circRap1b expression was remarkably down-regulated in the hippocampal tissue of the mouse model and in the HT22 cell model. In addition, Hoxa5 expression was strongly up-regulated in response to circRap1b overexpression. Hoxa5 expression was low in the hippocampus of a mouse model of acute ischemia and in HT22-AIS cells, and inhibited HT22-AIS cell apoptosis. Importantly, we found that circRap1b promoted Hoxa5 transcription by recruiting the acetyltransferase Kat7 to induce H3K14ac modification in the Hoxa5 promoter region. Hoxa5 regulated neuronal apoptosis by activating transcription of Fam3a, a neuronal apoptosis-related protein. These results suggest that circRap1b regulates Hoxa5 transcription and expression, and subsequently Fam3a expression, ultimately inhibiting cell apoptosis. Lastly, we explored the potential clinical relevance of circRap1b and Hoxa5 in vivo. Taken together, these findings demonstrate the mechanism by which circRap1b inhibits neuronal apoptosis in acute ischemic stroke.
Collapse
Affiliation(s)
- Fang-Fang Zhang
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Liang Zhang
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Lin Zhao
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Yu Lu
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Xin Dong
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Yan-Qi Liu
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Yu Li
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Shuang Guo
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Si-Yuan Zheng
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Ying Xiao
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Yu-Zhu Jiang
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| |
Collapse
|
4
|
Zhang Y, Su Q, Xia W, Jia K, Meng D, Wang X, Ni X, Su Z. MiR-140-3p directly targets Tyro3 to regulate OGD/R-induced neuronal injury through the PI3K/Akt pathway. Brain Res Bull 2023; 192:93-106. [PMID: 36372373 DOI: 10.1016/j.brainresbull.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/21/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND PURPOSE MicroRNAs (miRNAs) are highly expressed in the central nervous system and play important roles in ischaemic stroke pathogenesis. However, the role of miRNAs in cerebral ischaemia-reperfusion injury remains unclear. Here, we investigated the role of miR-140-3p in regulating oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal injury in vitro to identify a new biomarker for research on ischaemic stroke. METHODS The differential expression of miR-140-3p and Tyro3 in OGD/R-exposed N2a cells was verified by qRT-PCR. N2a cells were transfected with miR-140-3p mimic, miR-140-3p inhibitor, Tyro3 or siTyro3, and qRT-PCR, Western blotting, the Cell counting kit-8 (CCK-8) assay, Hoechst 33342/PI staining and flow cytometry analyses were performed to measure miRNA, mRNA and protein expression; cell viability; and apoptosis. RESULTS OGD/R-exposed N2a cells exhibited increased miR-140-3p expression, decreased viability, reduced Bcl-2 protein expression and increased Bax and Caspase-3 protein expression and apoptosis; the miR-140-3p mimic markedly amplified these changes, exacerbating OGD/R-induced injury to N2a cells, while the miR-140-3p inhibitor reversed these changes and alleviated OGD/R-induced injury. OGD/R-exposed N2a cells expressed less Tyro3, and Tyro3 overexpression increased cell viability and Bcl-2 protein expression, reduced Bax and Caspase-3 protein expression, and alleviated OGD/R-induced injury. However, silencing Tyro3 reversed these changes and exacerbated OGD/R-induced injury. MiR-140-3p directly bound the Tyro3 mRNA 3'UTR. Rescue experiments indicated that the miR-140-3p mimic-induced changes in cell viability and protein expression were alleviated by Tyro3 overexpression and that the miR-140-3p inhibitor-induced changes in cell viability and protein expression were alleviated by silencing Tyro3. Tyro3 overexpression increased cell viability and PI3K and p-Akt protein expression, but these effects were weakened by the addition of LY294002. CONCLUSIONS MiR-140-3p directly targets Tyro3 to regulate cell viability and apoptosis of OGD/R-exposed N2a cells through the PI3K/Akt pathway, suggesting that miR-140-3p is a novel biomarker and therapeutic target for ischaemic stroke.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; Central Laboratory of the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Qian Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Wenbo Xia
