1
|
Li P, Zeng L, Yan X, Zhu Z, Gu Q, He X, Zhang S, Mao R, Xu J, Xie F, Wang H, Li Z, Shu J, Zhang W, Sha Y, Huang J, Su M, Zheng Q, Ma J, Zhou X, Li M, Pan H, Li Y, Yan M, Chen X, Li M, Long K, Kong F, Tang C, Huang J, Su C, Li J, Fang Z, Chen M, Tian E, Zhong Y, Gu J. Molecular and cellular morphology of placenta unveils new mechanisms of reproductive immunology. J Adv Res 2025:S2090-1232(25)00044-X. [PMID: 39842636 DOI: 10.1016/j.jare.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
INTRODUCTION Despite of numerous studies of the placenta, some molecular and cellular characteristics, particularly the relationship among different cell types, have not been well understood. We aim to investigate the basic and intricate details of cellular and molecular elements in early and late phase placentas to gain better understanding of the immune regulation of human reproductive process. METHODS A novel combination of techniques of spatial transcriptomics(ST), multiple immunohistochemistry, and a dual labeling combining immunohistochemistry and (fluorescence in situ hybridization) FISH on normal and ectopic pregnancy and animal models was employed to investigate the placenta at tissue, cell, protein and molecular levels and to trace the fetal and maternal origin of every cell in early and late placentas. RESULTS Original discoveries include early expression of immune checkpoint proteins in embryo trophoblasts even before implantation. The detailed distributional relationships among different cell types of fetal and maternal origins in placenta and decidua indicate an immune rejection of the mother towards the fetus and this was counterbalanced by immune inhibitory proteins and blocking antibody Immunoglobulin G4 (IgG4) at the junction between the fetus and the mother. In contrary to common believe, we found that vascular endothelial and glandular epithelial cells in the decidua remain maternal in origin and were not replaced by fetal cells. At term placenta, fetal immune cells infiltrated into the maternal side of the decidus and vice versa indicating a possible immune reaction between fetal and maternal immune systems and suggesting a possible immune mechanism for trigger of parturition. The ability of trophoblasts to create an immune suppressed environment was also supported by findings in ectopic pregnancy and the animal models. CONCLUSION The findings indicate a fetus-driven mechanism of immune balance involving both cellular and humoral immunity in human reproduction.
Collapse
Affiliation(s)
- Penghao Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China; Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Liting Zeng
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China; Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Shanwei 516600, China
| | - Xiaomiao Yan
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China; Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China; Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ziqi Zhu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Qiaoxiu Gu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Xuqing He
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Sujuan Zhang
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Rurong Mao
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Jingliang Xu
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China; Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Fengshan Xie
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Hui Wang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Ziteng Li
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Jing Shu
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Weifeng Zhang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Yulin Sha
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Jin Huang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Meng Su
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Qu Zheng
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Jian Ma
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Xiaolin Zhou
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Ming Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Haiying Pan
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Ya Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Meiling Yan
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Xueling Chen
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Fanli Kong
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chuang Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ju Huang
- First Affiliated Hospital of Shantou University, Shantou, China
| | - Chanjuan Su
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Jirui Li
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Zheng Fang
- Motic China Group CO., LTD., Xiamen, China
| | | | - Erpo Tian
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Ying Zhong
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Jiang Gu
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China; Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China.
| |
Collapse
|
2
|
Sainz TP, Sahu V, Gomez JA, Dcunha NJ, Basi AV, Kettlun C, Sarami I, Burks JK, Sampath D, Vega F. Role of the Crosstalk B:Neoplastic T Follicular Helper Cells in the Pathobiology of Nodal T Follicular Helper Cell Lymphomas. J Transl Med 2024; 104:102147. [PMID: 39389311 DOI: 10.1016/j.labinv.2024.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL), the most common form of peripheral T-cell lymphoma, originates from follicular helper T (Tfh) cells and is notably resistant to current treatments. The disease progression and maintenance, at least in early stages, are driven by a complex interplay between neoplastic Tfh and clusters of B-cells within the tumor microenvironment, mirroring the functional crosstalk observed inside germinal centers. This interaction is further complicated by recurrent mutations, such as TET2 and DNMT3A, which are present in both Tfh cells and B-cells. These findings suggest that the symbiotic relationship between these 2 cell types could represent a therapeutic vulnerability. This review examines the key components and signaling mechanisms involved in the synapses between B-cells and Tfh cells, emphasizing their significant role in the pathobiology of AITL and potential as therapeutic targets.
Collapse
Affiliation(s)
- Tania P Sainz
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Vishal Sahu
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Javier A Gomez
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Nicholas J Dcunha
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Akshay V Basi
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Claudia Kettlun
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Iman Sarami
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Jared K Burks
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Deepa Sampath
- Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Francisco Vega
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas.
| |
Collapse
|
3
|
Deng S, Zhang Y, Wang H, Liang W, Xie L, Li N, Fang Y, Wang Y, Liu J, Chi H, Sun Y, Ye R, Shan L, Shi J, Shen Z, Wang Y, Wang S, Brosseau JP, Wang F, Liu G, Quan Y, Xu J. ITPRIPL1 binds CD3ε to impede T cell activation and enable tumor immune evasion. Cell 2024; 187:2305-2323.e33. [PMID: 38614099 DOI: 10.1016/j.cell.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/13/2023] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Cancer immunotherapy has transformed treatment possibilities, but its effectiveness differs significantly among patients, indicating the presence of alternative pathways for immune evasion. Here, we show that ITPRIPL1 functions as an inhibitory ligand of CD3ε, and its expression inhibits T cells in the tumor microenvironment. The binding of ITPRIPL1 extracellular domain to CD3ε on T cells significantly decreased calcium influx and ZAP70 phosphorylation, impeding initial T cell activation. Treatment with a neutralizing antibody against ITPRIPL1 restrained tumor growth and promoted T cell infiltration in mouse models across various solid tumor types. The antibody targeting canine ITPRIPL1 exhibited notable therapeutic efficacy against naturally occurring tumors in pet clinics. These findings highlight the role of ITPRIPL1 (or CD3L1, CD3ε ligand 1) in impeding T cell activation during the critical "signal one" phase. This discovery positions ITPRIPL1 as a promising therapeutic target against multiple tumor types.
