1
|
Jiang Y, Li F, Ye L, Zhang R, Chen S, Peng H, Zhang H, Li D, Chen L, Zeng X, Dong G, Xu W, Liao C, Zhang R, Luo Q, Chen W. Spatial regulation of NMN supplementation on brain lipid metabolism upon subacute and sub-chronic PM exposure in C57BL/6 mice. Part Fibre Toxicol 2024; 21:35. [PMID: 39252011 PMCID: PMC11385136 DOI: 10.1186/s12989-024-00597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Atmospheric particulate matter (PM) exposure-induced neuroinflammation is critical in mediating nervous system impairment. However, effective intervention is yet to be developed. RESULTS In this study, we examine the effect of β-nicotinamide mononucleotide (NMN) supplementation on nervous system damage upon PM exposure and the mechanism of spatial regulation of lipid metabolism. 120 C57BL/6 male mice were exposed to real ambient PM for 11 days (subacute) or 16 weeks (sub-chronic). NMN supplementation boosted the level of nicotinamide adenine dinucleotide (NAD+) in the mouse brain by 2.04 times. This augmentation effectively reduced neuroinflammation, as evidenced by a marked decrease in activated microglia levels across various brain regions, ranging from 29.29 to 85.96%. Whole brain lipidomics analysis revealed that NMN intervention resulted in an less increased levels of ceramide (Cer) and lysophospholipid in the brain following subacute PM exposure, and reversed triglyceride (TG) and glycerophospholipids (GP) following sub-chronic PM exposure, which conferred mice with anti-neuroinflammation response, improved immune function, and enhanced membrane stability. In addition, we demonstrated that the hippocampus and hypothalamus might be the most sensitive brain regions in response to PM exposure and NMN supplementation. Particularly, the alteration of TG (60:10, 56:2, 60:7), diacylglycerol (DG, 42:6), and lysophosphatidylcholine (LPC, 18:3) are the most profound, which correlated with the changes in functional annotation and perturbation of pathways including oxidative stress, inflammation, and membrane instability unveiled by spatial transcriptomic analysis. CONCLUSIONS This study demonstrates that NMN intervention effectively reduces neuroinflammation in the hippocampus and hypothalamus after PM exposure by modulating spatial lipid metabolism. Strategies targeting the improvement of lipid homeostasis may provide significant protection against brain injury associated with air pollutant exposure.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Fang Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Guangdong, 518055, China
| | - Lizhu Ye
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Rui Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Shen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Hui Peng
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Haiyan Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Daochuan Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Liping Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Xiaowen Zeng
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Guanghui Dong
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Wei Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Guangdong, 518055, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, Hebei, 050017, China.
| | - Qian Luo
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Guangdong, 518055, China.
| | - Wen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
2
|
Jiang T, Ruan N, Luo P, Wang Q, Wei X, Li Y, Dai Y, Lin L, Lv J, Liu Y, Zhang C. Modulation of ER-mitochondria tethering complex VAPB-PTPIP51: Novel therapeutic targets for aging-associated diseases. Ageing Res Rev 2024; 98:102320. [PMID: 38719161 DOI: 10.1016/j.arr.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Aging is a gradual and irreversible natural process. With aging, the body experiences a functional decline, and the effects amplify the vulnerability to a range of age-related diseases, including neurodegenerative, cardiovascular, and metabolic diseases. Within the aging process, the morphology and function of mitochondria and the endoplasmic reticulum (ER) undergo alterations, particularly in the structure connecting these organelles known as mitochondria-associated membranes (MAMs). MAMs serve as vital intracellular signaling hubs, facilitating communication between the ER and mitochondria when regulating various cellular events, including calcium homeostasis, lipid metabolism, mitochondrial function, and apoptosis. The formation of MAMs is partly dependent on