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Kejuan Jia
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Delong Meng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Xunran Ni
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin 150001, China
| | - Zhiqiang Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
5
|
Zhu B, Zhang L, Zhou X, Ning H, Ma T. Transcription factor ZNF22 regulates blood-tumor barrier permeability by interacting with HDAC3 protein. Front Mol Neurosci 2022; 15:1027942. [PMID: 36518188 PMCID: PMC9742255 DOI: 10.3389/fnmol.2022.1027942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/11/2022] [Indexed: 10/09/2023] Open
Abstract
OBJECTIVE The primary goals of this study were to investigate the potential roles of ZNF22 and HDAC3 as a histone deacetylase in regulating an increases in blood-tumor barrier (BTB) permeability and some of the possible molecular mechanisms associated with this effect. METHODS The expression of ZNF22 and HDAC3 in glioma-exposed endothelial cells (GECs) of BTB were detected transcription real-time PCR or western blot. The interaction of ZNF22 and HDAC3 in GECs associated with transcript effect was analyzed by means of Co-Immunoprecipitation and luciferase reporter assay. RESULTS In the present investigation, GECs expressed higher levels of ZNF22 as a zinc finger transcription factor and HDAC3 than endothelial cells. We then affirmed that silencing HDAC3 or ZNF22 led to a reduction in BTB permeability. By bioinformatics analysis, chromatin immunoprecipitation (ChIP) assays and luciferase assay, we found that ZNF22 had a target binding relationship with the promoter regions of ZO-1, Occludin, and Claudin-5 and negatively regulated the expression of ZO-1, Occludin, and Claudin-5. Furthermore, we revealed that HDAC3, as a co-transcript repressor with histone deacetylase activity, could interact with ZNF22 to hinder the expression of TJ-associated proteins, thereby further facilitating the permeability of BTB. CONCLUSION ZNF22 acted as a transcription factor in conjunction with HDAC3 to modulate the expression of TJ-associated proteins, which was correlated with an increase in BTB permeability. These results may provide new strategies and targets for the chemotherapy of gliomas as well as intracranial infections.
Collapse
Affiliation(s)
- Baicheng Zhu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Lu Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Xinxin Zhou
- Liaoning TCM Academy, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Hao Ning
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Chemerin-Induced Down-Regulation of Placenta-Derived Exosomal miR-140-3p and miR-574-3p Promotes Umbilical Vein Endothelial Cells Proliferation, Migration, and Tube Formation in Gestational Diabetes Mellitus. Cells 2022; 11:cells11213457. [PMID: 36359855 PMCID: PMC9655594 DOI: 10.3390/cells11213457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Gestational diabetes mellitus (GDM) leads to poor pregnancy outcomes and fetoplacental endothelial dysfunction; however, the underlying mechanisms remain unknown. This study aimed to investigate the effect of placenta-derived exosomal miRNAs on fetoplacental endothelial dysfunction in GDM, as well as to further explore the role of chemerin to this end. Placenta-derived exosomal miR-140-3p and miR-574-3p expression (next-generation sequencing, quantitative real-time PCR), its interactions with cell function (Cell Counting Kit-8, Transwell, tube formation assay), chemerin interactions (Western blotting), and placental inflammation (immunofluorescence staining, enzyme-linked immunosorbent assay) were investigated. Placenta-derived exosomal miR-140-3p and miR-574-3p were downregulated in GDM. Additionally, miR-140-3p and miR-574-3p inhibited the proliferation, migration, and tube formation ability of umbilical vein endothelial cells by targeting vascular endothelial growth factor. Interestingly, miR-140-3p and miR-574-3p expression levels were negatively correlated with chemerin, which induced placental inflammation through the recruitment of macrophage cells and release of IL-18 and IL-1β. These findings indicate that chemerin reduces placenta-derived exosomal miR-140-3p and miR-574-3p levels by inducing placental inflammation, thereby promoting the proliferation, migration, and tube formation of umbilical vein endothelial cells in GDM, providing a novel perspective on the underlying pathogenesis and therapeutic targets for GDM and its offspring complications.