Collapse
Affiliation(s)
- Shouyan Deng
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Yibo Zhang
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | | | - Wenhua Liang
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Lu Xie
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing 100044, China
| | - Ning Li
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100020, China
| | - Yuan Fang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100020, China
| | - Yiting Wang
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Jiayang Liu
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Hao Chi
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Yufan Sun
- BioTroy Therapeutics, Shanghai 201400, China
| | - Rui Ye
- BioTroy Therapeutics, Shanghai 201400, China
| | - Lishen Shan
- BioTroy Therapeutics, Shanghai 201400, China
| | - Jiawei Shi
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Zan Shen
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai 200233, China
| | - Yonggang Wang
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai 200233, China
| | - Shuhang Wang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100020, China
| | - Jean-Philippe Brosseau
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Feng Wang
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Grace Liu
- Arctic Animal Hospital, Fuzhou, Fujian 350007, China
| | | | - Jie Xu
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Yang C, Liu Z, Yang Y, Cocka LJ, Li Y, Zeng W, Shen H. Chronic viral infection impairs immune memory to a different pathogen. PLoS Pathog 2024; 20:e1012113. [PMID: 38547316 PMCID: PMC11003680 DOI: 10.1371/journal.ppat.1012113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Chronic viral infections cause T cell dysfunction in both animal models and human clinical settings, thereby affecting the ability of the host immune system to clear viral pathogens and develop proper virus-specific immune memory. However, the impact of chronic viral infections on the host's immune memory to other pathogens has not been well described. In this study, we immunized mice with recombinant Listeria monocytogenes expressing OVA (Lm-OVA) to generate immunity to Lm and allow analysis of OVA-specific memory T (Tm) cells. We then infected these mice with lymphocytic choriomeningitis virus (LCMV) strain Cl-13 which establishes a chronic infection. We found that chronically infected mice were unable to protect against Listeria re-challenge. OVA-specific Tm cells showed a progressive loss in total numbers and in their ability to produce effector cytokines in the context of chronic LCMV infection. Unlike virus-specific T cells, OVA-specific Tm cells from chronically infected mice did not up-regulate the expression of inhibitory receptors, a hallmark feature of exhaustion in virus-specific T cells. Finally, OVA-specific Tm cells failed to mount a robust recall response after bacteria re-challenge both in the chronically infected and adoptively transferred naïve hosts. These results show that previously established bacteria-specific Tm cells become functionally impaired in the setting of an unrelated bystander chronic viral infection, which may contribute to poor immunity against other pathogens in the host with chronic viral infection.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
| | - Zhicui Liu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
- Department of Dermatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Yang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
- Hainan Academy of Medical Sciences, Hainan Medical University, Hainan, China
| | - Luis J. Cocka
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
| | - Yongguo Li
- Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Zeng
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Shen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
5
|
Jiang Y, Lai X, Liu Y, Yang C, Liu Z, Liu X, Yu T, Chen C, Khanniche A, Fan J, Lin Y, Zeng W. CD8 + T cells in fetal membranes display a unique phenotype, and their activation is involved in the pathophysiology of spontaneous preterm birth. J Pathol 2024; 262:240-253. [PMID: 38018407 DOI: 10.1002/path.6229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/16/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023]
Abstract
Preterm labor/birth is the leading cause of perinatal mortality and morbidity worldwide. Previous studies demonstrated that T cells were crucial for maintaining maternal-fetal immune tolerance during the first trimester of pregnancy; however, their phenotypes and functions in labor and delivery remain largely unknown. We recruited three cohorts of women at delivery for T-cell immunophenotyping in the placentas, fetal membranes, umbilical cord blood, and maternal peripheral blood. Our data showed a differential enrichment of T cells during the third trimester of human pregnancy, with CD4+ T cells being more observable within the umbilical cord blood, whereas CD8+ T cells became relatively more abundant in fetal membranes. CD4+ and CD8+ T cells derived from fetal membranes were dominated by effector memory T cells and exhibited extensive expression of activation markers but decreased expression of homing receptor. In comparison with term births, fetal membrane CD8+ T cells, especially the central memory subset, were significantly increased in frequency and showed more profound activation in spontaneous preterm birth patients. Finally, using an allogeneic mouse model, we found that T-cell-activation-induced preterm birth could be alleviated by the depletion of CD8+ T but not CD4+ T cells in vivo. Collectively, we showed that CD8+ T cells in fetal membranes displayed a unique phenotype, and their activation was involved in the pathophysiology of spontaneous preterm birth, which provides novel insights into the immune mechanisms of preterm birth and potential targets for the prevention of this syndrome. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yinan Jiang
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xintong Lai
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yuxu Liu
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Cheng Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Zhicui Liu
