1
|
Lagos-Monzon A, Ng S, Luca AM, Li H, Sabanayagam M, Benicio M, Moshiri H, Armstrong R, Tailor C, Kennedy M, Grunebaum E, Keller G, Dror Y. Aberrant early hematopoietic progenitor formation marks the onset of hematopoietic defects in Shwachman-Diamond syndrome. Eur J Haematol 2024; 113:530-542. [PMID: 38967591 DOI: 10.1111/ejh.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Shwachman-Diamond syndrome (SDS) is an inherited bone marrow failure disorder that often presents at infancy. Progress has been made in revealing causal mutated genes (SBDS and others), ribosome defects, and hematopoietic aberrations in SDS. However, the mechanism underlying the hematopoietic failure remained unknown, and treatment options are limited. Herein, we investigated the onset of SDS embryonic hematopoietic impairments. We generated SDS and control human-derived induced pluripotent stem cells (iPSCs). SDS iPSCs recapitulated the SDS hematological phenotype. Detailed stepwise evaluation of definitive hematopoiesis revealed defects that started at the early emerging hematopoietic progenitor (EHP) stage after mesoderm and hemogenic endothelium were normally induced. Hematopoietic potential of EHPs was markedly reduced, and the introduction of SBDS in SDS iPSCs improved colony formation. Transcriptome analysis revealed reduced expression of ribosome and oxidative phosphorylation-related genes in undifferentiated and differentiated iPSCs. However, certain pathways (e.g., DNA replication) and genes (e.g., CHCHD2) were exclusively or more severely dysregulated in EHPs compared with earlier and later stages. To our knowledge, this study offers for the first time an insight into the embryonic onset of human hematopoietic defects in an inherited bone marrow failure syndrome and reveals cellular and molecular aberrations at critical stages of hematopoietic development toward EHPs.
Collapse
Affiliation(s)
- Alejandra Lagos-Monzon
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Ng
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alice M Luca
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hongbing Li
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mathura Sabanayagam
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mariana Benicio
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Houtan Moshiri
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard Armstrong
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chetan Tailor
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marion Kennedy
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | - Eyal Grunebaum
- Division of Allergy and Immunology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gordon Keller
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yigal Dror
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
D’Andrea G, Deroma G, Miluzio A, Biffo S. The Paradox of Ribosomal Insufficiency Coupled with Increased Cancer: Shifting the Perspective from the Cancer Cell to the Microenvironment. Cancers (Basel) 2024; 16:2392. [PMID: 39001453 PMCID: PMC11240629 DOI: 10.3390/cancers16132392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Ribosomopathies are defined as inherited diseases in which ribosomal factors are mutated. In general, they present multiorgan symptoms. In spite of the fact that in cellular models, ribosomal insufficiency leads to a reduced rate of oncogenic transformation, patients affected by ribosomopathies present a paradoxical increase in cancer incidence. Several hypotheses that explain this paradox have been formulated, mostly on the assumption that altered ribosomes in a stem cell induce compensatory changes that lead to a cancer cell. For instance, the lack of a specific ribosomal protein can lead to the generation of an abnormal ribosome, an oncoribosome, that itself leads to altered translation and increased tumorigenesis. Alternatively, the presence of ribosomal stress may induce compensatory proliferation that in turns selects the loss of tumor suppressors such as p53. However, modern views on cancer have shifted the focus from the cancer cell to the tumor microenvironment. In particular, it is evident that human lymphocytes are able to eliminate mutant cells and contribute to the maintenance of cancer-free tissues. Indeed, many tumors develop in conditions of reduced immune surveillance. In this review, we summarize the current evidence and attempt to explain cancer and ribosomopathies from the perspective of the microenvironment.
Collapse
Affiliation(s)
- Giacomo D’Andrea
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Giorgia Deroma
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Annarita Miluzio
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
| | - Stefano Biffo
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
3
|
Wang M, Vulcano S, Xu C, Xie R, Peng W, Wang J, Liu Q, Jia L, Li Z, Li Y. Potentials of ribosomopathy gene as pharmaceutical targets for cancer treatment. J Pharm Anal 2024; 14:308-320. [PMID: 38618250 PMCID: PMC11010632 DOI: 10.1016/j.jpha.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 04/16/2024] Open
Abstract
Ribosomopathies encompass a spectrum of disorders arising from impaired ribosome biogenesis and reduced functionality. Mutation or dysexpression of the genes that disturb any finely regulated steps of ribosome biogenesis can result in different types of ribosomopathies in clinic, collectively known as ribosomopathy genes. Emerging data suggest that ribosomopathy patients exhibit a significantly heightened susceptibility to cancer. Abnormal ribosome biogenesis and dysregulation of some ribosomopathy genes have also been found to be intimately associated with cancer development. The correlation between ribosome biogenesis or ribosomopathy and the development of malignancies has been well established. This work aims to review the recent advances in the research of ribosomopathy genes among human cancers and meanwhile, to excavate the potential role of these genes, which have not or rarely been reported in cancer, in the disease development across cancers. We plan to establish a theoretical framework between the ribosomopathy gene and cancer development, to further facilitate the potential of these genes as diagnostic biomarker as well as pharmaceutical targets for cancer treatment.