Collapse
|
7
|
Zhang Y, Shi J, Luo J, Liu C, Zhu L. Regulatory mechanisms and potential medical applications of HNF1A-AS1 in cancers. Am J Transl Res 2022; 14:4154-4168. [PMID: 35836869 PMCID: PMC9274608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) are defined as a class of non-protein-coding RNAs that are longer than 200 nucleotides. Previous studies have shown that lncRNAs play a vital role in the progression of multiple diseases, which highlights their potential for medical applications. The lncRNA hepatocyte nuclear factor 1 homeobox A (HNF1A) antisense RNA 1 (HNF1A-AS1) is known to be abnormally expressed in multiple cancers. HNF1A-AS1 exerts its oncogenic roles through a variety of molecular mechanisms. Moreover, aberrant HNF1A-AS1 expression is associated with diverse clinical features in cancer patients. Therefore, HNF1A-AS1 is a promising biomarker for tumor diagnosis and prognosis and thus a potential candidate for tumor therapy. This review summarizes current studies on the role and the underlying mechanisms of HNF1A-AS1 various cancer types, including gastric cancer, liver cancer, glioma, lung cancer, colorectal cancer, breast cancer, bladder cancer, osteosarcoma, esophageal adenocarcinoma, hemangioma, oral squamous cell carcinoma, laryngeal squamous cell carcinoma, cervical cancer, as well as gastroenteropancreatic neuroendocrine neoplasms. We also describe the diagnostic, prognostic, and therapeutic value of HNF1A-AS1 for multiple cancer patients.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Jiang Shi
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Junfang Luo
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Cong Liu
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Lixu Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| |
Collapse
|
8
|
TARBP2-stablized SNHG7 regulates blood-brain barrier permeability by acting as a competing endogenous RNA to miR-17-5p/NFATC3 in Aβ-microenvironment. Cell Death Dis 2022; 13:457. [PMID: 35562351 PMCID: PMC9106673 DOI: 10.1038/s41419-022-04920-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022]
Abstract
Breakdown of blood-brain barrier (BBB) is recognized as serious pathological marker of Alzheimer's disease development. Studies confirmed that β-amyloid (Aβ) deposition induced high BBB permeability by disrupting tight junction (TJ) proteins formed from endothelial cells (ECs). Here, we found TARBP2, SNHG7 and NFATC3 in expressions were increased and miR-17-5p expression was decreased in Aβ(1-42)-incubated ECs. Overexpression of TARBP2, SNHG7 and NFATC3 elevated BBB permeability and knockdown of them had converse results. Agomir-17-5p decreased BBB permeability and antagomir-17-5p increased BBB permeability. TARBP2 as a RNA-binding protein (RBP) bound to SNHG7 and resulted in longer half-life of SNHG7. The decreased expression of miR-17-5p had a negative post-transcriptional regulation to NFATC3, leading to the increased expression of NFATC3. In addition, SNHG7 regulated NFATC3 expression by acting as a molecule sponge targeting to miR-17-5p. NFATC3 inhibited TJ proteins expression by functioning as a transcription factor. TARBP2/SNHG7/miR-17-5p/NFATC3 pathway implied a potential mechanism in studies of BBB changes in AD pathological progression.
Collapse
|
9
|
Mathew S, Sivasubbu S. Long Non Coding RNA Based Regulation of Cerebrovascular Endothelium. Front Genet 2022; 13:834367. [PMID: 35495157 PMCID: PMC9043600 DOI: 10.3389/fgene.2022.834367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid and high throughput discovery of long non coding RNAs (lncRNAs) has far outstripped the functional annotation of these novel transcripts in their respective cellular contexts. The cells of the blood brain barrier (BBB), especially the cerebrovascular endothelial cells (CVECs), are strictly regulated to maintain a controlled state of homeostasis for undisrupted brain function. Several key pathways are understood in CVEC function that lead to the development and maintenance of their barrier properties, the dysregulation of which leads to BBB breakdown and neuronal injury. Endothelial lncRNAs have been discovered and functionally validated in the past decade, spanning a wide variety of regulatory mechanisms in health and disease. We summarize here the lncRNA-mediated regulation of established pathways that maintain or disrupt the barrier property of CVECs, including in conditions such as ischemic stroke and glioma. These lncRNAs namely regulate the tight junction assembly/disassembly, angiogenesis, autophagy, apoptosis, and so on. The identification of these lncRNAs suggests a less understood mechanistic layer, calling for further studies in appropriate models of the blood brain barrier to shed light on the lncRNA-mediated regulation of CVEC function. Finally, we gather various approaches for validating lncRNAs in BBB function in human organoids and animal models and discuss the therapeutic potential of CVEC lncRNAs along with the current limitations.
