1
|
Guo Z, Cai C, Zhou K, Song L, Wang X, Chen D, Weng G, Huang S. SHC1 serves as a prognostic and immunological biomarker in clear cell renal cell carcinoma: a comprehensive bioinformatics and experimental analysis. Sci Rep 2024; 14:20150. [PMID: 39209911 PMCID: PMC11362144 DOI: 10.1038/s41598-024-70897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
SHC1 plays a crucial regulatory role in various tumors, but its significance in predicting prognosis and immune response in clear cell renal cell carcinoma (ccRCC) is yet to be determined. In this study, we conducted a bioinformatics analysis of SHC1 expression, prognosis, and immunological functions in ccRCC using multiple databases. The association between SHC1 and immune infiltration, immune escape, and immunotherapy in ccRCC was systematically established. In addition, we validated our results by western blot of tumor and adjacent-tumor samples from nine ccRCC patients, as well as three renal carcinoma cell lines compared to a normal renal cell line. Our analysis revealed that the mRNA expression level of SHC1 in ccRCC tissues is significantly higher than that in normal tissues. Consistently, western blot experiment showed ccRCC tissues and cell lines exhibit higher protein levels that normal tissues and cell lines. Importantly, patients with low expression of SHC1 demonstrated a higher survival rate, indicating that SHC1 could serve as an independent prognostic factor for predicting survival in ccRCC. Additionally, high expression of SHC1 was associated with increased severe immune cell infiltration, enhanced immune escape, and higher immunotherapy scores. Hence, SHC1 emerges as a novel and easily detectable biomarker for predicting clinical outcomes, immune escape, and immunotherapy response in patients with ccRCC.
Collapse
MESH Headings
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/immunology
- Kidney Neoplasms/pathology
- Kidney Neoplasms/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism
- Src Homology 2 Domain-Containing, Transforming Protein 1/genetics
- Computational Biology/methods
- Prognosis
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Female
- Male
- Middle Aged
Collapse
Affiliation(s)
- Zhuangyu Guo
- Laboratory of Renal Carcinoma, Ningbo Urology and Nephrology Hospital, Urology and Nephrology Institute of Ningbo University, No.998 North Qianhe Road, Yinzhou District, Ningbo, 315100, Zhejiang, China
| | - Congbo Cai
- Laboratory of Renal Carcinoma, Ningbo Urology and Nephrology Hospital, Urology and Nephrology Institute of Ningbo University, No.998 North Qianhe Road, Yinzhou District, Ningbo, 315100, Zhejiang, China
| | - Kena Zhou
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingmin Song
- Laboratory of Renal Carcinoma, Ningbo Urology and Nephrology Hospital, Urology and Nephrology Institute of Ningbo University, No.998 North Qianhe Road, Yinzhou District, Ningbo, 315100, Zhejiang, China
| | - Xue Wang
- Laboratory of Renal Carcinoma, Ningbo Urology and Nephrology Hospital, Urology and Nephrology Institute of Ningbo University, No.998 North Qianhe Road, Yinzhou District, Ningbo, 315100, Zhejiang, China
| | - Dongying Chen
- Department of Community Work, Ningbo Yinzhou No.3 Hospital, Ningbo, 315100, China
| | - Guobin Weng
- Laboratory of Renal Carcinoma, Ningbo Urology and Nephrology Hospital, Urology and Nephrology Institute of Ningbo University, No.998 North Qianhe Road, Yinzhou District, Ningbo, 315100, Zhejiang, China.
| | - Shuaishuai Huang
- Laboratory of Renal Carcinoma, Ningbo Urology and Nephrology Hospital, Urology and Nephrology Institute of Ningbo University, No.998 North Qianhe Road, Yinzhou District, Ningbo, 315100, Zhejiang, China.
| |
Collapse
|
2
|
Zhu D, Feng H, Zhang Z, Li J, Li Y, Hou T. DEPDC1B: A novel tumor suppressor gene associated with immune infiltration in colon adenocarcinoma. Cancer Med 2024; 13:e70043. [PMID: 39087856 PMCID: PMC11292854 DOI: 10.1002/cam4.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Recent research indicates a positive correlation between DEP structural domain-containing 1B (DEPDC1B) and the cell cycle in various tumors. However, the role of DEPDC1B in the infiltration of the tumor immune microenvironment (TIME) remains unexplored. METHODS We analyzed the differential expression and prognostic significance of DEPDC1B in colon adenocarcinoma (COAD) using the R package "limma" and the Gene Expression Profiling Interactive Analysis (GEPIA) website. Gene set enrichment analysis (GSEA) was employed to investigate the functions and interactions of DEPDC1B expression in COAD. Cell Counting Kit-8 (CCK-8) assays and colony formation assays were utilized to assess the proliferative function of DEPDC1B. Correlations between DEPDC1B expression and tumor-infiltrating immune cells, immune checkpoints, tumor mutational burden (TMB), and microsatellite instability (MSI) status were examined using Spearman correlation analysis and CIBERSORT. RESULTS DEPDC1B was highly expressed in COAD. Elevated DEPDC1B expression was associated with lower epithelial-to-mesenchymal transition (EMT) and TNM stages, leading to a favorable prognosis. DEPDC1B mRNA was prominently expressed in COAD cell lines. CCK-8 and colony formation assays demonstrated that DEPDC1B inhibited the proliferation of COAD cells. Analysis using the CIBERSORT database and Spearman correlation revealed that DEPDC1B correlated with four types of tumor-infiltrating immune cells. Furthermore, high DEPDC1B expression was linked to the expression of PD-L1, CTLA4, SIGLEC15, PD-L2, TMB, and MSI-H. High DEPDC1B expression also indicated responsiveness to anti-PD-L1 immunotherapy. CONCLUSIONS DEPDC1B inhibits the proliferation of COAD cells and positively regulates the cell cycle, showing a positive correlation with CCNB1 and PBK expression. DEPDC1B expression in COAD is associated with tumor-infiltrating immune cells, immune checkpoints, TMB, and MSI-H in the tumor immune microenvironment. This suggests that DEPDC1B may serve as a novel prognostic marker and a potential target for immunotherapy in COAD.
Collapse
Affiliation(s)
- Dandan Zhu
- Guangdong Center for Clinical Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdongChina
| | - Huolun Feng
- School of MedicineSouth China University of TechnologyGuangzhouGuangdongChina
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdongChina
| | - Zhixiong Zhang
- Guangdong Center for Clinical Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdongChina
| | - Jiaqi Li
- Guangdong Center for Clinical Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdongChina
| | - Yong Li
- School of MedicineSouth China University of TechnologyGuangzhouGuangdongChina
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdongChina
| | - Tieying Hou
- Medical Experimental CenterShenzhen Nanshan People's HospitalShenzhenGuangdongChina
- Medical SchoolShenzhen UniversityShenzhenGuangdongChina
| |
Collapse
|
3
|
Shi Y, Zhang J, Li J, He J, Wu S, Yu M, Yang D, Ju L. USP15, activated by TFAP4 transcriptionally, stabilizes SHC1 via deubiquitination and deteriorates renal cell carcinoma. Cancer Sci 2024; 115:2617-2629. [PMID: 38847328 PMCID: PMC11309934 DOI: 10.1111/cas.16237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/29/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024] Open
Abstract
Ubiquitin-specific peptidase 15 (USP15), a critical deubiquitinating enzyme, has been demonstrated to improve substrate stabilization by hydrolyzing the bond between the substrate and ubiquitin, and is implicated in multiple carcinogenic processes. Prompted by the information cited from The Cancer Genome Atlas (TCGA) database and the Cancer Proteogenomic Data Analysis Site (cProSite), USP15 is selectively overexpressed in clear cell renal cell carcinoma (ccRCC) samples. We aimed to investigate the function of USP15 on ccRCC malignant features, which was emphasized in its deubiquitination of SHC adaptor protein 1 (SHC1). The overexpression of USP15 promoted the capacity of proliferation, migration, and invasion in ccRCC CAKI1 and 769-P cells, and these malignant biological properties were diminished by USP15 deletion in 786-O cells. USP15 accelerated tumor growth and lung metastasis in vivo. In addition, deubiquitinase USP15 was further identified as a new protector for SHC1 from degradation by the ubiquitination pathway, the post-translational modification. In sequence, transcription factor activating enhancer binding protein 4 (TFAP4) was shown to be partly responsible for USP15 expression at the level of transcription, as manifested by the chromatin immunoprecipitation and pull-down assay. Based on the in vitro and in vivo data, we postulate that USP15 regulated by TFAP4 transcriptionally deteriorates ccRCC malignant biological properties via stabilizing SHC1 by deubiquitination.