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiaorui Liu
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Tiantian Yu
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Cailian Chen
- Department of Automation, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, PR China
| | - Asma Khanniche
- Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jianxia Fan
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yi Lin
- Reproductive Medicine Center, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Weihong Zeng
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
6
|
Zhang YC, Zhang YT, Wang Y, Zhao Y, He LJ. What role does PDL1 play in EMT changes in tumors and fibrosis? Front Immunol 2023; 14:1226038. [PMID: 37649487 PMCID: PMC10463740 DOI: 10.3389/fimmu.2023.1226038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Epithelial-mesenchymal transformation (EMT) plays a pivotal role in embryonic development, tissue fibrosis, repair, and tumor invasiveness. Emerging studies have highlighted the close association between EMT and immune checkpoint molecules, particularly programmed cell death ligand 1 (PDL1). PDL1 exerts its influence on EMT through bidirectional regulation. EMT-associated factors, such as YB1, enhance PDL1 expression by directly binding to its promoter. Conversely, PDL1 signaling triggers downstream pathways like PI3K/AKT and MAPK, promoting EMT and facilitating cancer cell migration and invasion. Targeting PDL1 holds promise as a therapeutic strategy for EMT-related diseases, including cancer and fibrosis. Indeed, PDL1 inhibitors, such as pembrolizumab and nivolumab, have shown promising results in clinical trials for various cancers. Recent research has also indicated their potential benefit in fibrosis treatment in reducing fibroblast activation and extracellular matrix deposition, thereby addressing fibrosis. In this review, we examine the multifaceted role of PDL1 in immunomodulation, growth, and fibrosis promotion. We discuss the challenges, mechanisms, and clinical observations related to PDL1, including the limitations of the PD1/PDL1 axis in treatment and PD1-independent intrinsic PDL1 signaling. Our study highlights the dynamic changes in PDL1 expression during the EMT process across various tumor types. Through interplay between PDL1 and EMT, we uncover co-directional alterations, regulatory pathways, and diverse changes resulting from PDL1 intervention in oncology. Additionally, our findings emphasize the dual role of PDL1 in promoting fibrosis and modulating immune responses across multiple diseases, with potential implications for therapeutic approaches. We particularly investigate the therapeutic potential of targeting PDL1 in type II EMT fibrosis: strike balance between fibrosis modulation and immune response regulation. This analysis provides valuable insights into the multifaceted functions of PDL1 and contributes to our understanding of its complex mechanisms and therapeutic implications.
Collapse
Affiliation(s)
- Yun-Chao Zhang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu-Ting Zhang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Wang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ya Zhao
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Li-Jie He
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Braga A, Balthar E, Souza LCS, Samora M, Rech M, Madi JM, Junior JA, Filho JR, Elias KM, Horowitz NS, Sun SY, Berkowitz RS. Immunotherapy in the treatment of chemoresistant gestational trophoblastic neoplasia - systematic review with a presentation of the first 4 Brazilian cases. Clinics (Sao Paulo) 2023; 78:100260. [PMID: 37523979 PMCID: PMC10404605 DOI: 10.1016/j.clinsp.2023.100260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023] Open
Abstract
OBJECTIVE To evaluate the efficacy of immunotherapy for GTN treatment after methotrexate-resistance or in cases of multiresistant disease, through a systematic review, as well as to present the first 4 Brazilian cases of immunotherapy for GTN treatment. METHODS Three independent researchers searched five electronic databases (EMBASE, LILACS, Medline, CENTRAL and Web of Science), for relevant articles up to February/2023 (PROSPERO CRD42023401453). The quality assessment was performed using the Newcastle Ottawa scale for case series and case reports. The primary outcome of this study was the occurrence of complete remission. The presentation of the case reports was approved by the Institutional Review Board. RESULTS Of the 4 cases presented, the first was a low-risk GTN with methotrexate resistance unsuccessfully treated with avelumab, which achieved remission with sequential multiagent chemotherapy. The remaining 3 cases were high-risk multiagent-resistant GTN that were successfully treated with pembrolizumab, among which there were two subsequent gestations, one of them with normal pregnancy and healthy conceptus. Regarding the systematic review, 12 studies were included, only one of them on avelumab, showing a 46.7% complete remission rate. The remaining 11 studies were on pembrolizumab, showing an 86.7% complete remission rate, regardless of tumor histology. Both immunotherapies showed good tolerability, with two healthy pregnancies being recorded: one after avelumb and another after pembrolizumab. CONCLUSION Immunotherapy showed effectiveness for GTN treatment and may be especially useful in cases of high-risk disease, where pembrolizumab achieves a high therapeutic response, regardless of the histological type, and despite prior chemoresistance to multiple lines of treatment.
Collapse
Affiliation(s)
- Antonio Braga
- Rio de Janeiro Trophoblastic Disease Center, Maternidade Escola da Universidade Federal do Rio de Janeiro, RJ, Rio de Janeiro, Brazil; Hospital Universitário Antonio Pedro da Universidade Federal Fluminense, RJ, Niterói, Brazil; Postgraduate Program in Perinatal Health, Faculdade de Medicina, Maternidade Escola da, Universidade Federal do Rio de Janeiro, RJ, Rio de Janeiro, Brazil; Postgraduate Program in Medical Sciences, Universidade Federal Fluminense, RJ, Niterói, Brazil; Postgraduate Program in Applied Health Sciences, Universidade de Vassouras, RJ, Rio de Janeiro, Brazil; Young Leadership Physicians Program, Academia Nacional de Medicina, RJ, Rio de Janeiro, Brazil.