Collapse
Affiliation(s)
- Samatha Mathew
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,*Correspondence: Sridhar Sivasubbu,
| |
Collapse
|
10
|
Ginckels P, Holvoet P. Oxidative Stress and Inflammation in Cardiovascular Diseases and Cancer: Role of Non-coding RNAs. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:129-152. [PMID: 35370493 PMCID: PMC8961704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
High oxidative stress, Th1/Th17 immune response, M1 macrophage inflammation, and cell death are associated with cardiovascular diseases. Controlled oxidative stress, Th2/Treg anti-tumor immune response, M2 macrophage inflammation, and survival are associated with cancer. MiR-21 protects against cardiovascular diseases but may induce tumor growth by retaining the anti-inflammatory M2 macrophage and Treg phenotypes and inhibiting apoptosis. Down-regulation of let-7, miR-1, miR-9, miR-16, miR-20a, miR-22a, miR-23a, miR-24a, miR-26a, miR-29, miR-30a, miR-34a, miR-124, miR-128, miR-130a, miR-133, miR-140, miR-143-145, miR-150, miR-153, miR-181a, miR-378, and miR-383 may aid cancer cells to escape from stresses. Upregulation of miR-146 and miR-223 may reduce anti-tumor immune response together with miR-21 that also protects against apoptosis. MiR-155 and silencing of let-7e, miR-125, and miR-126 increase anti-tumor immune response. MiR expression depends on oxidative stress, cytokines, MYC, and TGF-β, and expression of silencing lncRNAs and circ-RNAs. However, one lncRNA or circ-RNA may have opposite effects by targeting several miRs. For example, PVT1 induces apoptosis by targeting miR-16a and miR-30a but inhibits apoptosis by silencing miR-17. In addition, levels of a non-coding RNA in a cell type depend not only on expression in that cell type but also on an exchange of microvesicles between cell types and tumors. Although we got more insight into the function of a growing number of individual non-coding RNAs, overall, we do not know enough how several of them interact in functional networks and how their expression changes at different stages of disease progression.
Collapse
Affiliation(s)
- Pieterjan Ginckels
- Department of Architecture, Brussels and Gent, KU Leuven, Leuven, Belgium
| | - Paul Holvoet
- Experimental Cardiology, KU Leuven, Leuven, Belgium,To whom all correspondence should be addressed: Paul Holvoet, Experimental
Cardiology, KU Leuven, Belgium; ; ORCID iD:
https://orcid.org/0000-0001-9201-0772
| |
Collapse
|
11
|
Sun P, Hamblin MH, Yin KJ. Non-coding RNAs in the regulation of blood–brain barrier functions in central nervous system disorders. Fluids Barriers CNS 2022; 19:27. [PMID: 35346266 PMCID: PMC8959280 DOI: 10.1186/s12987-022-00317-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
The blood–brain barrier (BBB) is an essential component of the neurovascular unit that controls the exchanges of various biological substances between the blood and the brain. BBB damage is a common feature of different central nervous systems (CNS) disorders and plays a vital role in the pathogenesis of the diseases. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circRNAs), are important regulatory RNA molecules that are involved in almost all cellular processes in normal development and various diseases, including CNS diseases. Cumulative evidences have demonstrated ncRNA regulation of BBB functions in different CNS diseases. In this review, we have summarized the miRNAs, lncRNAs, and circRNAs that can be served as diagnostic and prognostic biomarkers for BBB injuries, and demonstrated the involvement and underlying mechanisms of ncRNAs in modulating BBB structure and function in various CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury (TBI), spinal cord injury (SCI), multiple sclerosis (MS), Alzheimer's disease (AD), vascular cognitive impairment and dementia (VCID), brain tumors, brain infections, diabetes, sepsis-associated encephalopathy (SAE), and others. We have also discussed the pharmaceutical drugs that can regulate BBB functions via ncRNAs-related signaling cascades in CNS disorders, along with the challenges, perspective, and therapeutic potential of ncRNA regulation of BBB functions in CNS diseases.