the interaction between the vesicle-associated membrane protein-associated protein-B (VAPB) and protein tyrosine phosphatase-interacting protein-51 (PTPIP51). Accumulating evidence has begun to elucidate the pivotal role of the VAPB-PTPIP51 tether in the initiation and progression of age-related diseases. In this study, we delineate the intricate structure and multifunctional role of the VAPB-PTPIP51 tether and discuss its profound implications in aging-associated diseases. Moreover, we provide a comprehensive overview of potential therapeutic interventions and pharmacological agents targeting the VAPB-PTPIP51-mediated MAMs, thereby offering a glimmer of hope in mitigating aging processes and treating age-related disorders.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Nan Ruan
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengcheng Luo
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuxian Wei
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Li
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Dai
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Lin
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Division of Cardiology, Department of Internal Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiagao Lv
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Division of Cardiology, Department of Internal Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Maniscalchi A, Benzi Juncos ON, Conde MA, Funk MI, Fermento ME, Facchinetti MM, Curino AC, Uranga RM, Alza NP, Salvador GA. New insights on neurodegeneration triggered by iron accumulation: Intersections with neutral lipid metabolism, ferroptosis, and motor impairment. Redox Biol 2024; 71:103074. [PMID: 38367511 PMCID: PMC10879836 DOI: 10.1016/j.redox.2024.103074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/28/2023] [Accepted: 02/03/2024] [Indexed: 02/19/2024] Open
Abstract
Brain iron accumulation constitutes a pathognomonic indicator in several neurodegenerative disorders. Metal accumulation associated with dopaminergic neuronal death has been documented in Parkinson's disease. Through the use of in vivo and in vitro models, we demonstrated that lipid dysregulation manifests as a neuronal and glial response during iron overload. In this study, we show that cholesterol content and triacylglycerol (TAG) hydrolysis were strongly elevated in mice midbrain. Lipid cacostasis was concomitant with the loss of dopaminergic neurons, astrogliosis and elevated expression of α-synuclein. Exacerbated lipid peroxidation and markers of ferroptosis were evident in the midbrain from mice challenged with iron overload. An imbalance in the activity of lipolytic and acylation enzymes was identified, favoring neutral lipid hydrolysis, and consequently reducing TAG and cholesteryl ester levels. Notably, these observed alterations were accompanied by motor impairment in iron-treated mice. In addition, neuronal and glial cultures along with their secretomes were used to gain further insight into the mechanism underlying TAG hydrolysis and cholesterol accumulation as cellular responses to iron accumulation. We demonstrated that TAG hydrolysis in neurons is triggered by astrocyte secretomes. Moreover, we found that the ferroptosis inhibitor, ferrostatin-1, effectively prevents cholesterol accumulation both in neurons and astrocytes. Taken together, these results indicate that lipid disturbances occur in iron-overloaded mice as a consequence of iron-induced oxidative stress and depend on neuron-glia crosstalk. Our findings suggest that developing therapies aimed at restoring lipid homeostasis may lead to specific treatment for neurodegeneration associated with ferroptosis and brain iron accumulation.
Collapse
Affiliation(s)
- Athina Maniscalchi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina
| | - Oriana N Benzi Juncos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Melisa A Conde
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Melania I Funk
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina
| | - María E Fermento
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María M Facchinetti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Alejandro C Curino
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Romina M Uranga
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Natalia P Alza
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Química - UNS, Bahía Blanca, Argentina
| | - Gabriela A Salvador
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina.