| | - Elaine Balthar
- Rio de Janeiro Trophoblastic Disease Center, Maternidade Escola da Universidade Federal do Rio de Janeiro, RJ, Rio de Janeiro, Brazil; Hospital Universitário Antonio Pedro da Universidade Federal Fluminense, RJ, Niterói, Brazil; Postgraduate Program in Perinatal Health, Faculdade de Medicina, Maternidade Escola da, Universidade Federal do Rio de Janeiro, RJ, Rio de Janeiro, Brazil; Postgraduate Program in Medical Sciences, Universidade Federal Fluminense, RJ, Niterói, Brazil
| | - Laís Cristhine Santos Souza
- Departament of Obstetrics, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, São Paulo, Brazil
| | - Michelle Samora
- Departament of Obstetrics, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, São Paulo, Brazil
| | - Matheus Rech
- Caxias do Sul Trophoblastic Disease Center, Faculdade de Medicina, Universidade de Caxias do Sul (UCS), RS, Caxias do Sul, Brazil
| | - José Mauro Madi
- Caxias do Sul Trophoblastic Disease Center, Faculdade de Medicina, Universidade de Caxias do Sul (UCS), RS, Caxias do Sul, Brazil
| | - Joffre Amim Junior
- Rio de Janeiro Trophoblastic Disease Center, Maternidade Escola da Universidade Federal do Rio de Janeiro, RJ, Rio de Janeiro, Brazil; Hospital Universitário Antonio Pedro da Universidade Federal Fluminense, RJ, Niterói, Brazil; Postgraduate Program in Perinatal Health, Faculdade de Medicina, Maternidade Escola da, Universidade Federal do Rio de Janeiro, RJ, Rio de Janeiro, Brazil
| | - Jorge Rezende Filho
- Rio de Janeiro Trophoblastic Disease Center, Maternidade Escola da Universidade Federal do Rio de Janeiro, RJ, Rio de Janeiro, Brazil; Hospital Universitário Antonio Pedro da Universidade Federal Fluminense, RJ, Niterói, Brazil; Postgraduate Program in Perinatal Health, Faculdade de Medicina, Maternidade Escola da, Universidade Federal do Rio de Janeiro, RJ, Rio de Janeiro, Brazil
| | - Kevin M Elias
- New England Trophoblastic Disease Center, Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Neil S Horowitz
- New England Trophoblastic Disease Center, Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Sue Yazaki Sun
- Departament of Obstetrics, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, São Paulo, Brazil
| | - Ross S Berkowitz
- New England Trophoblastic Disease Center, Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, USA
| |
Collapse
|
8
|
Esparvarinha M, Madadi S, Aslanian-Kalkhoran L, Nickho H, Dolati S, Pia H, Danaii S, Taghavi S, Yousefi M. Dominant immune cells in pregnancy and pregnancy complications: T helper cells (TH1/TH2, TH17/Treg cells), NK cells, MDSCs, and the immune checkpoints. Cell Biol Int 2023; 47:507-519. [PMID: 36335635 DOI: 10.1002/cbin.11955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
Abstract
Pregnancy problems including recurrent pregnancy loss, repeated implantation failure and pre-eclampsia are common problems in the reproductive ages. Different reasons such as genetic, immunological, and environmental agents and also infections could develop these complications. In those cases in which the cause of the abortion is diagnosed, the chance of a successful pregnancy is increased by eliminating defective factors. However, in patients with unknown causes, there may be an imbalance in immune cells pattern. As a matter of fact, an inappropriate immune response is often associated with a failed pregnancy. Hence, the focus of treatment is to increase tolerance, not to suppress maternal immune system. These findings are linked to an elevated number of Treg cells and immune checkpoints through normal pregnancy. The present review discusses the balance of myeloid-derived suppressor cells, natural killer cells, T cells, and immune checkpoints, and also targeting them to maintain pregnancy and prevent associated complications.
Collapse
Affiliation(s)
- Mojgan Esparvarinha
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Madadi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lida Aslanian-Kalkhoran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Nickho
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helen Pia
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Centre, Eastern Azerbaijan branch of ACECR, Tabriz, Iran
| | - Simin Taghavi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Fu Z, Tian Y, Zhou X, Lan H, Wu S, Lou Y. Effects of quercetin on immune regulation at the maternal-fetal interface. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:68-76. [PMID: 37283120 DOI: 10.3724/zdxbyxb-2022-0499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The imbalance of immune homeostasis at the maternal-fetal interface is closely related to adverse pregnancy outcomes, so it has become one of the hot research topics in the reproductive field. Quercetin is rich in common TCM kidney-tonifying herbs such as dodder and lorathlorace, and has shown pregnancy protection function. As a common flavonoid, quercetin has powerful anti-inflammatory, antioxidant, estrogen-like effects; and it can regulate the functions of maternal-fetal interface immune cells (such as decidual natural killer cells, decidual macrophages, T cells, dendritic cells and myeloid-derived suppressor cells), exovillous trophoblast cells, decidual stromal cells, and the activities of their cytokines. Quercetin maintains the dynamic balance of maternal and fetal immunity by attenuating cytotoxicity, reducing excessive apoptosis of the tissue cells and inhibiting excessive inflammatory reactions. In this article, the role and molecular mechanism of quercetin in the immunomodulatory process of the maternal and fetal interface are reviewed to provide reference for the treatment of recurrent spontaneous abortion and other adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Zhujing Fu
- Department of TCM Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China.
| | - Ye Tian
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xuanle Zhou
- Department of TCM Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Huizhen Lan
- Department of TCM Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Shuangyu Wu
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yiyun Lou
- Department of TCM Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China.
| |
Collapse
|
10
|
Paydas S. Immune checkpoint inhibitor using in cases with gestational trophoblastic diseases. Med Oncol 2023; 40:106. [PMID: 36823367 DOI: 10.1007/s12032-022-01941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/24/2022] [Indexed: 02/25/2023]
Abstract
Gestational trophoblastic neoplasias (GTNs) are chemosensitive disorders with very high cure rates. However, individuals with chemoresistant diseases pass away as a result of their illness, necessitating the use of innovative medications. Immune checkpoint inhibitors (ICIs) are a critical component of the strategy for the management of drug-resistant GTD due to the high rate of PD-1 expression and the paternal genetic inheritance in GTNs. Immunotherapy is mentioned as a potential therapeutic approach for chemotherapy-resistant GTD in the most recent worldwide recommendations. However, multicenter worldwide collaborative studies are required to give additional evidence to detect and identify prognostic markers due to the rarity of GTDs and the dearth of data in the literature.
