1
|
Yan W, Xia Y, Zhao H, Xu X, Ma X, Tao L. Stem cell-based therapy in cardiac repair after myocardial infarction: Promise, challenges, and future directions. J Mol Cell Cardiol 2024; 188:1-14. [PMID: 38246086 DOI: 10.1016/j.yjmcc.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Stem cells represent an attractive resource for cardiac regeneration. However, the survival and function of transplanted stem cells is poor and remains a major challenge for the development of effective therapies. As two main cell types currently under investigation in heart repair, mesenchymal stromal cells (MSCs) indirectly support endogenous regenerative capacities after transplantation, while induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) functionally integrate into the damaged myocardium and directly contribute to the restoration of its pump function. These two cell types are exposed to a common microenvironment with many stressors in ischemic heart tissue. This review summarizes the research progress on the mechanisms and challenges of MSCs and iPSC-CMs in post-MI heart repair, introduces several randomized clinical trials with 3D-mapping-guided cell therapy, and outlines recent findings related to the factors that affect the survival and function of stem cells. We also discuss the future directions for optimization such as biomaterial utilization, cell combinations, and intravenous injection of engineered nucleus-free MSCs.
Collapse
Affiliation(s)
- Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoming Xu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Yang X, Tang Z. Role of gasdermin family proteins in cancers (Review). Int J Oncol 2023; 63:100. [PMID: 37477150 PMCID: PMC10552715 DOI: 10.3892/ijo.2023.5548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
The gasdermin (GSDM) family comprises six proteins, including GSDMA‑GSDME and Pejvakin. Most of these proteins have a crucial role in inducing pyroptosis; in particular, GSDMD and GSDME are the most extensively studied proteins as the executioners of the pyroptosis process. Pyroptosis is a highly pro‑inflammatory form of programmed cell death and is closely associated with the incidence, development and prognosis of multiple cancer types. The present review focused on the current knowledge of the molecular mechanism of GSDM‑mediated pyroptosis, its intricate role in cancer and the potential therapeutic value of its anti‑tumor effects.
Collapse
Affiliation(s)
- Xin Yang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhe Tang
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
3
|
Zhang C, Chen X, Wei T, Song J, Tang X, Bi J, Chen C, Zhou J, Su X, Song Y. Xuebijing alleviates LPS-induced acute lung injury by downregulating pro-inflammatory cytokine production and inhibiting gasdermin-E-mediated pyroptosis of alveolar epithelial cells. Chin J Nat Med 2023; 21:576-588. [PMID: 37611976 DOI: 10.1016/s1875-5364(23)60463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Indexed: 08/25/2023]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is characterized by diffuse alveolar injury primarily caused by an excessive inflammatory response. Regrettably, the lack of effective pharmacotherapy currently available contributes to the high mortality rate in patients with this condition. Xuebijing (XBJ), a traditional Chinese medicine recognized for its potent anti-inflammatory properties, exhibits promise as a potential therapeutic agent for ALI/ARDS. This study aimed to explore the preventive effects of XBJ on ALI and its underlying mechanism. To this end, we established an LPS-induced ALI model and treated ALI mice with XBJ. Our results demonstrated that pre-treatment with XBJ significantly alleviated lung inflammation and increased the survival rate of ALI mice by 37.5%. Moreover, XBJ substantially suppressed the production of TNF-α, IL-6, and IL-1β in the lung tissue. Subsequently, we performed a network pharmacology analysis and identified identified 109 potential target genes of XBJ that were mainly involved in multiple signaling pathways related to programmed cell death and anti-inflammatory responses. Furthermore, we found that XBJ exerted its inhibitory effect on gasdermin-E-mediated pyroptosis of lung cells by suppressing TNF-α production. Therefore, this study not only establishes the preventive efficacy of XBJ in ALI but also reveals its role in protecting alveolar epithelial cells against gasdermin-E-mediated pyroptosis by reducing TNF-α release.