| |
Collapse
|
4
|
Huang H, Sharoar MG, Pathoulas J, Fan L, He W, Xiang R, Yan R. Accumulation of neutral lipids in dystrophic neurites surrounding amyloid plaques in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167086. [PMID: 38378084 PMCID: PMC10999334 DOI: 10.1016/j.bbadis.2024.167086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Alzheimer's disease (AD) is characterized by the formation β-amyloid (Aβ) deposited neuritic plaques. Recent evidence suggests that abnormal lipid metabolism and accumulation could serve as biomarkers for neurodegenerative diseases, including AD. Tubular endoplasmic reticulum protein, reticulon 3 (RTN3), plays a crucial role in the development of neuritic plaque and lipid metabolism in AD brains. In present study, we sought to investigate a potential association between neutral lipid accumulation and AD pathology. BODIPY 500/510 dye was used to label neutral lipid surrounding Aβ plaques in APPNL-G-F mouse and AD postmortem brains samples. Immunofluorescent images were captured using confocal microscope and co-localization between lipid metabolism proteins and neutral lipids were evaluated. Lipid accumulation in Aβ plaque surrounding dystrophic neurites (DNs) was observed in the cortical region of AD mouse models and human AD brain samples. The neutral lipid staining was not co-localized with IBA1-labeled microglia or GFAP-labeled astrocytes, but it was co-labeled with VAMP2 and neurofilament. We further showed that neutral lipids were accumulated in RTN3 immunoreactive DNs. Both the neutral lipids accumulation and RIDNs formation showed age-dependent patterns in surrounding amyloid plaques. Mechanistic studies revealed that RTN3 likely contributes to the enrichment of neutral lipids near plaques by interacting with heat shock cognate protein 70 (HSC70) and diminishing its function in chaperone-mediated lipophagy. Our study provides immunohistochemical evidence of neutral lipids being enriched in DNs near amyloid plaques. Our findings shed light on RTN3-mediaed lipid accumulation in AD neuropathology and provide fresh insights into the role of RTN3 in neurodegenerative diseases.
Collapse
Affiliation(s)
- Hao Huang
- Department of Nephrology, Xiangya Hospital and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China; Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA; Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.
| | - Md Golam Sharoar
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA; Alzheimer's Disease Research Program, Corewell Health Research Institute, Oakland University William Beaumont School of Medicine, Corewell Health East, Royal Oak, MI 48073, USA
| | - Joseph Pathoulas
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Liangliang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Wanxia He
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Rong Xiang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
5
|
Conde MA, Alza NP, Funk MI, Maniscalchi A, Benzi Juncos ON, Berge I, Uranga RM, Salvador GA. α-Synuclein Attenuates Maneb Neurotoxicity through the Modulation of Redox-Sensitive Transcription Factors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:5803323. [PMID: 37113744 PMCID: PMC10129426 DOI: 10.1155/2023/5803323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 04/29/2023]
Abstract
The accumulation and aggregation of α-synuclein is a pathognomonic sign of Parkinson's disease (PD). Maneb (MB) exposure has also been reported as one environmental triggering factor of this multifactorial neurodegenerative disease. In our laboratory, we have previously reported that mild overexpression of α-synuclein (200% increase with respect to endogenous neuronal levels) can confer neuroprotection against several insults. Here, we tested the hypothesis that α-synuclein can modulate the neuronal response against MB-induced neurotoxicity. When exposed to MB, cells with endogenous α-synuclein expression displayed increased reactive oxygen species (ROS) associated with diminished glutamate-cysteine ligase catalytic subunit (GCLc) and hemeoxygenase-1 (HO-1) mRNA expressions and upregulation of the nuclear factor erythroid 2-related factor 2 (NRF2) repressor, BTB domain and CNC homolog 1 (BACH1). We found that α-synuclein overexpression (wt α-syn cells) attenuated MB-induced neuronal damage by reducing oxidative stress. Decreased ROS found in MB-treated wt α-syn cells was associated with unaltered GCLc and HO-1 mRNA expressions and decreased BACH1 expression. In addition, the increased SOD2 expression and catalase activity were associated with forkhead box O 3a (FOXO3a) nuclear compartmentalization. Cytoprotective effects observed in wt α-syn cells were also associated with the upregulation of silent information regulator 1 (SIRT1). In control cells, MB-treatment downregulated glutathione peroxidase 4 mRNA levels, which was coincident with increased ROS content, lipid peroxidation, and mitochondrial alterations. These deleterious effects were prevented by ferrostatin-1, an inhibitor of ferroptosis, under conditions of endogenous α-synuclein expression. The overexpression of α-synuclein attenuated MB toxicity by the activation of the same mechanisms as ferrostatin-1. Overall, our findings suggest that mild overexpression of α-synuclein attenuates MB-induced neurotoxicity through the modulation of NRF2 and FOXO3a transcription factors and prevents cell death probably by intervening in mechanisms associated with ferroptosis. Thus, we postulate that early stages of α-synuclein overexpression could be potentially neuroprotective against MB neurotoxicity.