Collapse
Affiliation(s)
- Semra Paydas
- Dept of Medical Oncology, Faculty of Medicine, Cukurova University, Adana, Turkey.
| |
Collapse
|
11
|
Moore AR, Vivanco Gonzalez N, Plummer KA, Mitchel OR, Kaur H, Rivera M, Collica B, Goldston M, Filiz F, Angelo M, Palmer TD, Bendall SC. Gestationally dependent immune organization at the maternal-fetal interface. Cell Rep 2022; 41:111651. [PMID: 36384130 PMCID: PMC9681661 DOI: 10.1016/j.celrep.2022.111651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/13/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
The immune system and placenta have a dynamic relationship across gestation to accommodate fetal growth and development. High-resolution characterization of this maternal-fetal interface is necessary to better understand the immunology of pregnancy and its complications. We developed a single-cell framework to simultaneously immuno-phenotype circulating, endovascular, and tissue-resident cells at the maternal-fetal interface throughout gestation, discriminating maternal and fetal contributions. Our data reveal distinct immune profiles across the endovascular and tissue compartments with tractable dynamics throughout gestation that respond to a systemic immune challenge in a gestationally dependent manner. We uncover a significant role for the innate immune system where phagocytes and neutrophils drive temporal organization of the placenta through remarkably diverse populations, including PD-L1+ subsets having compartmental and early gestational bias. Our approach and accompanying datasets provide a resource for additional investigations into gestational immunology and evoke a more significant role for the innate immune system in establishing the microenvironment of early pregnancy.
Collapse
Affiliation(s)
- Amber R Moore
- Immunology Graduate Program, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nora Vivanco Gonzalez
- Immunology Graduate Program, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Katherine A Plummer
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Olivia R Mitchel
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Harleen Kaur
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Moises Rivera
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Brian Collica
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Mako Goldston
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Ferda Filiz
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Theo D Palmer
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Sean C Bendall
- Immunology Graduate Program, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Motofei IG. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol 2022; 86:600-615. [PMID: 34695580 DOI: 10.1016/j.semcancer.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
Cancer research has been largely focused on the cellular and molecular levels of investigation. Recent data show that not only the cell but also the extracellular matrix plays a major role in the progression of malignancy. In this way, the cells and the extracellular matrix create a specific local microenvironment that supports malignant development. At the same time, cancer implies a systemic evolution which is closely related to developmental processes and adaptation. Consequently, there is currently a real gap between the local investigation of cancer at the microenvironmental level, and the pathophysiological approach to cancer as a systemic disease. In fact, the cells and the matrix are not only complementary structures but also interdependent components that act synergistically. Such relationships lead to cell-matrix integration, a supracellular form of biological organization that supports tissue development. The emergence of this supracellular level of organization, as a structure, leads to the emergence of the supracellular control of proliferation, as a supracellular function. In humans, proliferation is generally involved in developmental processes and adaptation. These processes suppose a specific configuration at the systemic level, which generates high-order guidance for local supracellular control of proliferation. In conclusion, the supracellular control of proliferation act as an interface between the downstream level of cell division and differentiation, and upstream level of developmental processes and adaptation. Understanding these processes and their disorders is useful not only to complete the big picture of malignancy as a systemic disease, but also to open new treatment perspectives in the form of etiopathogenic (supracellular or informational) therapies.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Oncology/ Surgery, Carol Davila University, St. Pantelimon Hospital, Dionisie Lupu Street, No. 37, Bucharest, 020021, Romania.
| |
Collapse
|
13
|
Tan D, Yin W, Guan F, Zeng W, Lee P, Candotti F, James LK, Saraiva Camara NO, Haeryfar SM, Chen Y, Benlagha K, Shi LZ, Lei J, Gong Q, Liu Z, Liu C. B cell-T cell interplay in immune regulation: A focus on follicular regulatory T and regulatory B cell functions. Front Cell Dev Biol 2022; 10:991840. [PMID: 36211467 PMCID: PMC9537379 DOI: 10.3389/fcell.2022.991840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
B cells are the core components of humoral immunity. A mature B cell can serve in multiple capacities, including antibody production, antigen presentation, and regulatory functions. Forkhead box P3 (FoxP3)-expressing regulatory T cells (Tregs) are key players in sustaining immune tolerance and keeping inflammation in check. Mounting evidence suggests complex communications between B cells and Tregs. In this review, we summarize the yin-yang regulatory relationships between B cells and Tregs mainly from the perspectives of T follicular regulatory (Tfr) cells and regulatory B cells (Bregs). We discuss the regulatory effects of Tfr cells on B cell proliferation and the germinal center response. Additionally, we review the indispensable role of B cells in ensuring homeostatic Treg survival and describe the function of Bregs in promoting Treg responses. Finally, we introduce a new subset of Tregs, termed Treg-of-B cells, which are induced by B cells, lake the expression of FoxP3 but still own immunomodulatory effects. In this article, we also enumerate a sequence of research from clinical patients and experimental models to clarify the role of Tfr cells in germinal centers and the role of convention B cells and Bregs to Tregs in the context of different diseases. This review offers an updated overview of immunoregulatory networks and unveils potential targets for therapeutic interventions against cancer, autoimmune diseases and allograft rejection.