Collapse
Affiliation(s)
- Cuiping Zhang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoyan Chen
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tianchang Wei
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Juan Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xinjun Tang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing Bi
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cuicui Chen
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao Su
- The Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yuanlin Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China; Shanghai Respiratory Research Institute, Shanghai 200032, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, China.
| |
Collapse
|
4
|
Zhang BL, Yu P, Su EY, Zhang CY, Xie SY, Yang X, Zou YZ, Liu M, Jiang H. Inhibition of GSDMD activation by Z-LLSD-FMK or Z-YVAD-FMK reduces vascular inflammation and atherosclerotic lesion development in ApoE -/- mice. Front Pharmacol 2023; 14:1184588. [PMID: 37593179 PMCID: PMC10427923 DOI: 10.3389/fphar.2023.1184588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Pyroptosis is a form of pro-inflammatory cell death that can be mediated by gasdermin D (GSDMD) activation induced by inflammatory caspases such as caspase-1. Emerging evidence suggests that targeting GSDMD activation or pyroptosis may facilitate the reduction of vascular inflammation and atherosclerotic lesion development. The current study investigated the therapeutic effects of inhibition of GSDMD activation by the novel GSDMD inhibitor N-Benzyloxycarbonyl-Leu-Leu-Ser-Asp(OMe)-fluoromethylketone (Z-LLSD-FMK), the specific caspase-1 inhibitor N-Benzyloxycarbonyl-Tyr-Val-Ala-Asp(OMe)-fluoromethylketone (Z-YVAD-FMK), and a combination of both on atherosclerosis in ApoE-/- mice fed a western diet at 5 weeks of age, and further determined the efficacy of these polypeptide inhibitors in bone marrow-derived macrophages (BMDMs). In vivo studies there was plaque formation, GSDMD activation, and caspase-1 activation in aortas, which increased gradually from 6 to 18 weeks of age, and increased markedly at 14 and 18 weeks of age. ApoE-/- mice were administered Z-LLSD-FMK (200 µg/day), Z-YVAD-FMK (200 µg/day), a combination of both, or vehicle control intraperitoneally from 14 to 18 weeks of age. Treatment significantly reduced lesion formation, macrophage infiltration in lesions, protein levels of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, and pyroptosis-related proteins such as activated caspase-1, activated GSDMD, cleaved interleukin(IL)-1β, and high mobility group box 1 in aortas. No overt differences in plasma lipid contents were detected. In vitro treatment with these polypeptide inhibitors dramatically decreased the percentage of propidium iodide-positive BMDMs, the release of lactate dehydrogenase and IL-1β, and protein levels of pyroptosis-related proteins both in supernatants and cell lysates elevated by lipopolysaccharide + nigericin. Notably however, there were no significant differences in the above-mentioned results between the Z-LLSD-FMK group and the Z-YVAD-FMK group, and the combination of both did not yield enhanced effects. These findings indicate that suppression of GSDMD activation by Z-LLSD-FMK or Z-YVAD-FMK reduces vascular inflammation and lesion development in ApoE-/- mice.
Collapse
Affiliation(s)
- Bao-Li Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - En-Yong Su
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun-Yu Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi-Yao Xie
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xue Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun-Zeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Liu
- Department of Health Management Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Jiang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Yang X, Tang Z. The role of pyroptosis in cognitive impairment. Front Neurosci 2023; 17:1206948. [PMID: 37332874 PMCID: PMC10272378 DOI: 10.3389/fnins.2023.1206948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cognitive impairment is a major global disease, manifests as a decline in cognitive functioning and endangers the health of the population worldwide. The incidence of cognitive impairment has increased rapidly with an increasingly aging population. Although the mechanisms of cognitive impairment have partly been elucidated with the development of molecular biological technology, treatment methods are very limited. As a unique form of programmed cell death, pyroptosis is highly pro-inflammatory and is closely associated with the incidence and progression of cognitive impairment. In this review, we discuss the molecular mechanisms of pyroptosis briefly and the research progress on the relationship between pyroptosis and cognitive impairment and its potential therapeutic values, to provide a reference for research in the field of cognitive impairment.