Collapse
Affiliation(s)
- Yaxing Shi
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jing Zhang
- Department of Rheumatology and ImmunologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiaxing Li
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jieqian He
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Si Wu
- Department of BiobankShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Miao Yu
- Department of BiobankShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Da Yang
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Lincheng Ju
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
4
|
Mo CJ, Deng XY, Ma RL, Zhu K, Shi L, Li K. Sm-like 5 knockdown inhibits proliferation and promotes apoptosis of colon cancer cells by upregulating p53, CDKN1A and TNFRSF10B. World J Gastrointest Oncol 2024; 16:2704-2714. [DOI: 10.4251/wjgo.v16.i6.2704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/09/2024] [Accepted: 04/15/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND The role of Sm-like 5 (LSM5) in colon cancer has not been determined. In this study, we investigated the role of LSM5 in progression of colon cancer and the potential underlying mechanism involved.
AIM To determine the role of LSM5 in the progression of colon cancer and the potential underlying mechanism involved.
METHODS The Gene Expression Profiling Interactive Analysis database and the Human Protein Atlas website were used for LSM5 expression analysis and prognosis analysis. Real-time quantitative polymerase chain reaction and Western blotting were utilized to detect the expression of mRNAs and proteins. A lentivirus targeting LSM5 was constructed and transfected into colon cancer cells to silence LSM5 expression. Proliferation and apoptosis assays were also conducted to evaluate the growth of the colon cancer cells. Human GeneChip assay and bioinformatics analysis were performed to identify the potential underlying mechanism of LSM5 in colon cancer.
RESULTS LSM5 was highly expressed in tumor tissue and colon cancer cells. A high expression level of LSM5 was related to poor prognosis in patients with colon cancer. Knockdown of LSM5 suppressed proliferation and promoted apoptosis in colon cancer cells. Silencing of LSM5 also facilitates the expression of p53, cyclin-dependent kinase inhibitor 1A (CDKN1A) and tumor necrosis factor receptor superfamily 10B (TNFRSF10B). The inhibitory effect of LSM5 knockdown on the growth of colon cancer cells was associated with the upregulation of p53, CDKN1A and TNFRSF10B.
CONCLUSION LSM5 knockdown inhibited the proliferation and facilitated the apoptosis of colon cancer cells by upregulating p53, CDKN1A and TNFRSF10B.
Collapse
Affiliation(s)
- Cai-Jing Mo
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Xiao-Yuan Deng
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Ru-Lan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Kun Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Lei Shi
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
5
|
Mo CJ, Deng XY, Ma RL, Zhu K, Shi L, Li K. Sm-like 5 knockdown inhibits proliferation and promotes apoptosis of colon cancer cells by upregulating p53, CDKN1A and TNFRSF10B. World J Gastrointest Oncol 2024; 16:2716-2726. [PMID: 38994171 PMCID: PMC11236259 DOI: 10.4251/wjgo.v16.i6.2716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/18/2024] [Accepted: 04/15/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The role of Sm-like 5 (LSM5) in colon cancer has not been determined. In this study, we investigated the role of LSM5 in progression of colon cancer and the potential underlying mechanism involved. AIM To determine the role of LSM5 in the progression of colon cancer and the potential underlying mechanism involved. METHODS The Gene Expression Profiling Interactive Analysis database and the Human Protein Atlas website were used for LSM5 expression analysis and prognosis analysis. Real-time quantitative polymerase chain reaction and Western blotting were utilized to detect the expression of mRNAs and proteins. A lentivirus targeting LSM5 was constructed and transfected into colon cancer cells to silence LSM5 expression. Proliferation and apoptosis assays were also conducted to evaluate the growth of the colon cancer cells. Human GeneChip assay and bioinformatics analysis were performed to identify the potential underlying mechanism of LSM5 in colon cancer. RESULTS LSM5 was highly expressed in tumor tissue and colon cancer cells. A high expression level of LSM5 was related to poor prognosis in patients with colon cancer. Knockdown of LSM5 suppressed proliferation and promoted apoptosis in colon cancer cells. Silencing of LSM5 also facilitates the expression of p53, cyclin-dependent kinase inhibitor 1A (CDKN1A) and tumor necrosis factor receptor superfamily 10B (TNFRSF10B). The inhibitory effect of LSM5 knockdown on the growth of colon cancer cells was associated with the upregulation of p53, CDKN1A and TNFRSF10B. CONCLUSION LSM5 knockdown inhibited the proliferation and facilitated the apoptosis of colon cancer cells by upregulating p53, CDKN1A and TNFRSF10B.
Collapse
Affiliation(s)
- Cai-Jing Mo
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Xiao-Yuan Deng
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Ru-Lan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Kun Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Lei Shi
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
6
|
Ouyang J, Li H, Wu G, Hei B, Liu R. Platycodin D inhibits glioblastoma cell proliferation, migration, and invasion by regulating DEPDC1B-mediated epithelial-to-mesenchymal transition. Eur J Pharmacol 2023; 958:176074. [PMID: 37742812 DOI: 10.1016/j.ejphar.2023.176074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Platycodin D (PD) is a potent bioactive constituent in the medicinal herb Platycodon grandiflorum. It has shown anticancer properties, particularly against glioblastoma (GB) and other human malignancies. DEPDC1B (DEP domain-containing protein 1B) is an oncogene associated with epithelial-mesenchymal transition (EMT). It is highly expressed in GB and correlated with tumor grade and patient prognosis. In this study, we investigated whether the antiglioma effect of PD was associated with downregulation of DEPDC1B. METHODS Gene expression and clinical data were obtained from the China Glioma Genome Atlas and The Cancer Genome Atlas databases for glioma samples. In vitro experiments were conducted using Cell Counting Kit-8 and Transwell assays to assess the impact of PD on the proliferation, migration, and invasion of GB cells. mRNA and protein expression was evaluated using real-time polymerase chain reaction and western blotting, respectively. RESULTS PD exerted inhibitory effects on the proliferation and motility of GB cells. PD downregulated DEPDC1B protein as well as several markers associated with EMT, namely N-cadherin, vimentin, and Snail. The suppressive effects of PD were enhanced when DEPDC1B was knocked down in GB cells, while overexpression of DEPDC1B in cells reversed the inhibitory effects of PD. CONCLUSION PD exerts an antiglioma effect by regulating DEPDC1B-mediated EMT.