Collapse
Affiliation(s)
- Mengxin Wang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Stephen Vulcano
- Autoimmunity and Inflammation Program, HSS Research Institute, Hospital for Special Surgery New York, New York, NY, 10021, USA
| | - Changlu Xu
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Renjian Xie
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Weijie Peng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qiaojun Liu
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zhi Li
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Yumei Li
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
4
|
Huang Y, Xiong C, Wang C, Deng J, Zuo Z, Wu H, Xiong J, Wu X, Lu H, Hao Q, Zhou X. p53-responsive CMBL reprograms glucose metabolism and suppresses cancer development by destabilizing phosphofructokinase PFKP. Cell Rep 2023; 42:113426. [PMID: 37967006 DOI: 10.1016/j.celrep.2023.113426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/25/2023] [Accepted: 10/27/2023] [Indexed: 11/17/2023] Open
Abstract
Aerobic glycolysis is critical for cancer progression and can be exploited in cancer therapy. Here, we report that the human carboxymethylenebutenolidase homolog (carboxymethylenebutenolidase-like [CMBL]) acts as a tumor suppressor by reprogramming glycolysis in colorectal cancer (CRC). The anti-cancer action of CMBL is mediated through its interactions with the E3 ubiquitin ligase TRIM25 and the glycolytic enzyme phosphofructokinase-1 platelet type (PFKP). Ectopic CMBL enhances TRIM25 binding to PFKP, leading to the ubiquitination and proteasomal degradation of PFKP. Interestingly, CMBL is transcriptionally activated by p53 in response to genotoxic stress, and p53 activation represses glycolysis by promoting PFKP degradation. Remarkably, CMBL deficiency, which impairs p53's ability to inhibit glycolysis, makes tumors more sensitive to a combination therapy involving the glycolysis inhibitor 2-deoxyglucose. Taken together, our study demonstrates that CMBL suppresses CRC growth by inhibiting glycolysis and suggests a potential combination strategy for the treatment of CMBL-deficient CRC.
Collapse
Affiliation(s)
- Yingdan Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Lymphoma Medicine (Breast Cancer & Soft Tissue Tumor Medicine), Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Chen Xiong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chunmeng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Huijing Wu
- Department of Lymphoma Medicine (Breast Cancer & Soft Tissue Tumor Medicine), Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaohua Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Hao S, Zhao X, Fan Y, Liu Z, Zhang X, Li W, Yuan H, Zhang J, Zhang Y, Ma T, Tao H. Prevalence and spectrum of cancer predisposition germline mutations in young patients with the common late-onset cancers. Cancer Med 2023; 12:18394-18404. [PMID: 37610374 PMCID: PMC10524041 DOI: 10.1002/cam4.6445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Pathogenic germline variants (PGVs) can play a vital role in the oncogenesis process in carriers. Previous studies have recognized that PGVs contribute to early onset of tumorigenesis in certain cancer types, for example, colorectal cancer and breast cancer. However, the reported prevalence data of cancer-associated PGVs were highly inconsistent due to nonuniform patient cohorts, sequencing methods, and prominent difficulties in pathogenicity interpretation of variants. In addition to the above difficulties, due to the rarity of cases, the prevalence of cancer PGV carriers in young cancer patients affected by late-onset cancer types has not been comprehensively evaluated to date. METHODS A total of 131 young cancer patients (1-29 years old at diagnosis) were enrolled in this study. The patients were affected by six common late-onset cancer types, namely, lung cancer, liver cancer, colorectal cancer, gastric cancer, renal cancer, and head-neck cancer. Cancer PGVs were identified and analyzed. based on NGS-based targeted sequencing followed by bioinformatic screening and strict further evaluations of variant pathogenicity. RESULTS Twenty-three cancer PGVs in 21 patients were identified, resulting in an overall PGV prevalence of 16.0% across the six included cancer types, which was approximately double the prevalence reported in a previous pancancer study. Nine of the 23 PGVs are novel, thus expanding the cancer PGV spectrum. Seven of the 23 (30.4%) PGVs are potential therapeutic targets of olaparib, with potential implications for clinical manipulation. Additionally, a small prevalence of somatic mutations of some classic cancer hallmark genes in young patients, in contrast to all-age patients, was revealed. CONCLUSION This study demonstrates the high prevalence of PGVs in young cancer patients with the common late-onset cancers and the potentially significant clinical implications of cancer PGVs, the findings highlight the value of PGV screening in young patients across lung cancer, liver cancer, colorectal cancer, gastric cancer, renal cancer, or head-neck cancer.