Collapse
Affiliation(s)
- Xin Yang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Tang
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
He J, Cui J, Shi Y, Wang T, Xin J, Li Y, Shan X, Zhu Z, Gao Y. Astragaloside IV Attenuates High-Glucose-Induced Impairment in Diabetic Nephropathy by Increasing Klotho Expression via the NF- κB/NLRP3 Axis. J Diabetes Res 2023; 2023:7423661. [PMID: 37261217 PMCID: PMC10228232 DOI: 10.1155/2023/7423661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 06/02/2023] Open
Abstract
Objective Deficiencies in klotho are implicated in various kidney dysfunctions including diabetic nephropathy (DN) related to inflammatory responses. Klotho is closely related to inflammatory responses and is a potential target for ameliorating kidney failure. Pyroptosis, an inflammatory form of programmed cell death, is reported to take part in DN pathogenesis recently. This study is aimed at exploring whether and how klotho inhibited podocyte pyroptosis and whether astragaloside IV (AS-IV) protect podocyte through the regulation of klotho. Materials and Methods SD rat model of DN and conditionally immortalized mouse podocytes exposed to high glucose were treated with AS-IV. Biochemical assays and morphological examination, cell viability assay, cell transfection, phalloidin staining, ELISA, LDH release assay, SOD and MDA detection, MMP assay, ROS level detection, flow cytometry analysis, TUNEL staining assay, PI/Hoechst 33342 staining, immunofluorescence assay, and western blot were performed to elucidate podocyte pyroptosis and to observe the renal morphology. Results The treatment of AS-IV can improve renal function and protect podocytes exposed to high glucose. Klotho was decreased, and AS-IV increased klotho levels in serum and kidney tissue of DN rats as well as podocytes exposed to high glucose. AS-IV can inhibit DN glomeruli pyroptosis in vivo. In vitro, overexpressed klotho and treatment with AS-IV inhibited pyroptosis of podocytes cultured in high glucose. Klotho knockdown promoted podocyte pyroptosis, and treatment with AS-IV reversed this effect. Furthermore, the overexpression of klotho and AS-IV reduces oxidative stress levels and inhibited NF-κB activation and NLRP3-mediated podocytes' pyroptosis which was abolished by klotho knockdown. In addition, both the ROS inhibitor NAC and the NF-κB pathway inhibitor PDTC can inhibit NLRP3 inflammasome activation. NLRP3 inhibitor MCC950 can inhibit pyroptosis of podocytes exposed to high glucose. Conclusion Altogether, our results demonstrate that the protective effect of AS-IV in upregulating klotho expression in diabetes-induced podocyte injury is associated with the inhibition of NLRP3-mediated pyroptosis via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jiaxin He
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Jialin Cui
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Yimin Shi
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Tao Wang
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Junyan Xin
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Yimeng Li
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Xiaomeng Shan
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Zhiyao Zhu
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Yanbin Gao
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
7
|
Giacomini C, Granéli C, Hicks R, Dazzi F. The critical role of apoptosis in mesenchymal stromal cell therapeutics and implications in homeostasis and normal tissue repair. Cell Mol Immunol 2023; 20:570-582. [PMID: 37185486 DOI: 10.1038/s41423-023-01018-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been extensively tested for the treatment of numerous clinical conditions and have demonstrated good safety but mixed efficacy. Although this outcome can be attributed in part to the heterogeneity of cell preparations, the lack of mechanistic understanding and tools to establish cell pharmacokinetics and pharmacodynamics, as well as the poorly defined criteria for patient stratification, have hampered the design of informative clinical trials. We and others have demonstrated that MSCs can rapidly undergo apoptosis after their infusion. Apoptotic MSCs are phagocytosed by monocytes/macrophages that are then reprogrammed to become anti-inflammatory cells. MSC apoptosis occurs when the cells are injected into patients who harbor activated cytotoxic T or NK cells. Therefore, the activation state of cytotoxic T or NK cells can be used as a biomarker to predict clinical responses to MSC treatment. Building on a large body of preexisting data, an alternative view on the mechanism of MSCs is that an inflammation-dependent MSC secretome is largely responsible for their immunomodulatory activity. We will discuss how these different mechanisms can coexist and are instructed by two different types of MSC "licensing": one that is cell-contact dependent and the second that is mediated by inflammatory cytokines. The varied and complex mechanisms by which MSCs can orchestrate inflammatory responses and how this function is specifically driven by inflammation support a physiological role for tissue stroma in tissue homeostasis, and it acts as a sensor of damage and initiator of tissue repair by reprogramming the inflammatory environment.
Collapse
Affiliation(s)
- Chiara Giacomini
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK.
| | - Cecilia Granéli
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Francesco Dazzi
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK.