Collapse
Affiliation(s)
- Jia Ouyang
- Department of Neurosurgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Haima Li
- Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China; Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, People's Republic of China
| | - Guangyong Wu
- Department of Neurosurgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Bo Hei
- Department of Neurosurgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China; Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China; Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
7
|
Wang Q, Chen F, Yang N, Xu L, Yu X, Wu M, Zhou Y. DEPDC1B-mediated USP5 deubiquitination of β-catenin promotes breast cancer metastasis by activating the wnt/β-catenin pathway. Am J Physiol Cell Physiol 2023; 325:C833-C848. [PMID: 37642235 PMCID: PMC10635659 DOI: 10.1152/ajpcell.00249.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Breast cancer has become the malignant disease with the highest morbidity and mortality among female cancer patients. The prognosis of metastatic breast cancer is very poor, and the therapeutic effects still need to be improved. The molecular mechanism of breast cancer has not been fully clarified. Bioinformatics analysis was used to find the differentially expressed gene that affects the occurrence and development of breast cancer. Furthermore, scratch assays, Transwell assays, immunofluorescence, and Western blotting were used to determine the biological behavior of breast cancer cells affected by DEP domain-containing protein 1B (DEPDC1B). The molecular mechanism was investigated by mass spectrometry analysis, coimmunoprecipitation, and ubiquitin assays. Here, we found that DEPDC1B was highly expressed in breast cancer cells and tissues and was associated with lower overall survival (OS) in patients. We found that DEPDC1B interference significantly inhibited tumor invasion and migration in vitro and tumor metastasis in vivo. Mechanistically, DEPDC1B was first shown to activate the wnt/β-catenin signaling pathway as an oncogene in breast cancer cells. In addition, we also confirmed the interaction between DEPDC1B, ubiquitin-specific protease 5 (USP5), and β-catenin. Then, we found that DEPDC1B mediates the deubiquitination of β-catenin via USP5, which promotes cell invasion and migration. Our findings provide new insights into the carcinogenic mechanism of DEPDC1B, suggesting that DEPDC1B can be considered a potential therapeutic target for breast cancer.NEW & NOTEWORTHY By using bioinformatics analysis and the experimental techniques of cell biology and molecular biology, we found that DEP domain-containing protein 1B (DEPDC1B) can promote the invasion and migration of breast cancer cells and that DEPDC1B mediates the deubiquitination of β-catenin by ubiquitin-specific protease 5 (USP5), thus activating the wnt/β-catenin pathway. Our findings provide new insights into the carcinogenic mechanism of DEPDC1B, suggesting that DEPDC1B can be used as a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Qingqing Wang
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumour Biological Behaviours, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fengxia Chen
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumour Biological Behaviours, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Ningning Yang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Xu
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumour Biological Behaviours, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xiaoyan Yu
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumour Biological Behaviours, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Meng Wu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yunfeng Zhou
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumour Biological Behaviours, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Li K, Ma R, Meng L, Wang Q, Cao J, Yuan D, Sun T, Kang L, Hao N, Wang H, Zhu K. XTP1 facilitates the growth and development of gastric cancer by activating CDK6. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:97. [PMID: 36819538 PMCID: PMC9929835 DOI: 10.21037/atm-22-5933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/05/2023] [Indexed: 02/03/2023]
Abstract
Background Hepatitis B virus X protein (XTP1) is overexpressed in tumor tissues and regulates cancer progression. However, the molecular mechanism of XTP1 in gastric cancer (GC) is poorly understood. Hence, we aimed to dissect the underlying role of XTP1 in the development of GC. Methods Lentiviruses were constructed and transfected into GC cells to upregulate or downregulate gene expression. The expressions of proteins in GC cells or tumor tissues were assessed by quantitative reverse transcription polymerase chain reaction (RT-qPCR), Western blotting, immunohistochemistry (IHC) assay, or the Gene Expression Profiling Interactive Analysis (GEPIA) database. Cell proliferation was assessed via methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, Celigo cell counting assay, cell cycle analysis, and colony formation assay. Cell apoptosis was assessed by flow cytometry. The apoptosis-related proteins were evaluated using the human apoptosis antibody array. GC cell migration was detected by scratch wound-healing assays and Transwell migration assays. Potential downstream molecules were identified by the human GeneChip assay combined with bioinformatics analysis. Results We found that XTP1 is overexpressed in GC tissues and is positively related to its pathological grade. XTP1 knockdown restrained the growth and migration of GC cells, while XTP1 overexpression promoted cell proliferation and suppressed apoptosis. A mechanistic study indicated that XTP1 knockdown inhibited cyclin-dependent kinase 6 (CDK6) expression and that CDK6 might be a potential downstream molecule of XTP1. Further study confirmed that CDK6 depletion also suppressed GC cell proliferation and migration and increased GC cell apoptosis. Moreover, rescue experiments verified that CDK6 knockdown abated the promotion of XTP1 overexpression on GC progression. Conclusions XTP1 facilitated the development and progression of GC cells by activating CDK6. Therefore, the XTP1-CDK6 axis might be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Kang Li
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rulan Ma
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lei Meng
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qing Wang
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Jun Cao
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dawei Yuan
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tuanhe Sun
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Li Kang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Nan Hao
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haonan Wang
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kun Zhu
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
9
|
Han F, Cheng C, Xu Q, Chen J, Yang Z, Liu J. DEPDC1B promotes colorectal cancer via facilitating cell proliferation and migration while inhibiting apoptosis. Cell Cycle 2023; 22:131-143. [PMID: 36016512 PMCID: PMC9769448 DOI: 10.1080/15384101.2022.2110439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 01/20/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor with strong invasiveness. Given the reported involvement of DEP domain-containing protein 1B (DEPDC1B) in the progression of some cancers, its role in CRC was explored in this study. DEPDC1B expression in CRC was assessed based on database and tissue microarray (TMA). In addition, the knockdown and overexpression of DEPDC1B in CRC cell lines were constructed using small hairpin RNA (shRNA) interference. The biological function of DEPDC1B in CRC was evaluated in vitro and in vivo through loss/gain-of-function assays. The results demonstrated that DEPDC1B was highly expressed in CRC. Furthermore, DEPDC1B had the ability to promote CRC proliferation and migration coupled by cell apoptosis. In vivo results showed that DEPDC1B knockdown significantly inhibited the growth of xenograft tumors. Additionally, the results of antibody array indicated increased apoptosis-promoting proteins and decreased apoptosis-inhibiting proteins in DEPDC1B-knockdown CRC cells. In conclusion, DEPDC1B played a key driver role in CRC progression, and inhibition of its expression may be a potential target for precision medicine in CRC.