Collapse
Affiliation(s)
- Shaoyu Hao
- Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Ximeng Zhao
- Jichenjunchuang Clinical LaboratoryHangzhouChina
| | - Yue Fan
- Department of Integrated Traditional Chinese Medicine and Western MedicineZhong Shan Hospital, Fudan UniversityShanghaiChina
| | - Zhengchuang Liu
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Xiang Zhang
- Jichenjunchuang Clinical LaboratoryHangzhouChina
| | - Wei Li
- Jichenjunchuang Clinical LaboratoryHangzhouChina
| | | | - Jie Zhang
- Jichenjunchuang Clinical LaboratoryHangzhouChina
| | | | - Tonghui Ma
- Jichenjunchuang Clinical LaboratoryHangzhouChina
| | - Houquan Tao
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical CollegeHangzhouChina
- Department of GastroenterologyZhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical CollegeHangzhouChina
| |
Collapse
|
6
|
Das S, Idate R, Lana SE, Regan DP, Duval DL. Integrated analysis of canine soft tissue sarcomas identifies recurrent mutations in TP53, KMT genes and PDGFB fusions. Sci Rep 2023; 13:10422. [PMID: 37369741 PMCID: PMC10300023 DOI: 10.1038/s41598-023-37266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Soft tissue sarcomas (STS) are a heterogenous group of mesenchymal tumors representing over 50 distinct types with overlapping histological features and non-specific anatomical locations. Currently, localized sarcomas are treated with surgery + / - radiation in both humans and dogs with few molecularly targeted therapeutic options. However, to improve precision-based cancer therapy through trials in pet dogs with naturally occurring STS tumors, knowledge of genomic profiling and molecular drivers in both species is essential. To this purpose, we sought to characterize the transcriptomic and genomic mutation profiles of canine STS subtypes (fibrosarcoma, undifferentiated pleomorphic sarcoma, and peripheral nerve sheath tumors), by leveraging RNAseq, whole exome sequencing, immunohistochemistry, and drug assays. The most common driver mutations were in cell cycle/DNA repair (31%, TP53-21%) and chromatin organization/binding (41%, KMT2D-21%) genes. Similar to a subset of human sarcomas, we identified fusion transcripts of platelet derived growth factor B and collagen genes that predict sensitivity to PDGFR inhibitors. Transcriptomic profiling grouped these canine STS tumors into 4 clusters, one PNST group (H1), and 3 FSA groups selectively enriched for extracellular matrix interactions and PDFGB fusions (H2), homeobox transcription factors (H3), and elevated T-cell infiltration (H4). This multi-omics approach provides insights into canine STS sub-types at a molecular level for comparison to their human counterparts, to improve diagnosis, and may provide additional targets for chemo- and immuno-therapy.
Collapse
Affiliation(s)
- Sunetra Das
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Rupa Idate
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Susan E Lana
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Daniel P Regan
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dawn L Duval
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA.
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
7
|
Gan Y, Deng J, Hao Q, Huang Y, Han T, Xu JG, Zhao M, Yao L, Xu Y, Xiong J, Lu H, Wang C, Chen J, Zhou X. UTP11 deficiency suppresses cancer development via nucleolar stress and ferroptosis. Redox Biol 2023; 62:102705. [PMID: 37087976 PMCID: PMC10149416 DOI: 10.1016/j.redox.2023.102705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
The eukaryotic ribosome is essential for cancer cell survival. Perturbation of ribosome biogenesis induces nucleolar stress or ribosomal stress, which restrains cancer growth, as rapidly proliferating cancer cells need more active ribosome biogenesis. In this study, we found that UTP11 plays an important role in the biosynthesis of 18S ribosomal RNAs (rRNA) by binding to the pre-rRNA processing factor, MPP10. UTP11 is overexpressed in human cancers and associated with poor prognoses. Interestingly, depletion of UTP11 inhibits cancer cell growth in vitro and in vivo through p53-depedednt and -independent mechanisms, whereas UTP11 overexpression promotes cancer cell growth and progression. On the one hand, the ablation of UTP11 impedes 18S rRNA biosynthesis to trigger nucleolar stress, thereby preventing MDM2-mediated p53 ubiquitination and degradation through ribosomal proteins, RPL5 and RPL11. On the other hand, UTP11 deficiency represses the expression of SLC7A11 by promoting the decay of NRF2 mRNA, resulting in reduced levels of glutathione (GSH) and enhanced ferroptosis. Altogether, our study uncovers a critical role for UTP11 in maintaining cancer cell survival and growth, as depleting UTP11 leads to p53-dependent cancer cell growth arrest and p53-independent ferroptosis.
Collapse
Affiliation(s)
- Yu Gan
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yingdan Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tao Han
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jin-Guo Xu
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Litong Yao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yingying Xu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Chunmeng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China.
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Maehama T, Nishio M, Otani J, Mak TW, Suzuki A. Nucleolar stress: Molecular mechanisms and related human diseases. Cancer Sci 2023; 114:2078-2086. [PMID: 36762786 PMCID: PMC10154868 DOI: 10.1111/cas.15755] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Ribosome biogenesis in the nucleolus is an important process that consumes 80% of a cell's intracellular energy supply. Disruption of this process results in nucleolar stress, triggering the activation of molecular systems that respond to this stress to maintain homeostasis. Although nucleolar stress was originally thought to be caused solely by abnormalities of ribosomal RNA (rRNA) and ribosomal proteins (RPs), an accumulating body of more current evidence suggests that many other factors, including the DNA damage response and oncogenic stress, are also involved in nucleolar stress response signaling. Cells reacting to nucleolar stress undergo cell cycle arrest or programmed death, mainly driven by activation of the tumor suppressor p53. This observation has nominated nucleolar stress as a promising target for cancer therapy. However, paradoxically, some RP mutations have also been implicated in cancer initiation and progression, necessitating caution. In this article, we summarize recent findings on the molecular mechanisms of nucleolar stress and the human ribosomal diseases and cancers that arise in its wake.