Collapse
|
12
|
Ning H, Zhang T, Zhou X, Liu L, Shang C, Qi R, Ma T. PART1 destabilized by NOVA2 regulates blood-brain barrier permeability in endothelial cells via STAU1-mediated mRNA degradation. Gene X 2022; 815:146164. [PMID: 34990795 DOI: 10.1016/j.gene.2021.146164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
Blood-brain barrier dysfunction is recognized as a precursor of Alzheimer's disease development. Endothelial cells as structural basis of blood-brain barrier were observed tight junction failure in amyloid-β(1-42)-stimulated environment. In this study, we found NOVA2, PPP2R3A were down-regulated while PART1, p-NFκB-p65 were up-regulated in amyloid-β(1-42)-incubated endothelial cells. Knockdown of either NOVA2 or PPP2R3A and overexpression of PART1 all increased blood-brain barrier permeability. Lower blood-brain barrier permeability was observed in overexpression of NOVA2 and PPP2R3A and knockdown of PART1 and NFκB-p65. Same tendencies were found in the tight junction-related proteins expressions. Furthermore, overexpression and knockdown of NOVA2 and PART1 had no effect on cell viability. Mechanistically, NOVA2 overexpression was confirmed to reduce half-life of PART1. PART1 could destabilize PPP2R3A messenger RNA (mRNA) by interacting with STAU1. In addition, p-NFκB-p65 functioning as transcription factor reduced the expression of tight junction-related proteins, which was prompted by low protein level of PPP2R3A. Our study highlights the crucial role of NOVA2/PART1/PPP2R3A/p-NFκB-p65 pathway in amyloid-β(1-42)-incubated endothelial cells to modulating blood-brain barrier permeability through STAU1-mediated messenger RNA degradation, implying a potential mechanism of lncRNA and protein interaction in pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Hao Ning
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Tianyuan Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Xinxin Zhou
- Liaoning University of Traditional Chinese Medicine, Shenyang 110034, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Chao Shang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110122, China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
13
|
Huo XL, Wang SF, Yang Q, Yu XL, Gu T, Hua HX, Yang M, Bai LL, Zhang XL. Diagnostic and prognostic value of genomic instability-derived long non-coding RNA signature of endometrial cancer. Taiwan J Obstet Gynecol 2022; 61:96-101. [PMID: 35181055 DOI: 10.1016/j.tjog.2021.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To investigate whether genomic instability (GI)-derived long non-coding RNAs (lncRNAs) have a prognostic impact on the patients with endometrial cancer. MATERIAL AND METHODS Patients with Uterine Corpus Endometrial Carcinoma (UCEC) were selected from The Cancer Genome Atlas (TCGA) database. Systematic bioinformatics analyses were performed, including Pearson correlations, GO and KEGG enrichment analysis, bivariate and multiple logistic regression analysis, and Kaplan-Meier (KM) method. RESULTS A total of 552 UCEC samples were included in the study. The differentially expressed lncRNAs (DELs) were identified, including 79 down-regulated lncRNAs and 31 up-regulated lncRNAs. Bivariate logistic regression analysis showed that 19 GI-derived lncRNAs were prognostic factors. By further multivariate logistic regression analysis, AC005256.1 (estimated coefficient = -0.474), AC026336.3 (estimated coefficient = -0.030), AL161618.1 (estimated coefficient = -1.661), and BX322234.1 (estimated coefficient = 1.511) were used to construct a prognostic risk model. In the train set and test set, the risk model was shown to have both a high prognostic and a diagnostic value. CONCLUSION We developed a novel GI-derived 4-lncRNA signature for the diagnosis and prognosis of patients with endometrial cancer. These findings offered a novel perspective in the clinical management of endometrial cancer.