Collapse
Affiliation(s)
- Fei Han
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianqian Xu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jisong Chen
- The Second College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| | - Zhaohui Yang
- Department of Rehabilitation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Bioinformatics analysis identified RGS4 as a potential tumor promoter in glioma. Pathol Res Pract 2022; 240:154225. [DOI: 10.1016/j.prp.2022.154225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
|
11
|
Zhang SW, Xu JY, Zhang T. DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:928-938. [PMID: 36464123 PMCID: PMC10025764 DOI: 10.1016/j.gpb.2022.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022]
Abstract
Identification of cancer driver genes plays an important role in precision oncology research, which is helpful to understand cancer initiation and progression. However, most existing computational methods mainly used the protein-protein interaction (PPI) networks, or treated the directed gene regulatory networks (GRNs) as the undirected gene-gene association networks to identify the cancer driver genes, which will lose the unique structure regulatory information in the directed GRNs, and then affect the outcome of the cancer driver gene identification. Here, based on the multi-omics pan-cancer data (i.e., gene expression, mutation, copy number variation, and DNA methylation), we propose a novel method (called DGMP) to identify cancer driver genes by jointing directed graph convolutional network (DGCN) and multilayer perceptron (MLP). DGMP learns the multi-omics features of genes as well as the topological structure features in GRN with the DGCN model and uses MLP to weigh more on gene features for mitigating the bias toward the graph topological features in the DGCN learning process. The results on three GRNs show that DGMP outperforms other existing state-of-the-art methods. The ablation experimental results on the DawnNet network indicate that introducing MLP into DGCN can offset the performance degradation of DGCN, and jointing MLP and DGCN can effectively improve the performance of identifying cancer driver genes. DGMP can identify not only the highly mutated cancer driver genes but also the driver genes harboring other kinds of alterations (e.g., differential expression and aberrant DNA methylation) or genes involved in GRNs with other cancer genes. The source code of DGMP can be freely downloaded from https://github.com/NWPU-903PR/DGMP.
Collapse
Affiliation(s)
- Shao-Wu Zhang
- MOE Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Jing-Yu Xu
- MOE Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tong Zhang
- MOE Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
12
|
Li P, Chen X, Zhou S, Xia X, Wang E, Han R, Zeng D, Fei G, Wang R. High Expression of DEPDC1B Predicts Poor Prognosis in Lung Adenocarcinoma. J Inflamm Res 2022; 15:4171-4184. [PMID: 35912402 PMCID: PMC9332445 DOI: 10.2147/jir.s369219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Lung adenocarcinoma (LUAD) is the most common type of lung cancer. DEP domain-containing 1 B (DEPDC1B) is involved in the development of several cancers; however, its role in LUAD is unknown. Therefore, we aimed to determine the biological function and prognostic value of DEPDC1B in LUAD. Material and Methods We analyzed the correlation between DEPDC1B expression and the clinical features of LUAD and lung squamous cell carcinoma (LUSC). Survival was evaluated by generating Kaplan-Meier curves, which were used to analyze the relationship between DEPDC1B expression and prognosis in LUAD and LUSC. DEPDC1B expression in tumor and normal tissues from patients with LUAD and LUSC was determined using immunohistochemistry, and its clinical significance was analyzed. Finally, the correlation between the expression and biological function of DEPDC1B in LUAD was examined. Results Our findings revealed that DEPDC1B expression was higher in tumor tissues than that in normal tissues from patients with LUAD and LUSC (P < 0.001). These results were confirmed in clinical samples from patients using immunohistochemistry. Analysis of a dataset from The Cancer Genome Atlas (TCGA) showed that high DEPDC1B expression was associated with poor prognosis only in patients with LUAD (P < 0.001). Similarly, high DEPDC1B expression was related to shorter overall survival (OS) and progression-free interval (PFI) in patients with LUAD. These associations were not observed in LUSC. Functional enrichment analysis suggested that DEPDC1B promoted tumor development in LUAD by regulating the cell cycle. Conclusion High DEPDC1B expression predicts poor prognosis in patients with LUAD. Thus, DEPDC1B has potential as a therapeutic target for LUAD.
Collapse
Affiliation(s)
- Pulin Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Xiaojuan Chen
- Department of Infectious Diseases, Hefei Second People's Hospital, Hefei, People's Republic of China
| | - Sijing Zhou
- Department of Occupational Medicine, Hefei Third Clinical College of Anhui Medical University, Hefei, People's Republic of China
| | - Xingyuan Xia
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Enze Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Rui Han
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Daxiong Zeng
- Department of Pulmonary and Critical Care Medicine, Suzhou Dushu Lake Hospital, Suzhou, People's Republic of China.,Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, People's Republic of China
| | - Guanghe Fei
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
13
|
Jiang A, Wu X, Wang D, Wang A, Dong K, Liu B, Qu L, Luo P, Wang J, Tong Q, Wang L. A New Thinking: Deciphering the Aberrance and Clinical Implication of IGF Axis Regulation Pattern in Clear Cell Renal Cell Carcinoma. Front Immunol 2022; 13:935595. [PMID: 35935986 PMCID: PMC9355597 DOI: 10.3389/fimmu.2022.935595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Rationale The recent research found that IGF regulator genes played a pivotal role in multiple biological processes, which may be developed for cancer treatment. However, the characteristics and implication of IGF regulators in cancers, especially in clear cell renal cell carcinoma (ccRCC), remain elusive. Methods We systematically analyzed the expression, prognostic valuation, genome variation, and functional implication at pan-cancer level from The Cancer Genome Atlas. According to expression levels of IGF regulator genes, ccRCC could be divided into three different subtypes via unsupervised cluster algorithm: IGF pattern cancer type1 (IPCS1), type2 (IPCS2), and type3 (IPCS3). The immune microenvironment, immunotherapy response, metabolic pattern, and tumor progression signature among the three subgroups were investigated. The clinical characteristics, genomic mutations, and potential drug sensitivity were further analyzed. IGF pattern–related risk model was constructed to predict RCC patients’ outcome. Finally, SHC1, a potential IGF axis target, was comprehensively investigated in ccRCC. Results We found that IGF regulator genes were specifically upregulated in various cancer tissues, which were correlated with copy number variations and dysregulated pathways. IPCS1, IPCS2, and IPCS3 exhibited different clinical profiles and biological characteristics in ccRCC. IPCS3 subtype indicated a higher clinical stage and a worse survival. IPSC3 ccRCC displayed activated metabolic signatures to fuel the cancer progression. IPCS3 subgroup holds a higher tumor mutation burden and lower immune activities, which resulted in a low ICI therapy response and tumor immunity dysfunction state. The genome copy numbers of IPCS2/3, including arm gain and arm loss, were significantly higher than IPCS1. Besides, the drug sensitivity profiles were different among the three subgroups. The prognostic risk model based on subtype’s biomarker exerted a promising performance both in training and validation cohorts. Finally, upregulated expression of SHC1 partly induced poorer immunotherapy response and shorter survival of ccRCC patients. Conclusion Targeting IGF regulators may be functioned as a treatment approach among multi-cancers. IGF regulator–related signature could reshape the tumor immune microenvironment via activating multi-step immune programs. The inhibition of SHC1 may enhance the efficacy of immunotherapy, and SHC1 could be a suitable target for ccRCC therapy.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University, (Second Military Medical University), Shanghai, China