Collapse
Affiliation(s)
- Tomohiko Maehama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Junji Otani
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tak Wah Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
9
|
Integrated analysis of canine soft tissue sarcomas identifies recurrent mutations in TP53, KMT genes and PDGFB fusions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.522911. [PMID: 36711648 PMCID: PMC9882013 DOI: 10.1101/2023.01.06.522911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Canine soft tissue sarcomas (STS) are a heterogenous group of malignant tumors arising from mesenchymal cells of soft tissues. This simplified collective of tumors most commonly arise from subcutaneous tissues, are treated similar clinically, and conventionally exclude other sarcomas with more definitive anatomical, histological, or biological features. Histologically, canine STS sub-types are difficult to discern at the light microscopic level due to their overlapping features. Thus, genomic, and transcriptomic profiling of canine STS may prove valuable in differentiating the diverse sub-types of mesenchymal neoplasms within this group. To this purpose we sought to characterize the transcript expression and genomic mutation profiles of canine STS. To delineate transcriptomic sub-types, hierarchical clustering was used to identify 4 groups with district expression profiles. Using the RNAseq data, we identified three samples carrying driver fusions of platelet derived growth factor B ( PDGFB ) and collagen genes. Sensitivity to imatinib was evaluated in a canine STS cell line also bearing a PDGFB fusion. Using whole exome sequencing, recurrent driver variants were identified in the cancer genes KMT2D (21% of the samples) and TP53 (21%) along with copy number losses of RB1 and CDKN2A. Gene amplifications and resulting transcript increases were identified in genes on chromosomes 13, 14, and 36. A subset of STS was identified with high T-cell infiltration. This multi-omics approach has defined canine STS sub-types at a molecular level for comparison to their human counterparts, to improve diagnosis, and may provide additional targets for therapy.
Collapse
|
10
|
Yao Y, Liu K, Wu Y, Zhou J, Jin H, Zhang Y, Zhu Y. Comprehensive landscape of the functions and prognostic value of RNA binding proteins in uterine corpus endometrial carcinoma. Front Mol Biosci 2022; 9:962412. [PMID: 36262474 PMCID: PMC9574853 DOI: 10.3389/fmolb.2022.962412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The dysregulation of RNA binding proteins (RBPs) is involved in tumorigenesis and progression. However, information on the overall function of RNA binding proteins in Uterine Corpus Endometrial Carcinoma (UCEC) remains to be studied. This study aimed to explore Uterine Corpus Endometrial Carcinoma-associated molecular mechanisms and develop an RNA-binding protein-associated prognostic model. Methods: Differently expressed RNA binding proteins were identified between Uterine Corpus Endometrial Carcinoma tumor tissues and normal tissues by R packages (DESeq2, edgeR) from The Cancer Genome Atlas (TCGA) database. Hub RBPs were subsequently identified by univariate and multivariate Cox regression analyses. The cBioPortal platform, R packages (ggplot2), Human Protein Atlas (HPA), and TIMER online database were used to explore the molecular mechanisms of Uterine Corpus Endometrial Carcinoma. Kaplan-Meier (K-M), Area Under Curve (AUC), and the consistency index (c-index) were used to test the performance of our model. Results: We identified 128 differently expressed RNA binding proteins between Uterine Corpus Endometrial Carcinoma tumor tissues and normal tissues. Seven RNA binding proteins genes (NOP10, RBPMS, ATXN1, SBDS, POP5, CD3EAP, ZC3H12C) were screened as prognostic hub genes and used to construct a prognostic model. Such a model may be able to predict patient prognosis and acquire the best possible treatment. Further analysis indicated that, based on our model, the patients in the high-risk subgroup had poor overall survival (OS) compared to those in the low-risk subgroup. We also established a nomogram based on seven RNA binding proteins. This nomogram could inform individualized diagnostic and therapeutic strategies for Uterine Corpus Endometrial Carcinoma. Conclusion: Our work focused on systematically analyzing a large cohort of Uterine Corpus Endometrial Carcinoma patients in the The Cancer Genome Atlas database. We subsequently constructed a robust prognostic model based on seven RNA binding proteins that may soon inform individualized diagnosis and treatment.
Collapse
Affiliation(s)
- Yong Yao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Kangping Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Yuxuan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Jieyu Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Heyue Jin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Yimin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Yumin Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Yumin Zhu,
| |
Collapse
|
11
|
Han T, Tong J, Wang M, Gan Y, Gao B, Chen J, Liu Y, Hao Q, Zhou X. Olaparib Induces RPL5/RPL11-Dependent p53 Activation via Nucleolar Stress. Front Oncol 2022; 12:821366. [PMID: 35719981 PMCID: PMC9204002 DOI: 10.3389/fonc.2022.821366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
The poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) Olaparib is a widely used targeted therapy for a variety of solid tumors with homologous recombination deficiency (HRD) caused by mutation of BRCA1/2 or other DNA repair genes. The anti-tumor activity of Olaparib has been largely attributed to its ability to inhibit PARP enzymes and block DNA single-strand break (SSB) repair, which eventually leads to the most detrimental DNA damage, double-strand breaks (DSB), in HRD cells. Although PARPi was found to induce p53-dependent cell death, the underlying molecular mechanism remains incompletely understood. Here, we report that Olaparib treatment leads to p53 stabilization and activation of its downstream target genes in a dose- and time-dependent manner. Mechanistically, Olaparib triggers nucleolar stress by inhibiting biosynthesis of the precursor of ribosomal RNAs (pre-rRNA), resulting in enhanced interaction between ribosomal proteins (RPs), RPL5 and RPL11, and MDM2. Consistently, knockdown of RPL5 and RPL11 prevents Olaparib-induced p53 activation. More importantly, Olaparib efficiently suppresses breast and colorectal cancer cell survival and proliferation through activation of p53. Altogether, our study demonstrates that Olaparib activates the nucleolar stress-RPs-p53 pathway, suggesting rRNA biogenesis as a novel target for PARPi.