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
8
|
Yao X, Li C. Lactate dehydrogenase A mediated histone lactylation induced the pyroptosis through targeting HMGB1. Metab Brain Dis 2023; 38:1543-1553. [PMID: 36870018 DOI: 10.1007/s11011-023-01195-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Cerebral ischemia (CI), as the cerebrovascular disease with the highest incidence rate, is treated by limited intravenous thrombolysis and intravascular therapy to recanalize the embolized vessels. Recently, the discovery of histone lactylation proposes a potential molecular mechanism for the role of lactate in physiological and pathological processes. This study aimed to analyze the lactate dehydrogenase A (LDHA) mediated histone lactylation in CI reperfusion (CI/R) injury. Oxygen-glucose deprivation/reoxygenation (OGD/R) treated N2a cells and middle cerebral artery occlusion (MCAO) treated rats was used as the CI/R model in vivo and in vitro. Cell viability and pyroptosis was assessed using CCK-8 and flow cytometry. RT-qPCR was performed to detect the relative expression. The relationship between histone lactylation and HMGB1 was verified by CHIP assay. LDHA, HMGB1, lactate and histone lactylation was up-regulated in the OGD/R treated N2a cells. Additionally, LDHA knockdown decreased HMGB1 levels in vitro, and relieved CI/R injury in vivo. Besides, LDHA silencing declined the histone lactylation mark enrichment on HMGB1 promoter, and lactate supplement rescued it. What?s more, LDHA knockdown decreased the IL-18 and IL-1β contents, and the cleaved-caspase-1 and GSDMD-N protein levels in the OGD/R treated N2a cells, which was reversed by HMGB1 overexpression. Knockdown of LDHA suppressed the pyroptosis in the N2a cells induced by OGD/R, which was reversed by HMGB1 overexpression. Mechanistically, LDHA mediated the histone lactylation induced pyroptosis through targeting HMGB1 in the CI/R injury.
Collapse
Affiliation(s)
- Xuan Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin City, 150001, Heilongjiang Province, China.
- The Key Laboratory of Anesthesiology and lntensive Care Research of Heilongjiang Province, Harbin, China.
| | - Chao Li
- The Second Department of Operating Room, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin City, 150001, Heilongjiang Province, China
| |
Collapse
|
9
|
Huang S, Wu B, He Y, Qiu R, Yang T, Wang S, Lei Y, Li H, Zheng F. Canagliflozin ameliorates the development of NAFLD by preventing NLRP3-mediated pyroptosis through FGF21-ERK1/2 pathway. Hepatol Commun 2023; 7:e0045. [PMID: 36757426 PMCID: PMC9916118 DOI: 10.1097/hc9.0000000000000045] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/05/2022] [Indexed: 02/10/2023] Open
Abstract
Recent studies have suggested that sodium-glucose co-transporter2 inhibitors go beyond their glycemic advantages to ameliorate the development of NAFLD. However, little research has been done on the underlying mechanisms. Here, we took deep insight into the effect of canagliflozin (CANA), one of the sodium-glucose co-transporter2 inhibitor, on the progression of NAFLD, and explored the molecular mechanisms. Our findings showed that CANA-treated ob/ob and diabetic mice developed improved glucose and insulin tolerance, although their body weights were comparable or even increased compared with the controls. The CANA treatment ameliorated hepatic steatosis and lipid accumulation of free fatty acid-treated AML12 cells, accompanied by decreased lipogenic gene expression and increased fatty acid β oxidation-related gene expression. Furthermore, inflammation and fibrosis genes decreased in the livers of CANA-treated ob/ob and diabetic mice mice. FGF21 and its downstream ERK1/2/AMPK signaling decreased, whereas NLRP3-mediated pyroptosis increased in the livers of the ob/ob and diabetic mice mice, which was reversed by the CANA treatment. In addition, blocking FGF21 or ERK1/2 activity antagonized the effects of CANA on NLRP3-mediated pyroptosis in lipopolysaccharide plus nigericin-treated J774A.1 cells. We conclude that CANA treatment alleviated insulin resistance and the progression of NAFLD in ob/ob and diabetic mice mice independent of the body weight change. CANA protected against the progression of NAFLD by inhibiting NLRP3-mediated pyroptosis and enhancing FGF21-ERK1/2 pathway activity in the liver. These findings suggest the therapeutic potential of sodium-glucose co-transporter2 inhibitors in the treatment of NAFLD.