Collapse
Affiliation(s)
- Xin-Long Huo
- Department of Oncology, The First Hospital of Qinhuangdao City, Qinhuangdao, 066000, China.
| | - Shu-Fang Wang
- Department of Obstetrics and Gynecology, Maternal and Child Health Care Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Maternal and Child Health Care Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Xiao-Lin Yu
- Department of Oncology, The First Hospital of Qinhuangdao City, Qinhuangdao, 066000, China
| | - Tao Gu
- Department of Oncology, The First Hospital of Qinhuangdao City, Qinhuangdao, 066000, China
| | - Hai-Xia Hua
- Department of Oncology, The First Hospital of Qinhuangdao City, Qinhuangdao, 066000, China
| | - Mo Yang
- Department of Obstetrics and Gynecology, Maternal and Child Health Care Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Li-Li Bai
- Department of Oncology, The First Hospital of Qinhuangdao City, Qinhuangdao, 066000, China
| | - Xiao-Lu Zhang
- Department of Oncology, The First Hospital of Qinhuangdao City, Qinhuangdao, 066000, China
| |
Collapse
|
14
|
Momtazmanesh S, Rezaei N. Long Non-Coding RNAs in Diagnosis, Treatment, Prognosis, and Progression of Glioma: A State-of-the-Art Review. Front Oncol 2021; 11:712786. [PMID: 34322395 PMCID: PMC8311560 DOI: 10.3389/fonc.2021.712786] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most common malignant central nervous system tumor with significant mortality and morbidity. Despite considerable advances, the exact molecular pathways involved in tumor progression are not fully elucidated, and patients commonly face a poor prognosis. Long non-coding RNAs (lncRNAs) have recently drawn extra attention for their potential roles in different types of cancer as well as non-malignant diseases. More than 200 lncRNAs have been reported to be associated with glioma. We aimed to assess the roles of the most investigated lncRNAs in different stages of tumor progression and the mediating molecular pathways in addition to their clinical applications. lncRNAs are involved in different stages of tumor formation, invasion, and progression, including regulating the cell cycle, apoptosis, autophagy, epithelial-to-mesenchymal transition, tumor stemness, angiogenesis, the integrity of the blood-tumor-brain barrier, tumor metabolism, and immunological responses. The well-known oncogenic lncRNAs, which are upregulated in glioma, are H19, HOTAIR, PVT1, UCA1, XIST, CRNDE, FOXD2-AS1, ANRIL, HOXA11-AS, TP73-AS1, and DANCR. On the other hand, MEG3, GAS5, CCASC2, and TUSC7 are tumor suppressor lncRNAs, which are downregulated. While most studies reported oncogenic effects for MALAT1, TUG1, and NEAT1, there are some controversies regarding these lncRNAs. Expression levels of lncRNAs can be associated with tumor grade, survival, treatment response (chemotherapy drugs or radiotherapy), and overall prognosis. Moreover, circulatory levels of lncRNAs, such as MALAT1, H19, HOTAIR, NEAT1, TUG1, GAS5, LINK-A, and TUSC7, can provide non-invasive diagnostic and prognostic tools. Modulation of expression of lncRNAs using antisense oligonucleotides can lead to novel therapeutics. Notably, a profound understanding of the underlying molecular pathways involved in the function of lncRNAs is required to develop novel therapeutic targets. More investigations with large sample sizes and increased focus on in-vivo models are required to expand our understanding of the potential roles and application of lncRNAs in glioma.
Collapse
Affiliation(s)
- Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Chae Y, Roh J, Kim W. The Roles Played by Long Non-Coding RNAs in Glioma Resistance. Int J Mol Sci 2021; 22:ijms22136834. [PMID: 34202078 PMCID: PMC8268860 DOI: 10.3390/ijms22136834] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma originates in the central nervous system and is classified based on both histological features and molecular genetic characteristics. Long non-coding RNAs (lncRNAs) are longer than 200 nucleotides and are known to regulate tumorigenesis and tumor progression, and even confer therapeutic resistance to glioma cells. Since oncogenic lncRNAs have been frequently upregulated to promote cell proliferation, migration, and invasion in glioma cells, while tumor-suppressive lncRNAs responsible for the inhibition of apoptosis and decrease in therapeutic sensitivity in glioma cells have been generally downregulated, the dysregulation of lncRNAs affects many features of glioma patients, and the expression profiles associated with these lncRNAs are needed to diagnose the disease stage and to determine suitable therapeutic strategies. Accumulating studies show that the orchestrations of oncogenic lncRNAs and tumor-suppressive lncRNAs in glioma cells result in signaling pathways that influence the pathogenesis and progression of glioma. Furthermore, several lncRNAs are related to the regulation of therapeutic sensitivity in existing anticancer therapies, including radiotherapy, chemotherapy and immunotherapy. Consequently, we undertook this review to improve the understanding of signaling pathways influenced by lncRNAs in glioma and how lncRNAs affect therapeutic resistance.