Collapse
Affiliation(s)
- M. A. Conde
- National Scientific and Technical Research Council-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Camino La Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
- Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia, Bahía Blanca, Argentina
| | - N. P. Alza
- National Scientific and Technical Research Council-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Camino La Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
- UNS, Departamento de Química, Bahía Blanca, Argentina
| | - M. I. Funk
- National Scientific and Technical Research Council-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Camino La Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
- Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia, Bahía Blanca, Argentina
| | - A. Maniscalchi
- National Scientific and Technical Research Council-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Camino La Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
| | - O. N. Benzi Juncos
- National Scientific and Technical Research Council-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Camino La Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
- Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia, Bahía Blanca, Argentina
| | - I. Berge
- National Scientific and Technical Research Council-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Camino La Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
- Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia, Bahía Blanca, Argentina
| | - R. M. Uranga
- National Scientific and Technical Research Council-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Camino La Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
- Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia, Bahía Blanca, Argentina
| | - G. A. Salvador
- National Scientific and Technical Research Council-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Camino La Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
- Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia, Bahía Blanca, Argentina
| |
Collapse
|
6
|
Vrijsen S, Vrancx C, Del Vecchio M, Swinnen JV, Agostinis P, Winderickx J, Vangheluwe P, Annaert W. Inter-organellar Communication in Parkinson's and Alzheimer's Disease: Looking Beyond Endoplasmic Reticulum-Mitochondria Contact Sites. Front Neurosci 2022; 16:900338. [PMID: 35801175 PMCID: PMC9253489 DOI: 10.3389/fnins.2022.900338] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/05/2022] [Indexed: 01/13/2023] Open
Abstract
Neurodegenerative diseases (NDs) are generally considered proteinopathies but whereas this may initiate disease in familial cases, onset in sporadic diseases may originate from a gradually disrupted organellar homeostasis. Herein, endolysosomal abnormalities, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and altered lipid metabolism are commonly observed in early preclinical stages of major NDs, including Parkinson's disease (PD) and Alzheimer's disease (AD). Among the multitude of underlying defective molecular mechanisms that have been suggested in the past decades, dysregulation of inter-organellar communication through the so-called membrane contact sites (MCSs) is becoming increasingly apparent. Although MCSs exist between almost every other type of subcellular organelle, to date, most focus has been put on defective communication between the ER and mitochondria in NDs, given these compartments are critical in neuronal survival. Contributions of other MCSs, notably those with endolysosomes and lipid droplets are emerging, supported as well by genetic studies, identifying genes functionally involved in lysosomal homeostasis. In this review, we summarize the molecular identity of the organelle interactome in yeast and mammalian cells, and critically evaluate the evidence supporting the contribution of disturbed MCSs to the general disrupted inter-organellar homeostasis in NDs, taking PD and AD as major examples.
Collapse
Affiliation(s)
- Stephanie Vrijsen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, Leuven, Belgium
| | - Céline Vrancx
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Mara Del Vecchio
- Laboratory of Functional Biology, Department of Biology, KU Leuven, Heverlee, Belgium
| | - Johannes V. Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research and Therapy, VIB-Center for Cancer Research, KU Leuven, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joris Winderickx
- Laboratory of Functional Biology, Department of Biology, KU Leuven, Heverlee, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, Leuven, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Hahnefeld L, Vogel A, Gurke R, Geisslinger G, Schäfer MKE, Tegeder I. Phosphatidylethanolamine Deficiency and Triglyceride Overload in Perilesional Cortex Contribute to Non-Goal-Directed Hyperactivity after Traumatic Brain Injury in Mice. Biomedicines 2022; 10:biomedicines10040914. [PMID: 35453664 PMCID: PMC9033131 DOI: 10.3390/biomedicines10040914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 12/10/2022] Open
Abstract
Traumatic brain injury (TBI) is often complicated by long-lasting disabilities, including headache, fatigue, insomnia, hyperactivity, and cognitive deficits. In a previous study in mice, we showed that persistent non-goal-directed hyperactivity is a characteristic post-TBI behavior that was associated with low levels of endocannabinoids in the perilesional cortex. We now analyzed lipidome patterns in the brain and plasma in TBI versus sham mice in association with key behavioral parameters and endocannabinoids. Lipidome profiles in the plasma and subcortical ipsilateral and contralateral brain were astonishingly equal in sham and TBI mice, but the ipsilateral perilesional cortex revealed a strong increase in neutral lipids represented by 30 species of triacylglycerols (TGs) of different chain lengths and saturation. The accumulation of TG was localized predominantly to perilesional border cells as revealed by Oil Red O staining. In addition, hexosylceramides (HexCer) and phosphatidylethanolamines (PE and ether-linked PE-O) were reduced. They are precursors of gangliosides and endocannabinoids, respectively. High TG, low HexCer, and low PE/PE-O showed a linear association with non-goal-directed nighttime hyperactivity but not with the loss of avoidance memory. The analyses suggest that TG overload and HexCer and PE deficiencies contributed to behavioral dimensions of post-TBI psychopathology.