Collapse
Affiliation(s)
- Shaohan Huang
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Beibei Wu
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yingzi He
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ruojun Qiu
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Tian Yang
- Department of Endocrinology, The Affiliated Fourth Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Shuo Wang
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yongzhen Lei
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hong Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fenping Zheng
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
10
|
Liu J, Wu J, Qiao C, He Y, Xia S, Zheng Y, Lv H. Impact of chronic cold exposure on lung inflammation, pyroptosis and oxidative stress in mice. Int Immunopharmacol 2023; 115:109590. [PMID: 36577159 DOI: 10.1016/j.intimp.2022.109590] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022]
Abstract
Chronic cold exposure, which is the main inducer of lung diseases in high latitudes, affects production efficiency and restricts the development of aquaculture. Although the relationship between cold exposure and susceptibility to the lungs is widely accepted, but the influence between them has not been fully explored. The aim of this study is to understand the underlying mechanism. In the present study, the mice, which are used to establish cold stress (CS)-induced lung injury model, are exposed to cold temperature (4 °C) for 3 h each day for 4 weeks. The results indicate that the expression of heat shock protein 70 (HSP70) is augmented by cold exposure. In addition, chronic cold exposure aggravate the formation of malondialdehyde (MDA) and lead to a significant decrease in the contents of micrococcus catalase (CAT) and glutathione (GSH). Moreover, chronic cold exposure significantly exacerbates the expression of inflammation- and apoptosis-related proteins. The activation of Bax and caspase-3 are significantly augmented. However, that of Bcl-2 is decreased. These results are different from those in room team. The results show that chronic cold exposure plays an important roles in the activation of multiple signaling pathways, such as pyroptosis-related, inflammation-related and oxidative stress-regulated signaling pathways. In summary, these investigations support that chronic cold exposure increase the risk of lung injury by activating inflammation, oxidative stress and pyroptosis.
Collapse
Affiliation(s)
- Jiahe Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jingjing Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Chunyu Qiao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuxi He
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shijie Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuwei Zheng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Hongming Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
11
|
Wei T, Zhang C, Song Y. Molecular mechanisms and roles of pyroptosis in acute lung injury. Chin Med J (Engl) 2022; 135:2417-2426. [PMID: 36583860 PMCID: PMC9945565 DOI: 10.1097/cm9.0000000000002425] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 12/31/2022] Open
Abstract
ABSTRACT Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), which are characterized by excessive inflammation and accompanied by diffuse injury of alveoli, can result in severe respiratory failures. The morbidity and mortality of patients remain high because the major treatments for ALI/ARDS are mainly supportive due to the lack of effective therapies. Numerous studies have demonstrated that the aggravation of coronavirus disease 2019 (COVID-19) leads to severe pneumonia and even ARDS. Pyroptosis, a biological process identified as a type of programed cell death, is mainly triggered by inflammatory caspase activation and is directly meditated by the gasdermin protein family, as well as being associated with the secretion and release of pro-inflammatory cytokines. Clinical and experimental evidence corroborates that pyroptosis of various cells in the lung, such as immune cells and structural cells, may play an important role in the pathogenesis of "cytokine storms" in ALI/ARDS, including those induced by COVID-19. Here, with a focus on ALI/ARDS and COVID-19, we summarized the recent advances in this field and proposed the theory of an inflammatory cascade in pyroptosis to identify new targets and pave the way for new approaches to treat these diseases.
Collapse
Affiliation(s)
- Tianchang Wei
- Department of Pulmonary Medicine, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cuiping Zhang
- Department of Pulmonary Medicine, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China
- Shanghai Respiratory Research Institute, Shanghai 200032, China
- Jinshan Hospital of Fudan University, Shanghai 201508, China
| |
Collapse
|
12
|
Piao C, Sang J, Kou Z, Wang Y, Liu T, Lu X, Jiao Z, Wang H. Effects of Exosomes Derived from Adipose-Derived Mesenchymal Stem Cells on Pyroptosis and Regeneration of Injured Liver. Int J Mol Sci 2022; 23:12065. [PMID: 36292924 PMCID: PMC9602906 DOI: 10.3390/ijms232012065] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 09/01/2023] Open
Abstract
Although accumulating evidence indicates that exosomes have a positive therapeutic effect on hepatic ischemia-reperfusion injury (HIRI), studies focusing on the alleviation of liver injury by exosomes derived from adipose-derived mesenchymal stem cells (ADSCs-Exo) based on the inhibition of cell pyroptosis have not yet been reported. Exosomes contain different kinds of biologically active substances such as proteins, lipids, mRNAs, miRNAs, and signaling molecules. These molecules are widely involved in cell-cell communication, cell signal transmission, proliferation, migration, and apoptosis. Therefore, we investigated the positive effects exerted by ADSCs-Exo after hepatic ischemia-reperfusion with partial resection injury in rats. In this study, we found that the post-operative tail vein injection of ADSCs-Exo could effectively inhibit the expression of pyroptosis-related factors such as NLRP3, ASC, caspase-1, and GSDMD-N, and promote the expression of regeneration-related factors such as Cyclin D1 and VEGF. Moreover, we found that the above cellular activities were associated with the NF-κB and Wnt/β-catenin signaling pathways. According to the results, ADSCs and ADSCs-Exo can reduce pyroptosis in the injured liver and promote the expression of those factors related to liver regeneration, while they can inhibit the NF-κB pathway and activate the Wnt/β-catenin pathway. However, although adipose-derived mesenchymal stem cell (ADSC) transplantation can reduce liver injury, it leads to a significant increase in the pyroptosis-related protein GSDMD-N expression. In conclusion, our study shows that ADSCs-Exo has unique advantages and significance as a cell-free therapy to replace stem cells and still has a broad research prospect in the clinical diagnosis and treatment of liver injuries.