| | - Xiaofeng Wu
- Department of Urology, Changhai Hospital, Naval Medical University, (Second Military Medical University), Shanghai, China
| | - Desheng Wang
- Department of Urology, The Second People's Hospital of BengBu, Bengbu, China
| | - Anbang Wang
- Department of Urology, Changzheng Hospital, Naval Medical University, (Second Military Medical University), Shanghai, China
| | - Kai Dong
- Department of Urology, Changhai Hospital, Naval Medical University, (Second Military Medical University), Shanghai, China
| | - Bing Liu
- Department of Urology, The Third Affiliated Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Le Qu
- Department of Urology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Wang
- Department of Urology, The Second People's Hospital of Nantong, Nantong, China
| | - Qiang Tong
- Department of Urology, No. 905 Hospital of PLA (Chinese People's Liberation Army) Navy, Shanghai, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University, (Second Military Medical University), Shanghai, China
| |
Collapse
|
14
|
Wang Z, Li J, Zhang P, Zhao L, Huang B, Xu Y, Wu G, Xia Q. The Role of ERBB Signaling Pathway-Related Genes in Kidney Renal Clear Cell Carcinoma and Establishing a Prognostic Risk Assessment Model for Patients. Front Genet 2022; 13:862210. [PMID: 35903358 PMCID: PMC9314565 DOI: 10.3389/fgene.2022.862210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: We aimed to investigate the potential role of ERBB signaling pathway–related genes in kidney renal clear cell carcinoma (KIRC) and establish a new predictive risk model using various bioinformatics methods. Methods: We downloaded the KIRC dataset and clinicopathological information from The Cancer Genome Atlas database. Univariate Cox analysis was used to identify essential genes significantly associated with KIRC progression. Next, we used the STRING website to construct a protein–protein interaction network of ERBB signaling pathway–related molecules. We then used the least the absolute shrinkage and selection operator (LASSO) regression analysis to build a predictive risk model for KIRC patients. Next, we used multiple bioinformatics methods to analyze the copy number variation, single-nucleotide variation, and overall survival of these risk model genes in pan-cancer. At last, we used the Genomics of Drug Sensitivity in Cancer to investigate the correlation between the mRNA expression of genes associated with this risk model gene and drug sensitivity. Results: Through the LASSO regression analysis, we constructed a novel KIRC prognosis–related risk model using 12 genes: SHC1, GAB1, SOS2, SRC, AKT3, EREG, EIF4EBP1, ERBB3, MAPK3, transforming growth factor-alpha, CDKN1A, and PIK3CD. Based on this risk model, the overall survival rate of KIRC patients in the low-risk group was significantly higher than that in the high-risk group (p = 1.221 × 10−15). Furthermore, this risk model was associated with cancer metastasis, tumor size, node, stage, grade, sex, and fustat in KIRC patients. The receiver operating characteristic curve results showed that the model had better prediction accuracy. Multivariate Cox regression analysis showed that the model’s risk score was an independent risk factor for KIRC. The Human Protein Atlas database was used to validate the protein expression of risk model–associated molecules in tumors and adjacent normal tissues. The validation results were consistent with our previous findings. Conclusions: We successfully established a prognostic-related risk model for KIRC, which will provide clinicians with a helpful reference for future disease diagnosis and treatment.
Collapse
Affiliation(s)
- Zicheng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jiayi Li
- School of Business, Hanyang University, Seoul, South Korea
| | - Peizhi Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Leizuo Zhao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Urology, Dongying People’s Hospital, Dongying, China
| | - Bingyin Huang
- Department of Pathology, The First People’s Hospital of Zhoukou, Zhoukou, China
| | - Yingkun Xu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Qinghua Xia,
| |
Collapse
|
15
|
Yuan Y, Ping W, Zhang R, Hao Z, Zhang N. DEPDC1B collaborates with GABRD to regulate ESCC progression. Cancer Cell Int 2022; 22:214. [PMID: 35706026 PMCID: PMC9202211 DOI: 10.1186/s12935-022-02593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is the leading cause of cancer-related death worldwide with a poor prognosis. Given that DEPDC1B plays a key role in multiple cancers, the role of this molecule in ESCC was explored to identify potential targets for ESCC patients. Method The expression level of DEPDC1B in ESCC was revealed based on the TCGA database and immunohistochemical experiments on clinical tissues. The correlation between DEPDC1B and survival of ESCC patients was analyzed by Kaplan–Meier method. Small hairpin RNA (shRNA)-mediated silencing of DEPDC1B expression in ESCC cells and performed a series of in vitro and in vivo functional validations. Result DEPDC1B was overexpressed in ESCC. High expression of DEPDC1B was significantly negatively correlated with overall survival in patients with ESCC. Moreover, knockdown of DEPDC1B inhibited ESCC cell proliferation, clone formation, migration, tumor formation and promoted apoptosis. Furthermore, knockdown of DEPDC1B leaded to significant downregulation of GABRD in ESCC cells. Meanwhile, GABRD expression was upregulated in ESCC, and its silencing can inhibit the proliferation and migration of the tumor cells. Interestingly, there was a protein interaction between DEPDC1B and GABRD. Functionally, GABRD knockdown partially reversed the contribution of DEPDC1B to ESCC progression. In addition, GABRD regulated ESCC progression may depend on PI3K/AKT/mTOR signaling pathway. Conclusion DEPDC1B collaborated with GABRD to regulate ESCC progression, and inhibition of this signaling axis may be a potential therapeutic target for ESCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02593-z.
Collapse
Affiliation(s)
- Yunfeng Yuan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Ruijie Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Zhipeng Hao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
16
|
Fu B, Lu L, Huang H. Constructing a Prognostic Gene Signature for Lung Adenocarcinoma Based on Weighted Gene Co-Expression Network Analysis and Single-Cell Analysis. Int J Gen Med 2022; 15:5441-5454. [PMID: 35685695 PMCID: PMC9173729 DOI: 10.2147/ijgm.s353848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Lung adenocarcinoma (LUAD) has a high degree of intratumor heterogeneity. Advanced single-cell RNA sequencing (scRNA-seq) technologies have offered tools to analyze intratumor heterogeneity, which improves the accuracy of identifying biomarkers based on single-cell expression data, and thus helps in predicting prognosis of cancer patients and assisting decision-makings for cancer treatment. Patients and Methods ScRNA-seq data containing two LUAD and two para-cancerous tissue samples were included to identify different cell clusters in tumor tissues. To identify the most relevant modules and important cell subpopulations (clusters) in LUAD tissues, weighted gene co-expression network analysis (WGCNA) was performed. Subsequently, LUAD molecular subtypes were constructed by unsupervised consensus clustering based on genes in key modules. Using differential analysis, univariate Cox regression analysis, and least absolute shrinkage and selection operator (LASSO) regression analysis, a prognostic model of LUAD was established. Results A total of 14 cell clusters belonging to 10 cell types in LUAD were identified. The turquoise module was the most relevant to LUAD among all the modules; cluster 10 (C10, lung epithelial cells) was found to be the most strongly associated with the turquoise module. LUAD samples were divided into two groups of distinct molecular subtypes. Based on the 165 shared genes between the turquoise module and C10, 511 DEGs between the two molecular subtypes were obtained, and five of them were selected to construct the gene signature, which was validated to be an independent prognostic marker of LUAD. Conclusion Fourteen cell clusters co-existed in LUAD, which contributed to its intratumor heterogeneity. Two molecular subtypes of LUAD were identified and a five-gene signature was developed and validated to be significantly associated with prognostic and clinical characteristics of LUAD patients.