Collapse
Affiliation(s)
- Tao Han
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jing Tong
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengxin Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yu Gan
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Bo Gao
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jiaxiang Chen
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Youxun Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Yuan S, Sun X, Wang L. Prognostic Values From Integrated Analysis of the Nomogram Based on RNA-Binding Proteins and Clinical Factors in Endometrial Cancer. CLINICAL MEDICINE INSIGHTS: ONCOLOGY 2022; 16:11795549221123620. [PMID: 36186671 PMCID: PMC9523842 DOI: 10.1177/11795549221123620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Endometrial cancer (EC) is a common gynecological malignancy, and the prognosis of advanced EC is unsatisfactory. The deregulated expression of RNA-binding proteins (RBPs) is closely associated with the occurrence and development of cancer. However, the role of RBPs in EC remains unclear. The aim of this study was to validate the prognostic values of RBPs combined with clinical factors. Methods: We downloaded the RNA sequencing and clinical data for EC from The Cancer Genome Atlas (TCGA) database. R software was used to identify the differentially expressed RBPs. Univariate and multivariate Cox proportional hazards regression analyses were performed to predict the 4 overall survival (OS)-related RBPs. We then constructed a nomogram combining the 4-RBP signature with clinical risk factors to assess the prognostic power. Furthermore, we validated the expression of 4 RBPs in our patient samples using quantitative real-time polymerase chain reaction (qRT-PCR) and explored the effect of cold-inducible RNA-binding protein (CIRBP) on EC tumor growth using cell proliferation experiments. Results: It is found that Shwachman-Bodian-Diamond syndrome (SBDS), CIRBP, MRPL15, and CELF4 were significantly related to the prognosis of EC patients. In addition, the nomogram showed better performance in OS predictions than the International Federation of Gynecology and Obstetrics (FIGO) stage. The qRT-PCR results showed that low CIRBP expression was associated with cell proliferation. Conclusions: In our study, we constructed a 4-RBP signature-based nomogram combined with clinical factors in EC that could effectively predict the prognosis of EC patients. The results provide novel insights into the development of treatment targets and prognostic molecular markers in EC.
Collapse
Affiliation(s)
- Shuang Yuan
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiao Sun
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Lihua Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| |
Collapse
|
13
|
Wu ZW, Mou Q, Fang T, Wang Y, Liang H, Wang C, Du ZQ, Yang CX. Global 3'-untranslated region landscape mediated by alternative polyadenylation during meiotic maturation of pig oocytes. Reprod Domest Anim 2021; 57:33-44. [PMID: 34647356 DOI: 10.1111/rda.14026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023]
Abstract
Alternative polyadenylation affects the length and composition of 3'-untranslated region (3'-UTR) and regulates mRNA stability or translational activity to affect important biological processes. However, global 3'-UTR landscape and its relationship with gamete maturation remain less studied. Here, we analysed our previously reported single-cell RNA-seq data of germinal vesicle and metaphase II stage oocytes in pigs to systematically catalogue the 3'-UTR dynamics during oocyte maturation. Two softwares (DaPars and APAtrap) were employed and identified 110 and 228 mRNAs with significantly different 3'-UTRs (adjusted p ≤ .05), respectively. Gene enrichment analyses found signalling pathways related with biological processes of female gametophyte production, methyltransferase activity and mRNA surveillance (DaPars) and cell cycle process, regulation of ERK1 and ERK2 cascade, regulation of translation, spindle organization, kinetochore, condensed chromosome and progesterone-mediated oocyte maturation (APAtrap), respectively. Moreover, 18 of 110 mRNAs (|△PDUI| ≥ 0.25 and |log2 PDUI ratio| ≥ 0.59) and 15 of 228 mRNAs (Perc. diff. ≥ 0.5) were with greater difference of 3'-UTR length or abundance, and integrative genomics viewer analysis further identified 4 (Alg10, Hadhb, Hsd17b4 and Sbds) of 18 mRNAs to be with 3'-UTR length differed ≥150 bp and 6 (Gcc1, Hnrnpa2b1, Lsm6, Prpf18, Sfr1 and Ust) of 15 mRNAs to be with 3'-UTR abundance extremely differed. Furthermore, the location, sequences and number of cis-elements were predicted, which were shown to derange cytoplasmic polyadenylation element, poly(A) site and microRNA binding sites within 3'-UTRs of Alg10, Hadhb, Hsd17b4 and Sbds mRNAs. Taken together, global 3'-UTR landscape changes dynamically with oocyte meiotic maturation, potentially involved in regulating oocyte meiotic process in pigs.