Collapse
Affiliation(s)
- Chenxi Piao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jinfang Sang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhipeng Kou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiangyu Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhihui Jiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150030, China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
13
|
Bai C, Zhu Y, Dong Q, Zhang Y. Chronic intermittent hypoxia induces the pyroptosis of renal tubular epithelial cells by activating the NLRP3 inflammasome. Bioengineered 2022; 13:7528-7540. [PMID: 35263214 PMCID: PMC8973594 DOI: 10.1080/21655979.2022.2047394] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a respiratory disorder and chronic intermittent hypoxia (CIH) is an important pathological characteristic of OSAS. Injuries on renal tubular epithelial cells were observed under the condition of CIH. Pyroptosis is a programmed mode of cell death following cell apoptosis and cell necrosis, which is mediated by NLRP3 signaling. The present study aims to investigate the effects of CIH on the pyroptosis of renal tubular epithelial cells and the underlying mechanism. Firstly, CIH was induced in two renal tubular epithelial cell lines, HK-2 cells and TCMK-1 cells. As the aggravation of hypoxia, an increasing trend of elevated apoptotic rate was observed in HK-2 cells and TCMK-1 cells, accompanied by the excessive release of ROS and LDH, and upregulation of NLRP3. Subsequently, the CIH model was established on rats. The pathological analysis results indicated that in CIH rats, the glomerular bottom membrane and mesangium were slightly thickened and edema was observed in the renal tubule epithelium. More serious injury was observed in the moderate intermittent hypoxia group. The expression level of IL-1β and IL-18 was promoted as the aggravation of hypoxia, accompanied by the elevated production of LDH and ROS. The expression level of cleaved Caspase-1, Caspase-1, GSDMD, TLR4, MyD88, NF-κB, p-NF-κB, and NLRP3 was found significantly upregulated as the aggravation of hypoxia. Lastly, the pathological changes in rats induced by CIH were dramatically abolished by MCC950, a specific inhibitor of NLRP3. Collectively, CIH triggered the pyroptosis of renal tubular epithelial cells by activating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Chunyan Bai
- Division of Geriatrics, Xiangya Second Hospital of Central South University, Changsha City, Hunan Province, China
| | - Yingfei Zhu
- Division of International Medical Services, Xiangya Second Hospital of Central South University, Changsha City, Hunan Province, China
| | - Qiaoliang Dong
- Division of International Medical Services, Xiangya Second Hospital of Central South University, Changsha City, Hunan Province, China
| | - Yuwei Zhang
- Division of International Medical Services, Xiangya Second Hospital of Central South University, Changsha City, Hunan Province, China
| |
Collapse
|
14
|
Yan Z, Da Q, Li Z, Lin Q, Yi J, Su Y, Yu G, Ren Q, Liu X, Lin Z, Qu J, Yin W, Liu J. Inhibition of NEK7 Suppressed Hepatocellular Carcinoma Progression by Mediating Cancer Cell Pyroptosis. Front Oncol 2022; 12:812655. [PMID: 35223495 PMCID: PMC8866693 DOI: 10.3389/fonc.2022.812655] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/07/2022] [Indexed: 02/05/2023] Open
Abstract
NIMA-related kinase 7 (NEK7) is a serine/threonine kinase involved in cell cycle progression via mitotic spindle formation and cytokinesis. It has been related to multiple cancers, including breast cancer, hepatocellular cancer, lung cancer, and colorectal cancer. Moreover, NEK7 regulated the NLRP3 inflammasome to activate Caspase-1, resulting in cell pyroptosis. In the present study, we investigated whether NEK7 is involved in cell pyroptosis of hepatocellular carcinoma (HCC). Interestingly, we found that NEK7 was significantly related to expression of pyroptosis marker GSDMD in HCC. We found that NEK7 expression was significantly correlated with GSDMD expression in bioinformatics analysis, and NEK7 expression was significantly co-expressed with GSDMD in our HCC specimens. Cell viability, migration, and invasion capacity of HCC cell lines were inhibited, and the tumor growth in the xenograft mouse model was also suppressed following knockdown of NEK7 expression. Mechanistic studies revealed that knockdown of NEK7 in HCC cells significantly upregulated the expression of pyroptosis markers such as NLRP3, Caspase-1, and GSDMD. Coculture of HCC cells stimulated hepatic stellate cell activation by increasing p-ERK1/2 and α-SMA. Knockdown of NEK7 impaired the stimulation of HCC cells. Therefore, downregulation of NEK7 inhibited cancer–stromal interaction by triggering cancer cell pyroptosis. Taken together, this study highlights the functional role of NEK7-regulated pyroptosis in tumor progression and cancer–stromal interaction of HCC, suggesting NEK7 as a potential target for a new therapeutic strategy of HCC treatment.