Collapse
Affiliation(s)
- Diaoyi Tan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Louisa K James
- Centre for Immunobiology, Bizard Institute, Queen Mary University of London, London, United Kingdom
| | - Niels Olsen Saraiva Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Lewis Zhichang Shi
- Department of Radiation Oncology University of Alabama at Birmingham School of Medicine (UAB-SOM) UAB Comprehensive Cancer Center, Jinzhou, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Quan Gong
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jinzhou, China
- Department of Immunology, School of Medicine, Yangtze University, Jinzhou, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zheng Liu, ; Chaohong Liu,
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
- *Correspondence: Zheng Liu, ; Chaohong Liu,
| |
Collapse
|
14
|
Kumar S, Chatterjee M, Ghosh P, Ganguly KK, Basu M, Ghosh MK. Targeting PD-1/PD-L1 in cancer immunotherapy: an effective strategy for treatment of triple-negative breast cancer (TNBC) patients. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
15
|
Salman L, Bouchard-Fortier G, Covens A. Immune Checkpoint Inhibitors for the Treatment of Gestational Trophoblastic Neoplasia: Rationale, Effectiveness, and Future Fertility. Curr Treat Options Oncol 2022; 23:1035-1043. [PMID: 35511345 DOI: 10.1007/s11864-022-00988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 11/03/2022]
Abstract
OPINION STATEMENT Most individuals with gestational trophoblastic neoplasia (GTN) are cured with chemotherapy; however, about 5% of them will develop chemotherapy-resistant disease and will die of disease progression. Most GTN tissues express programmed death ligand-1 (PDL-1), making immune checkpoint inhibitors (ICIs) targeting this pathway an attractive treatment option for individuals with GTN. There is increasing evidence to support the use of ICIs for individuals with recurrent or resistant GTN, but available data are derived from case reports and small single arm trials. As promising as it seems, not all individuals with GTN respond to ICIs, and there is lack of evidence toward which factors mediate the effect of ICIs on GTN. In addition, treatment-related adverse events and impact on future fertility are not negligible and should be considered before initiating this treatment. Therefore, additional research is needed to evaluate treatment outcome of ICIs in GTN compared to standard treatment, and to identify molecular and clinical predictors for treatment response, before this treatment is incorporated into the standard of care.
Collapse
Affiliation(s)
- Lina Salman
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Toronto, 610 University Ave, Toronto, ON, M5G2M9, Canada
| | - Genevieve Bouchard-Fortier
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Toronto, 610 University Ave, Toronto, ON, M5G2M9, Canada.,Division of Gynecologic Oncology, Princess Margaret Cancer Centre/Sinai Health Systems, Toronto, ON, Canada
| | - Allan Covens
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Toronto, 610 University Ave, Toronto, ON, M5G2M9, Canada. .,Division of Gynecologic Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|
16
|
Immunotherapy for cancer treatment during pregnancy. Lancet Oncol 2021; 22:e550-e561. [PMID: 34856152 DOI: 10.1016/s1470-2045(21)00525-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
Immunotherapy has greatly improved outcomes for subgroups of patients with cancer. As indications keep expanding, there is an unmet need to gain a better understanding of the effect of these therapies on pregnancy and fertility. During pregnancy, substantial adaptations occur in the maternal immune system to maintain protection against pathogens while avoiding detrimental reactions to the semi-allogeneic fetus. The pathways involved in the establishment of this fetomaternal tolerance can be hijacked by cancers. Immunotherapies that target these inhibitory pathways, or that directly interact with the regulatory immune cells involved in tolerance mechanisms, might therefore result in complications during pregnancy. Similarly, by activating the patient's immune system with immunotherapy, a broad range of immune-related adverse events can occur that could negatively affect the fetus or impede a future desired pregnancy. This Review summarises preclinical and clinical data related to the use of immunotherapy during pregnancy, including all approved immune checkpoint inhibitors, recombinant cytokines, cell therapies, vaccines, and immunomodulatory drugs.
Collapse
|
17
|
Li WX, Xu XH, Jin LP. Regulation of the innate immune cells during pregnancy: An immune checkpoint perspective. J Cell Mol Med 2021; 25:10362-10375. [PMID: 34708495 PMCID: PMC8581333 DOI: 10.1111/jcmm.17022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
The foetus can be regarded as a half‐allograft implanted into the maternal body. In a successful pregnancy, the mother does not reject the foetus because of the immune tolerance mechanism at the maternal‐foetal interface. The innate immune cells are a large part of the decidual leukocytes contributing significantly to a successful pregnancy. Although the contributions have been recognized, their role in human pregnancy has not been completely elucidated. Additionally, the accumulated evidence demonstrates that the immune checkpoint molecules expressed on the immune cells are co‐inhibitory receptors regulating their activation and biological function. Therefore, it is critical to understand the immune microenvironment and explore the function of the innate immune cells during pregnancy. This review summarizes the classic immune checkpoints such as PD‐1, CTLA‐4 and some novel molecules recently identified, including TIM‐3, CD200, TIGIT and the Siglecs family on the decidual and peripheral innate immune cells during pregnancy. Furthermore, it emphasizes the role of the immune checkpoint molecules in pregnancy‐associated complications and reproductive immunotherapy.