Collapse
Affiliation(s)
- Biqian Fu
- Internal Medicine-Oncology, Shenzhen Hospital of Guangzhou University of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| | - Lin Lu
- Internal Medicine-Oncology, Shenzhen Hospital of Guangzhou University of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| | - Haifu Huang
- Internal Medicine-Oncology, Shenzhen Hospital of Guangzhou University of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| |
Collapse
|
17
|
Chen J, Gao G, Li L, Ding J, Chen X, Lei J, Long H, Wu L, Long X, He L, Shen Y, Yang J, Lu Y, Sun Y. Pan-Cancer Study of SHC-Adaptor Protein 1 (SHC1) as a Diagnostic, Prognostic and Immunological Biomarker in Human Cancer. Front Genet 2022; 13:817118. [PMID: 35601500 PMCID: PMC9115805 DOI: 10.3389/fgene.2022.817118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/15/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Recent studies highlight the carcinogenesis role of SHC-adaptor protein 1 (SHC1) in cancer initiation, development, and progression. However, its aberrant expression, diagnostic and prognostic value remain unknown in a variety of tumors. Methods: The SHC1 expression profiles were analyzed using GTEx database, TCGA database, Oncomine and CPTAC database. The survival analysis was conducted using GEPIA2, Kaplan-Meier Plotter, UALCAN, and PrognoScan. The diagnostic values of SHC1 were calculated with the “pROC” package in R software. The genetic alteration of SHC1 and mutations were analyzed using cBioPortal. TIMER2 was employed to estimate the correlations between SHC1 expression and tumor-infiltrating immune cells in the TCGA cohort. Enrichment analysis of SHC1 was conducted using the R package “clusterProfiler.” Results: SHC1 was ubiquitously highly expressed and closely associated with worse prognosis of multiple major cancer types (all p < 0.05). Further, SHC1 gene mutations were strongly linked to poor OS and DFS in SKCM (all p < 0.05). An enhanced phosphorylation level of SHC1 at the S139 site was observed in clear cell RCC. Additionally, the results revealed SHC1 expression was strongly linked to TMB, MMRs, MSI, TAMs, DNA methylation, m6A RNA methylation, tumor-associated immune infiltration, and immune checkpoints in multiple cancers (all p < 0.05). In addition, the results of the ROC analysis indicated the SHC1 exhibited strong diagnostic capability for KICH (AUC = 0.92), LIHC (AUC = 0.95), and PAAD (AUC = 0.95). Finally, enrichment analysis indicated that SHC1 may potentially involve in the regulation of numerous signaling pathways in cancer metabolism and protein phosphorylation-related functions. Conclusions: These findings highlight that SHC1 plays an important role in the tumor immune microenvironment, and SHC1 has been identified to have prognostic and diagnostic value in multiple cancers. Thus, SHC1 is a potential target for cancer immunotherapy and effective prognostic and diagnostic biomarker.
Collapse
Affiliation(s)
- Jianlin Chen
- Departments of Clinical Laboratory, Key Laboratory of medical molecular diagnostics of Liuzhou, Key Laboratory for nucleic acid molecular diagnosis and application of Guangxi health and wellness Commission, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Gan Gao
- Departments of Clinical Laboratory of Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Limin Li
- Departments of Clinical Laboratory of Liuzhou People's Hospital, Liuzhou, China
| | - Junping Ding
- Departments of Clinical Laboratory, Key Laboratory of medical molecular diagnostics of Liuzhou, Key Laboratory for nucleic acid molecular diagnosis and application of Guangxi health and wellness Commission, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Xianhua Chen
- Departments of Clinical Laboratory, Key Laboratory of medical molecular diagnostics of Liuzhou, Key Laboratory for nucleic acid molecular diagnosis and application of Guangxi health and wellness Commission, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Jianfei Lei
- People’s Hospital of Rong’an County, Liuzhou, China
| | - Haihua Long
- Departments of Clinical Laboratory, Key Laboratory of medical molecular diagnostics of Liuzhou, Key Laboratory for nucleic acid molecular diagnosis and application of Guangxi health and wellness Commission, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Lihua Wu
- Departments of Clinical Laboratory, Key Laboratory of medical molecular diagnostics of Liuzhou, Key Laboratory for nucleic acid molecular diagnosis and application of Guangxi health and wellness Commission, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Xin Long
- Departments of Clinical Laboratory, Key Laboratory of medical molecular diagnostics of Liuzhou, Key Laboratory for nucleic acid molecular diagnosis and application of Guangxi health and wellness Commission, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Lian He
- People’s Hospital of Rong’an County, Liuzhou, China
| | - Yongqi Shen
- Departments of Clinical Laboratory, Key Laboratory of medical molecular diagnostics of Liuzhou, Key Laboratory for nucleic acid molecular diagnosis and application of Guangxi health and wellness Commission, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | | | - Yonggang Lu
- Departments of Clinical Laboratory, Key Laboratory of medical molecular diagnostics of Liuzhou, Key Laboratory for nucleic acid molecular diagnosis and application of Guangxi health and wellness Commission, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
- *Correspondence: Yonggang Lu, ; Yifan Sun,
| | - Yifan Sun
- Departments of Clinical Laboratory, Key Laboratory of medical molecular diagnostics of Liuzhou, Key Laboratory for nucleic acid molecular diagnosis and application of Guangxi health and wellness Commission, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
- *Correspondence: Yonggang Lu, ; Yifan Sun,
| |
Collapse
|
18
|
Hu F, Fong KO, Cheung MPL, Liu JA, Liang R, Li TW, Sharma R, IP PP, Yang X, Cheung M. DEPDC1B Promotes Melanoma Angiogenesis and Metastasis through Sequestration of Ubiquitin Ligase CDC16 to Stabilize Secreted SCUBE3. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105226. [PMID: 35088579 PMCID: PMC8981904 DOI: 10.1002/advs.202105226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/11/2022] [Indexed: 05/28/2023]
Abstract
The ability of melanoma to acquire metastasis through the induction of angiogenesis is one of the major causes of skin cancer death. Here, it is found that high transcript levels of DEP domain containing 1B (DEPDC1B) in cutaneous melanomas are significantly associated with a poor prognosis. Tissue microarray analysis indicates that DEPDC1B expression is positively correlated with SOX10 in the different stages of melanoma. Consistently, DEPDC1B is both required and sufficient for melanoma growth, metastasis, angiogenesis, and functions as a direct downstream target of SOX10 to partly mediate its oncogenic activity. In contrast to other tumor types, the DEPDC1B-mediated enhancement of melanoma metastatic potential is not dependent on the activities of RHO GTPase signaling and canonical Wnt signaling, but is acquired through secretion of signal peptide, CUB domain and EGF like domain containing 3 (SCUBE3), which is crucial for promoting angiogenesis in vitro and in vivo. Mechanistically, DEPDC1B regulates SCUBE3 protein stability through the competitive association with ubiquitin ligase cell division cycle 16 (CDC16) to prevent SCUBE3 from undergoing degradation via the ubiquitin-proteasome pathway. Importantly, expression of SOX10, DEPDC1B, and SCUBE3 are positively correlated with microvessel density in the advanced stage of melanomas. In conclusion, it is revealed that a SOX10-DEPDC1B-SCUBE3 regulatory axis promotes melanoma angiogenesis and metastasis, which suggests that targeting secreted SCUBE3 can be a therapeutic strategy against metastatic melanoma.