Collapse
Affiliation(s)
- Lisa Hahnefeld
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt, Germany
| | - Alexandra Vogel
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
| | - Robert Gurke
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt, Germany
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
- Correspondence:
| |
Collapse
|
8
|
Wei H, Zhen L, Wang S, Zhang Y, Wang K, Jia P, Zhang Y, Wu Z, Yang Q, Hou W, Lv J, Zhang P. De novo Lipogenesis in Astrocytes Promotes the Repair of Blood-Brain Barrier after Transient Cerebral Ischemia Through Interleukin-33. Neuroscience 2022; 481:85-98. [PMID: 34822949 DOI: 10.1016/j.neuroscience.2021.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022]
Abstract
Astrocytes experience significant metabolic shifts in the "sensitive period" of neurological function recovery following cerebral ischemia. However, the changes in astrocyte lipid metabolism and their implications for neurological recovery remain unknown. In the present study, we employed a mouse middle cerebral artery occlusion model to investigate the changes in de novo lipogenesis and interleukin-33 (IL-33) production in astrocytes and elucidate their role in blood-brain barrier (BBB) repair in the subacute phase of cerebral ischemia. Neurological behavior evaluation was used to assess functional changes in mice. Pharmacological inhibition and astrocyte-specific downregulation of fatty acid synthase (FASN) were used to evaluate the role of de novo lipogenesis in brain injury. Intracerebroventricular administration of recombinant IL-33 was performed to study the contribution of IL-33 to BBB disruption. Extravasation of Evans blue dye, dextran and IgG were used to assess BBB integrity. Western blotting of tight junction proteins ZO-1, Occludin, and Claudin-5 were performed at defined time points to evaluate changes in BBB. It was found that de novo lipogenesis was activated, and IL-33 production increased in astrocytes at the subacute stage of cerebral ischemia injury. Inhibition of lipogenesis in astrocytes decreased IL-33 production in the peri-infarct area, deteriorated BBB damage and interfered with neurological recovery. In addition, supplementation of IL-33 alleviated BBB destruction and improved neurological recovery worsened by lipogenesis inhibition. These findings indicate that astrocyte lipogenesis increases the production of IL-33 in the peri-infarct area, which promotes BBB repair in the subacute phase of cerebral ischemia injury and improves long-term functional recovery.