Collapse
Affiliation(s)
- Zilong Yan
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qingen Da
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Zhangfu Li
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qirui Lin
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jing Yi
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yanze Su
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guanyin Yu
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qingqi Ren
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xu Liu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zewei Lin
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jianhua Qu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Weihua Yin
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jikui Liu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
15
|
VX765, a Specific Caspase-1 Inhibitor, Alleviates Lung Ischemia Reperfusion Injury by Suppressing Endothelial Pyroptosis and Barrier Dysfunction. BIOMED RESEARCH INTERNATIONAL 2022; 2021:4525988. [PMID: 34977239 PMCID: PMC8716216 DOI: 10.1155/2021/4525988] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022]
Abstract
Lung ischemia reperfusion injury (LIRI) is a complex pathophysiological process with high morbidity and mortality. An important pathophysiological characteristic of LIRI is endothelial barrier dysfunction, although the mechanism involved in this process remains unclear. VX765, a specific caspase-1 inhibitor, has been shown to have a protective effect against several diseases including sepsis, atherosclerosis, and glial inflammatory disease. The objective of this study was to determine whether VX765 had a protective effect in LIRI. The results showed that lung ischemia/reperfusion (I/R) and oxygen/glucose deprivation and reoxygenation (OGD/R) induced endothelial pyroptosis and barrier dysfunction characterized by an inflammatory response. Treatment with VX765 successfully alleviated I/R- and OGD/R-induced endothelial pyroptosis and barrier dysfunction by inhibiting caspase-1 in vivo and in vitro. In conclusion, these findings showed that VX765 provided effective protection against lung I/R-induced endothelial pyroptosis and barrier dysfunction.
Collapse
|
16
|
Zhang Q, Wan XX, Hu XM, Zhao WJ, Ban XX, Huang YX, Yan WT, Xiong K. Targeting Programmed Cell Death to Improve Stem Cell Therapy: Implications for Treating Diabetes and Diabetes-Related Diseases. Front Cell Dev Biol 2021; 9:809656. [PMID: 34977045 PMCID: PMC8717932 DOI: 10.3389/fcell.2021.809656] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Stem cell therapies have shown promising therapeutic effects in restoring damaged tissue and promoting functional repair in a wide range of human diseases. Generations of insulin-producing cells and pancreatic progenitors from stem cells are potential therapeutic methods for treating diabetes and diabetes-related diseases. However, accumulated evidence has demonstrated that multiple types of programmed cell death (PCD) existed in stem cells post-transplantation and compromise their therapeutic efficiency, including apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. Understanding the molecular mechanisms in PCD during stem cell transplantation and targeting cell death signaling pathways are vital to successful stem cell therapies. In this review, we highlight the research advances in PCD mechanisms that guide the development of multiple strategies to prevent the loss of stem cells and discuss promising implications for improving stem cell therapy in diabetes and diabetes-related diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xin-xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xi-min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wen-juan Zhao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xiao-xia Ban
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yan-xia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
17
|
Ling Y, Xiao M, Huang ZW, Xu H, Huang FQ, Ren NN, Chen CM, Lu DM, Yao XM, Xiao LN, Ma WK. Jinwujiangu Capsule Treats Fibroblast-Like Synoviocytes of Rheumatoid Arthritis by Inhibiting Pyroptosis via the NLRP3/CAPSES/GSDMD Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4836992. [PMID: 34853599 PMCID: PMC8629621 DOI: 10.1155/2021/4836992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 01/16/2023]
Abstract