Collapse
Affiliation(s)
- Feng Hu
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Ki On Fong
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - May Pui Lai Cheung
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Jessica Aijia Liu
- Department of NeuroscienceCity University of Hong KongTat Chee AvenueHong KongChina
| | - Rui Liang
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Tsz Wai Li
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Rakesh Sharma
- Centre for PanorOmic SciencesProteomics and Metabolomics Core FacilityLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Philip Pun‐Ching IP
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Xintao Yang
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Martin Cheung
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| |
Collapse
|
19
|
Massó-Vallés D, Beaulieu ME, Jauset T, Giuntini F, Zacarías-Fluck MF, Foradada L, Martínez-Martín S, Serrano E, Martín-Fernández G, Casacuberta-Serra S, Castillo Cano V, Kaur J, López-Estévez S, Morcillo MÁ, Alzrigat M, Mahmoud L, Luque-García A, Escorihuela M, Guzman M, Arribas J, Serra V, Larsson LG, Whitfield JR, Soucek L. MYC Inhibition Halts Metastatic Breast Cancer Progression by Blocking Growth, Invasion, and Seeding. CANCER RESEARCH COMMUNICATIONS 2022; 2:110-130. [PMID: 36860495 PMCID: PMC9973395 DOI: 10.1158/2767-9764.crc-21-0103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/31/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
Abstract
MYC's role in promoting tumorigenesis is beyond doubt, but its function in the metastatic process is still controversial. Omomyc is a MYC dominant negative that has shown potent antitumor activity in multiple cancer cell lines and mouse models, regardless of their tissue of origin or driver mutations, by impacting on several of the hallmarks of cancer. However, its therapeutic efficacy against metastasis has not been elucidated yet. Here we demonstrate for the first time that MYC inhibition by transgenic Omomyc is efficacious against all breast cancer molecular subtypes, including triple-negative breast cancer, where it displays potent antimetastatic properties both in vitro and in vivo. Importantly, pharmacologic treatment with the recombinantly produced Omomyc miniprotein, recently entering a clinical trial in solid tumors, recapitulates several key features of expression of the Omomyc transgene, confirming its clinical applicability to metastatic breast cancer, including advanced triple-negative breast cancer, a disease in urgent need of better therapeutic options. Significance While MYC role in metastasis has been long controversial, this manuscript demonstrates that MYC inhibition by either transgenic expression or pharmacologic use of the recombinantly produced Omomyc miniprotein exerts antitumor and antimetastatic activity in breast cancer models in vitro and in vivo, suggesting its clinical applicability.
Collapse
Affiliation(s)
- Daniel Massó-Vallés
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marie-Eve Beaulieu
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Toni Jauset
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Fabio Giuntini
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Mariano F. Zacarías-Fluck
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Laia Foradada
- Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sandra Martínez-Martín
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Erika Serrano
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Génesis Martín-Fernández
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | | | | | - Jastrinjan Kaur
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | | | - Miguel Ángel Morcillo
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Mohammad Alzrigat
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Loay Mahmoud
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Antonio Luque-García
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Marta Escorihuela
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Marta Guzman
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Joaquín Arribas
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Violeta Serra
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Jonathan R. Whitfield
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Laura Soucek
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Corresponding Author: Laura Soucek, Vall d'Hebron Institute of Oncology (VHIO), C/ Natzaret, 115-117, CELLEX Centre, Barcelona 08035, Spain. Phone: 349-3254-3450; E-mail:
| |
Collapse
|
20
|
Fan X, Wen J, Bao L, Gao F, Li Y, He D. Identification and Validation of DEPDC1B as an Independent Early Diagnostic and Prognostic Biomarker in Liver Hepatocellular Carcinoma. Front Genet 2022; 12:681809. [PMID: 35095994 PMCID: PMC8793833 DOI: 10.3389/fgene.2021.681809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is one of the most lethal tumors worldwide, and while its detailed mechanism of occurrence remains unclear, an early diagnosis of LIHC could significantly improve the 5-years survival of LIHC patients. It is therefore imperative to explore novel molecular markers for the early diagnosis and to develop efficient therapies for LIHC patients. Currently, DEPDC1B has been reported to participate in the regulation of cell mitosis, transcription, and tumorigenesis. To explore the valuable diagnostic and prognostic markers for LIHC and further elucidate the mechanisms underlying DEPDC1B-related LIHC, numerous databases, such as Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, Kaplan-Meier plotter, and The Cancer Genome Atlas (TCGA) were employed to determine the association between the expression of DEPDC1B and prognosis in LIHC patients. Generally, the DEPDC1B mRNA level was highly expressed in LIHC tissues, compared with that in normal tissues (p < 0.01). High DEPDC1B expression was associated with poor overall survival (OS) in LIHC patients, especially in stage II, IV, and grade I, II, III patients (all p < 0.05). The univariate and multivariate Cox regression analysis showed that DEPDC1B was an independent risk factor for OS among LIHC patients (HR = 1.3, 95% CI: 1.08–1.6, p = 0.007). In addition, the protein expression of DEPDC1B was validated using Human Protein Atlas database. Furthermore, the expression of DEPDC1B was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) assay using five pairs of matched LIHC tissues and their adjacent noncancerous tissues. The KEGG pathway analysis indicated that high expression of DEPDC1B may be associated with several signaling pathways, such as MAPK signaling, the regulation of actin cytoskeleton, p53 signaling, and the Wnt signaling pathways. Furthermore, high DEPDC1B expression may be significantly associated with various cancers. Conclusively, DEPDC1B may be an independent risk factor for OS among LIHC cancer patients and may be used as an early diagnostic marker in patients with LIHC.
Collapse
Affiliation(s)
- Xiaoyan Fan
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Junye Wen
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, China
| | - Lei Bao
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, China
| | - Fei Gao
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - You Li
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dongwei He
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Dongwei He,
| |
Collapse
|
21
|
EGF-induced nuclear translocation of SHCBP1 promotes bladder cancer progression through inhibiting RACGAP1-mediated RAC1 inactivation. Cell Death Dis 2022; 13:39. [PMID: 35013128 PMCID: PMC8748695 DOI: 10.1038/s41419-021-04479-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Bladder cancer is a highly heterogeneous and aggressive malignancy with a poor prognosis. EGF/EGFR activation causes the detachment of SHC-binding protein 1 (SHCBP1) from SHC adapter protein 1 (SHC1), which subsequently translocates into the nucleus and promotes cancer development via multiple signaling pathways. However, the role of the EGF-SHCBP1 axis in bladder cancer progression remains unexplored. Herein, we report that SHCBP1 is upregulated in bladder cancer tissues and cells, with cytoplasmic or nuclear localization. Released SHCBP1 responds to EGF stimulation by translocating into the nucleus following Ser273 phosphorylation. Depletion of SHCBP1 reduces EGF-induced cell migration and invasiveness of bladder cancer cells. Mechanistically, SHCBP1 binds to RACGAP1 via its N-terminal domain of amino acids 1 ~ 428, and this interaction is enhanced following EGF treatment. Furthermore, SHCBP1 facilitates cell migration by inhibiting RACGAP-mediated GTP-RAC1 inactivation, whose activity is indispensable for cell movement. Collectively, we demonstrate that the EGF-SHCBP1-RACGAP1-RAC1 axis acts as a novel regulatory mechanism of bladder cancer progression, which offers a new clinical therapeutic strategy to combat bladder cancer.