Collapse
Affiliation(s)
- Zi-Wei Wu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Qiao Mou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ting Fang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Yi Wang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Hao Liang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
14
|
Hao Q, Li J, Zhang Q, Xu F, Xie B, Lu H, Wu X, Zhou X. Single-cell transcriptomes reveal heterogeneity of high-grade serous ovarian carcinoma. Clin Transl Med 2021; 11:e500. [PMID: 34459128 PMCID: PMC8335963 DOI: 10.1002/ctm2.500] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND High-grade serous ovarian carcinoma (HGSOC) is the most common and aggressive histotype of epithelial ovarian cancer. The heterogeneity and molecular basis of this disease remain incompletely understood. METHODS To address this question, we have performed a single-cell transcriptomics analysis of matched primary and metastatic HGSOC samples. RESULTS A total of 13 571 cells are categorized into six distinct cell types, including epithelial cells, fibroblast cells, T cells, B cells, macrophages, and endothelial cells. A subset of aggressive epithelial cells with hyperproliferative and drug-resistant potentials is identified. Several new markers that are highly expressed in epithelial cells are characterized, and their roles in ovarian cancer cell growth and migration are further confirmed. Dysregulation of multiple signaling pathways, including the translational machinery, is associated with ovarian cancer metastasis through the trajectory analysis. Moreover, single-cell regulatory network inference and clustering (SCENIC) analysis reveals the gene regulatory networks and suggests the JUN signaling pathway as a potential therapeutic target for treatment of ovarian cancer, which is validated using the JUN/AP-1 inhibitor T-5224. Finally, our study depicts the epithelial-fibroblast cell communication atlas and identifies several important receptor-ligand complexes in ovarian cancer development. CONCLUSIONS This study uncovers new molecular features and the potential therapeutic target of HGSOC, which would advance the understanding and treatment of the disease.
Collapse
Affiliation(s)
- Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jiajia Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qinghua Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Fei Xu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Bangxiang Xie
- Beijing YouAn Hospital, Capital Medical UniversityBeijing Institute of HepatologyBeijingChina
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer CenterTulane University School of MedicineNew OrleansLouisiana
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Medical Epigenetics, International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
15
|
Yang H, Han X, Hao Z. An Immune-Gene-Based Classifier Predicts Prognosis in Patients With Cervical Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:679474. [PMID: 34291084 PMCID: PMC8289438 DOI: 10.3389/fmolb.2021.679474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/21/2021] [Indexed: 01/10/2023] Open
Abstract
Objective: Immunity plays a vital role in the human papilloma virus (HPV) persistent infection, and closely associates with occurrence and development of cervical squamous cell carcinoma (CSCC). Herein, we performed an integrated bioinformatics analysis to establish an immune-gene signature and immune-associated nomogram for predicting prognosis of CSCC patients. Methods: The list of immunity-associated genes was retrieved from ImmPort database. The gene and clinical information of CSCC patients were obtained from The Cancer Genome Atlas (TCGA) website. The immune gene signature for predicting overall survival (OS) of CSCC patients was constructed using the univariate Cox-regression analysis, random survival forests, and multivariate Cox-regression analysis. This signature was externally validated in GSE44001 cohort from Gene Expression Omnibus (GEO). Then, based on the established signature and the TCGA cohort with the corresponding clinical information, a nomogram was constructed and evaluated via Cox regression analysis, concordance index (C-index), receiver operating characteristic (ROC) curves, calibration plots and decision curve analyses (DCAs). Results: A 5-immune-gene prognostic signature for CSCC was established. Low expression of ICOS, ISG20 and high expression of ANGPTL4, SBDS, LTBR were risk factors for CSCC prognosis indicating poor OS. Based on this signature, the OS was significantly worse in high-risk group than in low-risk group (p-value < 0.001), the area under curves (AUCs) for 1-, 3-, 5-years OS were, respectively, 0.784, 0.727, and 0.715. A nomogram incorporating the risk score of signature and the clinical stage was constructed. The C-index of this nomogram was 0.76. AUC values were 0.811, 0.717, and 0.712 for 1-, 3-, 5-years OS. The nomogram showed good calibration and gained more net benefits than the 5-immune-gene signature and the clinical stage. Conclusion: The 5-immune-gene signature may serve as a novel, independent predictor for prognosis in patients with CSCC. The nomogram incorporating the signature risk score and clinical stage improved the predictive performance than the signature and clinical stage alone for predicting 1-year OS.