Collapse
Affiliation(s)
- Haidong Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Luming Zhen
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuanyuan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Kui Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Pengyu Jia
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Zhixin Wu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qianzi Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jianrui Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
9
|
Wild-type GBA1 increases the α-synuclein tetramer-monomer ratio, reduces lipid-rich aggregates, and attenuates motor and cognitive deficits in mice. Proc Natl Acad Sci U S A 2021; 118:2103425118. [PMID: 34326260 PMCID: PMC8346893 DOI: 10.1073/pnas.2103425118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mechanisms responsible for brain α-synuclein (αS) dyshomeostasis, caused by Gaucher’s GBA1 mutations that increase Parkinson’s disease (PD) risk, are largely unknown. We previously showed that abrogating physiological αS tetramers by a familial PD-E46K–amplified 3K mutation produces PD-like syndrome in mice and that treatment with stearoyl-CoA desaturase inhibitors increased a portion of the αS tetramers, benefitting the motor phenotypes. Here, we show that—similar to previous findings in GBA1-mutant PD culture—GCase elevation prolonged the stabilization of wild-type and 3K mutant αS tetramers in wtGBA1–transduced mouse brains, improving lysosomal integrity and motor and cognitive phenotypes. These data help elucidating lipid modulators that impact the αS physiological state in vivo and the development of PD therapeutic approaches. Loss-of-function mutations in acid beta-glucosidase 1 (GBA1) are among the strongest genetic risk factors for Lewy body disorders such as Parkinson’s disease (PD) and Lewy body dementia (DLB). Altered lipid metabolism in PD patient–derived neurons, carrying either GBA1 or PD αS mutations, can shift the physiological α-synuclein (αS) tetramer–monomer (T:M) equilibrium toward aggregation-prone monomers. A resultant increase in pSer129+ αS monomers provides a likely building block for αS aggregates. 3K αS mice, representing a neuropathological amplification of the E46K PD–causing mutation, have decreased αS T:M ratios and vesicle-rich αS+ aggregates in neurons, accompanied by a striking PD-like motor syndrome. We asked whether enhancing glucocerebrosidase (GCase) expression could benefit αS dyshomeostasis by delivering an adeno-associated virus (AAV)–human wild-type (wt) GBA1 vector into the brains of 3K neonates. Intracerebroventricular AAV-wtGBA1 at postnatal day 1 resulted in prominent forebrain neuronal GCase expression, sustained through 6 mo. GBA1 attenuated behavioral deficits both in working memory and fine motor performance tasks. Furthermore, wtGBA1 increased αS solubility and the T:M ratio in both 3K-GBA mice and control littermates and reduced pS129+ and lipid-rich aggregates in 3K-GBA. We observed GCase distribution in more finely dispersed lysosomes, in which there was increased GCase activity, lysosomal cathepsin D and B maturation, decreased perilipin-stabilized lipid droplets, and a normalized TFEB translocation to the nucleus, all indicative of improved lysosomal function and lipid turnover. Therefore, a prolonged increase of the αS T:M ratio by elevating GCase activity reduced the lipid- and vesicle-rich aggregates and ameliorated PD-like phenotypes in mice, further supporting lipid modulating therapies in PD.
Collapse
|
10
|
Mavroeidi P, Xilouri M. Neurons and Glia Interplay in α-Synucleinopathies. Int J Mol Sci 2021; 22:4994. [PMID: 34066733 PMCID: PMC8125822 DOI: 10.3390/ijms22094994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of the neuronal presynaptic protein alpha-synuclein within proteinaceous inclusions represents the key histophathological hallmark of a spectrum of neurodegenerative disorders, referred to by the umbrella term a-synucleinopathies. Even though alpha-synuclein is expressed predominantly in neurons, pathological aggregates of the protein are also found in the glial cells of the brain. In Parkinson's disease and dementia with Lewy bodies, alpha-synuclein accumulates mainly in neurons forming the Lewy bodies and Lewy neurites, whereas in multiple system atrophy, the protein aggregates mostly in the glial cytoplasmic inclusions within oligodendrocytes. In addition, astrogliosis and microgliosis are found in the synucleinopathy brains, whereas both astrocytes and microglia internalize alpha-synuclein and contribute to the spread of pathology. The mechanisms underlying the pathological accumulation of alpha-synuclein in glial cells that under physiological conditions express low to non-detectable levels of the protein are an area of intense research. Undoubtedly, the presence of aggregated alpha-synuclein can disrupt glial function in general and can contribute to neurodegeneration through numerous pathways. Herein, we summarize the current knowledge on the role of alpha-synuclein in both neurons and glia, highlighting the contribution of the neuron-glia connectome in the disease initiation and progression, which may represent potential therapeutic target for a-synucleinopathies.
Collapse
Affiliation(s)
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|