Collapse
|
22
|
Shen E, Zhang J, Lu Y. DEP domain containing 1B (DEPDC1B) exerts the tumor promoter in hepatocellular carcinoma through activating p53 signaling pathway via kinesin family member 23 (KIF23). Bioengineered 2022; 13:1103-1114. [PMID: 34983303 PMCID: PMC8805966 DOI: 10.1080/21655979.2021.2017629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is closely associated with chronic liver disease and possesses a high incidence. DEP domain containing 1B (DEPDC1B) expression has been found to be upregulated in HCC according to bioinformatics analysis. This paper sought to study the specific role of DEPDC1B in HCC. The data of DEPDC1B expression and individual overall survival in HCC and normal liver tissues were acquired from UALCAN database. The association between DEPDC1B and the downstream signal, kinesin family member 23 (KIF23), was determined using LinkedOmics and STRING database, and subsequently confirmed by co-immunoprecipitation assay. The expression levels of DEPDC1B and KIF23 in normal hepatic epithelial cells and HCC cell lines were assessed by RT-qPCR and Western blotting, respectively. Following transfection with small interference RNA-DEPDC1B, the influences of DEPDC1B knockdown on cell proliferation, colony formation, cell cycle, cell invasion, migration, and KIF23 expression were evaluated. In addition, the effects of KIF23 overexpression on the above aspects of HCC cells were also determined, as well as the expression level of p53 signaling-related proteins. The results indicated that DEPDC1B was highly expressed in HCC cells. DEPDC1B knockdown inhibited the proliferation, migration, invasion, cycle, and KIF23 expression in HCC cells. Moreover, KIF23 overexpression reversed the inhibitory effect of DEPDC1B knockdown in HCC cells and the activation of the p53 signaling. In conclusion, DEPDC1B knockdown exerts anti-cancer role in HCC by activating the p53 signaling through KIF23.
Collapse
Affiliation(s)
- Enhua Shen
- Department of Infectious Diseases, Jilin Province Faw General Hospital, Changchun, Jilin, China
| | - Jingzhi Zhang
- Department of Critical Care Medicine, Zibo Integrated Chinese and Western Medicine Hospital, Zibo, Shandong, China
| | - Yujuan Lu
- Department of Infectious Disease, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
23
|
Yan X, Chen M, Xiao C, Fu J, Sun X, Hu Z, Zhou H. Effect of unfolded protein response on the immune infiltration and prognosis of transitional cell bladder cancer. Ann Med 2021; 53:1048-1058. [PMID: 34187252 PMCID: PMC8253203 DOI: 10.1080/07853890.2021.1918346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Bladder cancer (BC) is one of the most common human malignancies worldwide. Previous researches have shown that the unfolded protein response (UPR) pathway could contribute to the tumorigenesis of BC. However, the role of UPR in the immune infiltration, progression, and prognosis of BC is unclear.Methods: The GSVA and ssGSEA methods were used for assessing the UPR score and immune cells infiltration score in three BC public datasets, respectively. The relationship between the UPR pathway and clinicopathological characteristics was analyzed by the Kruskal-Wallis, Wilcox test, and log-rank test. The association of the UPR pathway with various tumor-infiltrating immune cells was evaluated with the correlation analysis. Univariate Cox regression analysis was performed to identify risk factors significantly associated with prognosis. The predictive models were built based on risk factors and visualized with nomograms. The performance of our models was evaluated with the calibration curve, Harrell's concordance index (c-index), and receiver operating characteristic (ROC) analysis.Results: We found that the UPR pathway and many UPR-related genes were significantly associated with the pathologic grade, tumor type, and invasive progression of transitional cell bladder cancer (TCBC), and a high UPR score predicted a poor prognosis in patients. The UPR score was positively correlated with the infiltration abundance of many tumor immune cells in TCBC. Besides, we constructed predictive models based on the UPR score, and good performance was observed, with c-indexes ranging from 0.74 to 0.87.Conclusions: Our study proved that the UPR pathway may have an important impact on the progression, prognosis, and tumor immune infiltration in TCBC, and the models we built may provide effective and reliable guides for prognosis assessment and treatment decision-making for TCBC patients.
Collapse
Affiliation(s)
- Xiaokai Yan
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Min Chen
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chiying Xiao
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiandong Fu
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xia Sun
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zuohuai Hu
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hang Zhou
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
24
|
Wang L, Tang L, Xu R, Ma J, Tian K, Liu Y, Lu Y, Wu Z, Zhu X. DEPDC1B regulates the progression of human chordoma through UBE2T-mediated ubiquitination of BIRC5. Cell Death Dis 2021; 12:753. [PMID: 34330893 PMCID: PMC8324777 DOI: 10.1038/s41419-021-04026-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022]
Abstract
Chordoma is a rare bone malignancy with a high rate of local recurrence and distant metastasis. Although DEP domain-containing protein 1B (DEPDC1B) is implicated in a variety of malignancies, its relationship with chordoma is unclear. In this study, the biological role and molecular mechanism of DEPDC1B in chordoma were explored. The function of DEPDC1B in chordoma cells was clarified through loss-of-function assays in vitro and in vivo. Furthermore, molecular mechanism of DEPDC1B in chordoma cells was recognized by RNA sequencing and Co-Immunoprecipitation (Co-IP) assay. The malignant behaviors of DEPDC1B knockdown chordoma cells was significantly inhibited, which was characterized by reduced proliferation, enhanced apoptosis, and hindered migration. Consistently, decreased expression of DEPDC1B suppressed tumor growth in xenograft mice. Mechanically, DEPDC1B affected the ubiquitination of baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) through ubiquitin-conjugating enzyme E2T (UBE2T). Simultaneous downregulation of BIRC5 and DEPDC1B may exacerbate the inhibitory effects of chordoma. Moreover, BIRC5 overexpression reduced the inhibitory effects of DEPDC1B knockdown in chordoma cells. In conclusion, DEPDC1B regulates the progression of human chordoma through UBE2T-mediated ubiquitination of BIRC5, suggesting that it may be a promising candidate target with potential therapeutic value.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuan Xilu, Beijing, 100070, China
| | - Liang Tang
- Department of Orthopaedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Ruijun Xu
- Department of Orthopaedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Junpeng Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuan Xilu, Beijing, 100070, China
| | - Kaibing Tian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuan Xilu, Beijing, 100070, China
| | - Yanbin Liu
- Department of Orthopaedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Yanghu Lu
- Department of Orthopaedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuan Xilu, Beijing, 100070, China.
| | - Xiaodong Zhu
- Department of Orthopaedic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 2000 Jiangyue Road, Shanghai, 200127, China.
| |
Collapse
|
25
|
Liang Y, Lei Y, Du M, Liang M, Liu Z, Li X, Gao Y. The increased expression and aberrant methylation of SHC1 in non-small cell lung cancer: Integrative analysis of clinical and bioinformatics databases. J Cell Mol Med 2021; 25:7039-7051. [PMID: 34117717 PMCID: PMC8278126 DOI: 10.1111/jcmm.16717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the previous evidence showing that SHC adaptor protein 1 (SHC1) could encode three distinct isoforms (p46SHC, p52SHC and p66SHC) that function in different activities such as regulating life span and Ras activation, the precise underlying role of SHC1 in lung cancer also remains obscure. In this study, we firstly found that SHC1 expression was up‐regulated both in lung adenocarcinoma (LUAD) and in lung squamous cell carcinoma (LUSC) tissues. Furthermore, compared to patients with lower SHC1 expression, LUAD patients with higher expression of SHC1 had poorer overall survival (OS). Moreover, higher expression of SHC1 was also associated with worse OS in patients with stages 1 and 2 but not stage 3 lung cancer. Significantly, the analysis showed that SHC1 methylation level was associated with OS in lung cancer patients. It seemed that the methylation level at specific probes within SHC1 showed negative correlations with SHC1 expression both in LUAD and in LUSC tissues. The LUAD and LUSC patients with hypermethylated SHC1 at cg12473916 and cg19356022 probes had a longer OS. Therefore, it is reasonable to conclude that SHC1 has a potential clinical significance in LUAD and LUSC patients.
Collapse
Affiliation(s)
- Yicheng Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangyang Lei
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minjun Du
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zixu Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingkai Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|