Collapse
Affiliation(s)
- Huixia Yang
- Department of Gynecology and Obstetrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Han
- Department of Gynecology and Obstetrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zengping Hao
- Department of Gynecology and Obstetrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Huang C, Hao Q, Shi G, Zhou X, Zhang Y. BCL7C suppresses ovarian cancer growth by inactivating mutant p53. J Mol Cell Biol 2020; 13:141-150. [PMID: 33306126 PMCID: PMC8104935 DOI: 10.1093/jmcb/mjaa065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
B-cell CLL/lymphoma 7 protein family member C (BCL7C) located at chromosome 16p11.2 shares partial sequence homology with the other two family members, BCL7A and BCL7B. Its role in cancer remains completely unknown. Here, we report our finding of its tumor-suppressive role in ovarian cancer. Supporting this is that BCL7C is downregulated in human ovarian carcinomas, and its underexpression is associated with unfavorable prognosis of ovarian cancer as well as some other types of human cancers. Also, ectopic BCL7C restrains cell proliferation and invasion of ovarian cancer cells. Consistently, depletion of BCL7C reduces apoptosis and promotes cell proliferation and invasion of these cancer cells. Mechanistically, BCL7C suppresses mutant p53-mediated gene transcription by binding to mutant p53, while knockdown of BCL7C enhances the expression of mutant p53 target genes in ovarian cancer cells. Primary ovarian carcinomas that sustain low levels of BCL7C often show the elevated expression of mutant p53 target genes. In line with these results, BCL7C abrogates mutant p53-induced cell proliferation and invasion, but had no impact on proliferation and invasion of cancer cells with depleted p53 or harboring wild-type p53. Altogether, our results demonstrate that BCL7C can act as a tumor suppressor to prevent ovarian tumorigenesis and progression by counteracting mutant p53 activity.
Collapse
Affiliation(s)
- Canhua Huang
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha 410008, China.,Department of Gynecology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Getao Shi
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Yu Zhang
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha 410008, China.,Department of Gynecology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
17
|
Dannheisig DP, Bächle J, Tasic J, Keil M, Pfister AS. The Wnt/β-Catenin Pathway is Activated as a Novel Nucleolar Stress Response. J Mol Biol 2020; 433:166719. [PMID: 33221336 DOI: 10.1016/j.jmb.2020.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022]
Abstract
Ribosomes are mandatory for growth and survival. The complex process of ribosome biogenesis is located in nucleoli and requires action of the RNA polymerases I-III, together with a multitude of processing factors involved in rRNA cleavage and maturation. Impaired ribosome biogenesis and loss of nucleolar integrity triggers nucleolar stress, which classically stabilizes the tumor suppressor p53 and induces cell cycle arrest and apoptosis. Nucleolar stress is implemented in modern anti-cancer therapies, however, also emerges as contributor to diverse pathological conditions. These include ribosomopathies, such as the Shwachman Bodian Diamond Syndrome (SBDS), which are not only characterized by nucleolar stress, but paradoxically also increased cancer incidence. Wnt signaling is tightly coupled to cell proliferation and is constitutively activated in various tumor types. In addition, the Wnt/β-Catenin pathway regulates ribosome formation. Here, we demonstrate that induction of nucleolar stress by different strategies stimulates the Wnt/β-Catenin pathway. We show that depletion of the key ribosomopathy factor SBDS, or the nucleolar factors Nucleophosmin (NPM), Pescadillo 1 (PES1) or Peter Pan (PPAN) by si RNA-mediated knockdown or CRISPR/Cas9 strategy activates Wnt/β-Catenin signaling in a β-Catenin-dependent manner and stabilizes β-Catenin in human cancer cells. Moreover, triggering nucleolar stress by the chemotherapeutic agents Actinomycin D or the RNA polymerase I inhibitor CX-5461 stimulates expression of Wnt/β-Catenin targets, which is followed by the p53 target CDKN1A (p21). As PPAN expression is induced by Wnt/β-Catenin signaling, our data establish a novel feedback mechanism and reveal that nucleolar stress over-activates the Wnt/β-Catenin pathway, which most likely serves as compensatory mechanism to sustain ribosome biogenesis.
Collapse
Affiliation(s)
- David P Dannheisig
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Jana Bächle
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Jasmin Tasic
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Marina Keil
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Astrid S Pfister
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
| |
Collapse
|
18
|
Wang S, Hao Q, Li J, Chen Y, Lu H, Wu X, Zhou X. Ubiquitin ligase DTX3 empowers mutant p53 to promote ovarian cancer development. Genes Dis 2020; 9:705-716. [PMID: 35782979 PMCID: PMC9243342 DOI: 10.1016/j.gendis.2020.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/01/2020] [Accepted: 11/13/2020] [Indexed: 01/21/2023] Open
Abstract
The deltex family protein DTX3 is believed to possess E3 ubiquitin ligase activity, as it contains a classic RING finger domain. However, its biological role and the underlying mechanism in cancer remain largely elusive. Here, we identified DTX3 as a novel mutant p53-interacting protein in ovarian carcinoma. Mechanistically, DTX3 mediated mutant p53 ubiquitination and stabilization by perturbing the MDM2-mutant p53 interaction, consequently leading to activation of diverse mutant p53 target genes. Importantly, a positive correlation between the expression of DTX3 and mutant p53 target genes was further validated in ovarian carcinomas. Ectopic DTX3 promoted, while depletion of DTX3 suppressed, ovarian cancer cell proliferation and invasion. Remarkably, the pro-tumorigenic effect of DTX3 is dependent on mutant p53, because ablation of mutant p53 significantly impaired DTX3-induced gene expression and ovarian cancer cell growth and propagation. Furthermore, DTX3 elevated the expression of mutant p53 target genes and boosted ovarian tumor growth in vivo. Finally, DTX3 was amplified and overexpressed in ovarian carcinomas, which is significantly associated with unfavorable prognosis. Altogether, our findings unveil the oncogenic role of DTX3 in ovarian cancer development by bolstering mutant p53 activity.