Collapse
Affiliation(s)
- Wen-Xuan Li
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang-Hong Xu
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Ping Jin
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
18
|
Hu J, Qin X, Zhang J, Zhu Y, Zeng W, Lin Y, Liu X. Polystyrene microplastics disturb maternal-fetal immune balance and cause reproductive toxicity in pregnant mice. Reprod Toxicol 2021; 106:42-50. [PMID: 34626775 DOI: 10.1016/j.reprotox.2021.10.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
Microplastics (MPs), which are emerging as a new type of environmental pollutants, have raised great concerns regarding their threats to human health. A successful pregnancy depends on the sophisticated regulation of the maternal-fetal immune balance, but the risks of polystyrene MP (PS-MP) exposure in early pregnancy remain unclear. In this study, we exposed the C57BL/6-mated BALB/c mice to PS-MP particles and used the flow cytometry to explore threats towards the immune system. Herein, the allogeneic mating murine model showed an elevated embryo resorption rate with a 10 μm PS-MP particle exposure during the peri-implantation period. Both the number and diameter of uterine arterioles decreased, which might reduce the uterine blood supply. Moreover, the percentage of decidual natural killer cells was reduced, whereas the helper T cells in the placenta increased. In addition, the M1/M2 ratio in macrophages reversed significantly to a dominant M2-subtype. Lastly, the cytokine secretion shifted towards an immunosuppressive state. Overall, our results demonstrated that PS-MPs have the potential to cause adverse effects on pregnancy outcomes via immune disturbance, providing new insights into the study of reproductive toxicity of MP particles in the human body.
Collapse
Affiliation(s)
- Jianing Hu
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaoli Qin
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jinwen Zhang
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yueyue Zhu
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Weihong Zeng
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yi Lin
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Xiaorui Liu
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
19
|
Clinical outcomes and prognostic biomarkers among pregnant, post-partum and nulliparous women with breast cancer: a prospective cohort study. Breast Cancer Res Treat 2021; 189:797-806. [PMID: 34318391 DOI: 10.1007/s10549-021-06327-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE To compare clinical-pathologic characteristics and outcomes of pregnancy-associated, post-partum (PP) and nulliparous (NP) breast cancer (BC) patients and explore mediators of the poor prognosis associated with post-partum BC. METHODS A prospective database of 233 women ≤ 40 years of age diagnosed with BC between February 2008 and January 2015 was analysed. Clinical-pathologic characteristics and outcomes among pregnant, PP and NP patients were compared using chi-square or Kruskal-Wallis tests. The Kaplan-Meier method was used to estimate disease-free survival (DFS), distant DFS and overall survival (OS). Survival curves were compared using the log-rank test. Univariable Cox proportional hazards regression models were used to evaluate factors that were potentially prognostic for the clinical outcomes of interest; a multivariable Cox model was constructed using a forward stepwise selection process. Androgen receptor (AR), GATA3, PDL1 status and the presence/absence of tumour-infiltrating lymphocytes (TILs) were assessed when possible. Pre-treatment neutrophil and lymphocyte counts were abstracted retrospectively. Statistical significance was defined as a p value ≤ 0.05. RESULTS Women ≤ 2 years PP had a numerically higher incidence of lymph node-positive and high-grade disease and were significantly more likely to have estrogen receptor-negative BC compared to NP controls. With a median follow-up of 7.2 years, increasingly poor outcomes were observed among NP (longest OS), > 2 years PP, ≤ 2 years PP and pregnant (shortest OS) patients, but these differences were not statistically significant. The ≤ 2 years PP group had significantly lower AR expression, a strong trend toward higher PDL1 expression and a higher expression of stromal TILs compared to NP women. CONCLUSIONS PPBC patients had numerically lower DFS and OS compared to NP controls. Higher PDL1 and stromal TILs in PPBC suggest that adjuvant immunotherapy may be effective in the post-partum BC subgroup.
Collapse
|
20
|
Hao H, Nakayamada S, Tanaka Y. Differentiation, functions, and roles of T follicular regulatory cells in autoimmune diseases. Inflamm Regen 2021; 41:14. [PMID: 33934711 PMCID: PMC8088831 DOI: 10.1186/s41232-021-00164-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
T follicular helper cells participate in stimulating germinal center (GC) formation and supporting B cell differentiation and autoantibody production. However, T follicular regulatory (Tfr) cells suppress B cell activation. Since changes in the number and functions of Tfr cells lead to dysregulated GC reaction and autoantibody response, targeting Tfr cells may benefit the treatment of autoimmune diseases. Differentiation of Tfr cells is a multistage and multifactorial process with various positive and negative regulators. Therefore, understanding the signals regulating Tfr cell generation is crucial for the development of targeted therapies. In this review, we discuss recent studies that have elucidated the roles of Tfr cells in autoimmune diseases and investigated the modulators of Tfr cell differentiation. Additionally, potential immunotherapies targeting Tfr cells are highlighted.