Collapse
Affiliation(s)
- Yeonsoo Chae
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
| | - Jungwook Roh
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
- Department of Biology Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea
- Correspondence: ; Tel.: +82-43-230-3750
| |
Collapse
|
16
|
Qin J, Jiang C, Cai J, Meng X. Roles of Long Noncoding RNAs in Conferring Glioma Progression and Treatment. Front Oncol 2021; 11:688027. [PMID: 34178684 PMCID: PMC8226164 DOI: 10.3389/fonc.2021.688027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022] Open
Abstract
Accompanying the development of biomedicine, our knowledge of glioma, one of the most common primary intracranial carcinomas, is becoming more comprehensive. Unfortunately, patients with glioblastoma (GBM) still have a dismal prognosis and a high relapse rate, even with standard combination therapy, namely, surgical resection, postoperative radiotherapy and chemotherapy. The absence of validated biomarkers is responsible for the majority of these poor outcomes, and reliable therapeutic targets are indispensable for improving the prognosis of patients suffering from gliomas. Identification of both precise diagnostic and accurate prognostic markers and promising therapeutic targets has therefore attracted considerable attention from researchers. Encouragingly, accumulating evidence has demonstrated that long noncoding RNAs (lncRNAs) play important roles in the pathogenesis and oncogenesis of various categories of human tumors, including gliomas. Nevertheless, the underlying mechanisms by which lncRNAs regulate diverse biological behaviors of glioma cells, such as proliferation, invasion and migration, remain poorly understood. Consequently, this review builds on previous studies to further summarize the progress in the field of lncRNA regulation of gliomas over recent years and addresses the potential of lncRNAs as diagnostic and prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Jie Qin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Zhou X, He J, Wang Q, Ma T. MiRNA-128-3p Restrains Malignant Melanoma Cell Malignancy by Targeting NTRK3. Front Oncol 2021; 10:538894. [PMID: 33575204 PMCID: PMC7871904 DOI: 10.3389/fonc.2020.538894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
The functions of non-coding RNA, including microRNA (miRNA), have attracted considerable attention in the field of oncology, In this report, we examined the roles and molecular mechanisms of miR-128-3p, as related to the biological behaviors of malignant melanoma (MM). We found that miR-128-3p was expressed in low levels in these MM cells and may serve as a tumor suppressor by inhibiting proliferation, migration, and invasion, as well as inducing apoptosis in these MM cells. Moreover, neurotrophin receptor 3 (NTRK3), which serves as an oncogene that can enhance malignant behaviors of MM cells, was up-regulated in MM cells. Our current survey disclosed a complementary binding between miR-128-3p and the NTRK3 3' untranslated regions (3'-UTR), while luciferase activities of NTRK3 3'-UTR were restrained by miR-128-3p in 293T cells. The effects of pre-miR-128-3p and sh-NTRK3 as well as anti-miR-128-3p and NTRK3(+) appeared to function synergistically in producing malignant progression. Moreover, there were possible to have counteracted effects for pre-miR-128-3p and NTRK3(+) in malignant progression. These findings established that miR-128-3p can function as a tumor suppressor by inhibiting carcinogenesis of the oncogene, NTRK3. Collectively, miR-128-3p and NTRK3 genes participate in modulating the malignant behavior of MM, and may represent new therapeutic targets for MM.
Collapse
Affiliation(s)
- Xinxin Zhou
- Academy of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jiayuan He
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Qingyuan Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|