Collapse
Affiliation(s)
- Shanshan Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | - Jiajia Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, PR China
| | - Yajie Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, PR China
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xiaohua Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, PR China
- Corresponding author. Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, PR China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
- Corresponding author. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
Nait Slimane S, Marcel V, Fenouil T, Catez F, Saurin JC, Bouvet P, Diaz JJ, Mertani HC. Ribosome Biogenesis Alterations in Colorectal Cancer. Cells 2020; 9:E2361. [PMID: 33120992 PMCID: PMC7693311 DOI: 10.3390/cells9112361] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022] Open
Abstract
Many studies have focused on understanding the regulation and functions of aberrant protein synthesis in colorectal cancer (CRC), leaving the ribosome, its main effector, relatively underappreciated in CRC. The production of functional ribosomes is initiated in the nucleolus, requires coordinated ribosomal RNA (rRNA) processing and ribosomal protein (RP) assembly, and is frequently hyperactivated to support the needs in protein synthesis essential to withstand unremitting cancer cell growth. This elevated ribosome production in cancer cells includes a strong alteration of ribosome biogenesis homeostasis that represents one of the hallmarks of cancer cells. None of the ribosome production steps escape this cancer-specific dysregulation. This review summarizes the early and late steps of ribosome biogenesis dysregulations described in CRC cell lines, intestinal organoids, CRC stem cells and mouse models, and their possible clinical implications. We highlight how this cancer-related ribosome biogenesis, both at quantitative and qualitative levels, can lead to the synthesis of ribosomes favoring the translation of mRNAs encoding hyperproliferative and survival factors. We also discuss whether cancer-related ribosome biogenesis is a mere consequence of cancer progression or is a causal factor in CRC, and how altered ribosome biogenesis pathways can represent effective targets to kill CRC cells. The association between exacerbated CRC cell growth and alteration of specific steps of ribosome biogenesis is highlighted as a key driver of tumorigenesis, providing promising perspectives for the implementation of predictive biomarkers and the development of new therapeutic drugs.
Collapse
Affiliation(s)
- Sophie Nait Slimane
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Virginie Marcel
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Tanguy Fenouil
- Institute of Pathology EST, Hospices Civils de Lyon, Site-Est Groupement Hospitalier- Est, 69677 Bron, France;
| | - Frédéric Catez
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Jean-Christophe Saurin
- Gastroenterology and Genetic Department, Edouard Herriot Hospital, Hospices Civils de Lyon, 69008 Lyon, France;
| | - Philippe Bouvet
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Jean-Jacques Diaz
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Hichem C. Mertani
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| |
Collapse
|
20
|
Hao Q, Chen Y, Zhou X. The Janus Face of p53-Targeting Ubiquitin Ligases. Cells 2020; 9:cells9071656. [PMID: 32660118 PMCID: PMC7407405 DOI: 10.3390/cells9071656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
The tumor suppressor p53 prevents tumorigenesis and cancer progression by maintaining genomic stability and inducing cell growth arrest and apoptosis. Because of the extremely detrimental nature of wild-type p53, cancer cells usually mutate the TP53 gene in favor of their survival and propagation. Some of the mutant p53 proteins not only lose the wild-type activity, but also acquire oncogenic function, namely “gain-of-function”, to promote cancer development. Growing evidence has revealed that various E3 ubiquitin ligases are able to target both wild-type and mutant p53 for degradation or inactivation, and thus play divergent roles leading to cancer cell survival or death in the context of different p53 status. In this essay, we reviewed the recent progress in our understanding of the p53-targeting E3 ubiquitin ligases, and discussed the potential clinical implications of these E3 ubiquitin ligases in cancer therapy.
Collapse
Affiliation(s)
- Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China;
| | - Yajie Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China;
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China;
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Correspondence: ; Tel.: +86-21-54237325
| |
Collapse
|
21
|
From Snapshots to Flipbook-Resolving the Dynamics of Ribosome Biogenesis with Chemical Probes. Int J Mol Sci 2020; 21:ijms21082998. [PMID: 32340379 PMCID: PMC7215809 DOI: 10.3390/ijms21082998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022] Open
Abstract
The synthesis of ribosomes is one of the central and most resource demanding processes in each living cell. As ribosome biogenesis is tightly linked with the regulation of the cell cycle, perturbation of ribosome formation can trigger severe diseases, including cancer. Eukaryotic ribosome biogenesis starts in the nucleolus with pre-rRNA transcription and the initial assembly steps, continues in the nucleoplasm and is finished in the cytoplasm. From start to end, this process is highly dynamic and finished within few minutes. Despite the tremendous progress made during the last decade, the coordination of the individual maturation steps is hard to unravel by a conventional methodology. In recent years small molecular compounds were identified that specifically block either rDNA transcription or distinct steps within the maturation pathway. As these inhibitors diffuse into the cell rapidly and block their target proteins within seconds, they represent excellent tools to investigate ribosome biogenesis. Here we review how the inhibitors affect ribosome biogenesis and discuss how these effects can be interpreted by taking the complex self-regulatory mechanisms of the pathway into account. With this we want to highlight the potential of low molecular weight inhibitors to approach the dynamic nature of the ribosome biogenesis pathway.
Collapse
|