Collapse
Affiliation(s)
- He Hao
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, 807-8555, Japan.,Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shingo Nakayamada
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, 807-8555, Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
21
|
Luo B, Zhan Y, Luo M, Dong H, Liu J, Lin Y, Zhang J, Wang G, Verhoeyen E, Zhang Y, Zhang H. Engineering of α-PD-1 antibody-expressing long-lived plasma cells by CRISPR/Cas9-mediated targeted gene integration. Cell Death Dis 2020; 11:973. [PMID: 33184267 PMCID: PMC7661525 DOI: 10.1038/s41419-020-03187-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
Abstract
Long-lived plasma cells (LLPCs) are robust specialized antibody-secreting cells that mainly stay in the bone marrow and can persist a lifetime. As they can be generated by inducing the differentiation of B-lymphocytes, we investigated the possibility that human LLPCs might be engineered to express α-PD-1 monoclonal antibody to substitute recombinant α-PD-1 antitumor immunotherapy. To this end, we inserted an α-PD-1 cassette into the GAPDH locus through Cas9/sgRNA-guided specific integration in B-lymphocytes, which was mediated by an integrase-defective lentiviral vector. The edited B cells were capable of differentiating into LLPCs both in vitro and in vivo. Transcriptional profiling analysis confirmed that these cells were typical LLPCs. Importantly, these cells secreted de novo antibodies persistently, which were able to inhibit human melanoma growth via an antibody-mediated checkpoint blockade in xenograft-tumor mice. Our work suggests that the engineered LLPCs may be utilized as a vehicle to constantly produce special antibodies for long-term cellular immunotherapy to eradicate tumors and cellular reservoirs for various pathogens including human immunodeficiency virus type 1 (HIV-1) and hepatitis B virus (HBV).
Collapse
Affiliation(s)
- Baohong Luo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Yikang Zhan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Minqi Luo
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Huimin Dong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Jun Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Yingtong Lin
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Junsong Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Guanwen Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Els Verhoeyen
- CIRI - International Center for Infectiology, Research team EVIR, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, University of Lyon, Lyon, France.,Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
| | - Yiwen Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China. .,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China. .,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.
| |
Collapse
|
22
|
PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis 2020; 11:506. [PMID: 32632098 PMCID: PMC7338457 DOI: 10.1038/s41419-020-2701-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 12/13/2022]
Abstract
PD-L1 is overexpressed in tumor cells and contributes to cancer immunoevasion. However, the role of the tumor cell-intrinsic PD-L1 in cancers remains unknown. Here we show that PD-L1 regulates lung cancer growth and progression by targeting the WIP and β-catenin signaling. Overexpression of PD-L1 promotes tumor cell growth, migration and invasion in lung cancer cells, whereas PD-L1 knockdown has the opposite effects. We have also identified WIP as a new downstream target of PD-L1 in lung cancer. PD-L1 positively modulates the expression of WIP. Knockdown of WIP also inhibits cell viability and colony formation, whereas PD-L1 overexpression can reverse this inhibition effects. In addition, PD-L1 can upregulate β-catenin by inhibiting its degradation through PI3K/Akt signaling pathway. Moreover, we show that in lung cancer cells β-catenin can bind to the WIP promoter and activate its transcription, which can be promoted by PD-L1 overexpression. The in vivo experiments in a human lung cancer mouse model have also confirmed the PD-L1-mediated promotion of tumor growth and progression through activating the WIP and β-catenin pathways. Furthermore, we demonstrate that PD-L1 expression is positively correlated with WIP in tumor tissues of human adenocarcinoma patients and the high expression of PD-L1 and WIP predicts poor prognosis. Collectively, our results provide new insights into understanding the pro-tumorigenic role of PD-L1 and its regulatory mechanism on WIP in lung cancer, and suggest that the PD-L1/Akt/β-catenin/WIP signaling axis may be a potential therapeutic target for lung cancers.
Collapse
|
23
|
Huang X, Liu L, Xu C, Peng X, Li D, Wang L, Du M. Tissue-resident CD8 + T memory cells with unique properties are present in human decidua during early pregnancy. Am J Reprod Immunol 2020; 84:e13254. [PMID: 32329123 DOI: 10.1111/aji.13254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
PROBLEM Resident memory T (TRM ) cells reside in the uterus during pregnancy may play an important role in balancing maternal-fetal tolerance with anti-infectious immunity. Although CD8+ TRM and decidual CD8+ T cells have been extensively characterized, the properties of decidual CD8+ TRM (dTRM ) cells remain poorly defined. METHOD OF STUDY We investigated the heterogeneity, phenotypes, and functions of dTRM cells, and compared the proportion of dTRM cells between normal pregnancy and recurrent spontaneous abortion (RSA) using flow cytometry. Moreover, we cocultured peripheral CD8+ T (CD8+ pT) cells with trophoblast, or decidual stomal cells (DSCs) in the presence or absence of anti-TGF-β antibody or TGF-β type I receptor inhibitor to explore the effects of maternal-fetal environment on decidual CD8+ TRM cell formation. RESULTS We found that CD69+ CD103+ TRM cells were abundant in CD8+ dT cells but not in CD4+ dT cells with effector-memory (EM, CD45RA- CCR7- ) phenotypes. The percentage of dTRM cells from RSA patients was significantly higher than that from normal pregnancy. Furthermore, dTRM cells showed increased expressions of chemokine receptors, T-cell exhaustion-related molecules, and produced more anti-inflammatory cytokines and effector cytokines upon stimulation. Moreover, DSCs produced a considerable level of TGF-β and upregulated CD103 expression on CD69+ CD8+ pT cells, which can be significantly reversed by blocking TGF-β receptor. CONCLUSION Our findings demonstrate that TRM cells with unique properties are present in the decidua during human early pregnancy. They possess an enhanced capacity to produce effector cytokines and regulatory molecules, which might be important in the balance between maternal-fetal immune tolerance and the capacity to aggressively respond to infections.
Collapse
Affiliation(s)
- Xixi Huang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Lu Liu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Chunfang Xu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiandong Peng
- Shanghai Jiai Genetics & IVF Institute, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Dajin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Li Wang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meirong Du
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Department of Obstetrics and Gynecology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|