Jinwujiangu capsule (JWJGC) is a traditional Chinese medicine formula used to treat rheumatoid arthritis (RA). However, whether its mechanism is associated with pyroptosis remains unclear. In this study, the ability of JWJGC to inhibit the growth of fibroblast-like synoviocytes of RA (RA-FLS) through pyroptosis was evaluated. The cells isolated from patients with RA were identified by hematoxylin and eosin (H&E) staining, immunohistochemistry, and flow cytometry. After RA-FLS were treated with different concentrations of JWJGC-containing serum, the cell proliferation inhibition rate, expression of caspase-1/3/4/5, NOD-like receptor protein 3 (NLRP3), gasdermin-D (GSDMD), and apoptosis-associated speck-like protein containing a CARD (ASC), concentrations of interleukin-1β (IL-1β) and interleukin-18 (IL-18), the activity of lactic dehydrogenase (LDH), and pyroptosis were evaluated. The results showed that JWJGC increased the proliferative inhibition rate, decreased the expression of caspase-1/3/4/5, GSDMD, NLRP3, and ASC, suppressed the expression of IL-1β and IL-18, induced the activity of LDH, and downregulated the number of double-positive FITC anti-caspase-1 and PI. Generally, our findings suggest that JWJGC can regulate NLRP3/CAPSES/GSDMD in treating RA-FLS through pyroptosis.
Collapse
Affiliation(s)
- Yi Ling
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| | - Mao Xiao
- Guizhou Anshun People's Hospital, Anshun 561000, Guizhou Province, China
| | - Zhao-Wei Huang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| | - Hui Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| | - Fang-Qin Huang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| | - Ni-Na Ren
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| | - Chang-Ming Chen
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| | - Dao Min Lu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| | - Xue-Ming Yao
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| | - Li-Na Xiao
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| | - Wu-Kai Ma
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| |
Collapse
|
18
|
Wu D, Zhu X, Ao J, Song E, Song Y. Delivery of Ultrasmall Nanoparticles to the Cytosolic Compartment of Pyroptotic J774A.1 Macrophages via GSDMD Nterm Membrane Pores. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50823-50835. [PMID: 34689556 DOI: 10.1021/acsami.1c17382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Endosome capture is a major physiological barrier to the successful delivery of nanomedicine. Here, we found a strategy to deliver ultrasmall nanoparticles (<10 nm) to the cytosolic compartment of pyroptotic cells with spontaneous endosomal escape. To mimic pathological pyroptotic cells, J774A.1 macrophages were stimulated with lipopolysaccharide (LPS) plus nigericin (Nig) or adenosine triphosphate (ATP) to form specific gasdermin D protein-driven membrane pores at an N-terminal domain (GSDMDNterm). Through GSDMDNterm membrane pores, both anionic and cationic nanoparticles (NPs) with diameters less than 10 nm were accessed into the cytosolic compartment of pyroptotic cells in an energy- and receptor-independent manner, while NPs larger than the size of GSDMDNterm membrane pores failed to enter pyroptotic cells. NPs pass through GSDMDNterm membrane pores via free diffusion and then access into the cytoplasm of pyroptotic cells in a microtubule-independent manner. Interestingly, we found that LPS-primed NPs may act as Trojan horse, deliver extracellular LPS into normal cells through endocytosis, and in turn induce GSDMDNterm membrane pores, which facilitate further internalization of NPs. This study presented a straightforward method of distinguishing normal and pyroptotic cells through GSDMD membrane pores, implicating their potential application in monitoring the delivery of desired nanomedicines in pyroptosis-related diseases and conditions.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400715, China
- School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Xinpu District, Zunyi 563003, China
| | - Xiangyu Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Jian Ao
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan 430072, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400715, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| |
Collapse
|
19
|
Mei W, Hong B, Huang G. [Mechanism of high expression of high mobility group protein 1 in a rat model of knee osteoarthritis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1142-1149. [PMID: 34549703 DOI: 10.12122/j.issn.1673-4254.2021.08.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the molecular mechanism triggering pyroptosis of synovial fibroblast-like synoviocytes(FLSs)and the release of high mobility group protein 1(HMGB1)in a rat model of knee osteoarthritis(KOA). METHODS Twelve SD rats were randomized equally into blank control group without any treatment and KOA group with anterior cruciate ligament amputation (ACLT) to induce KOA.HE staining and Mankin score were used to evaluate the damage of knee cartilage.Western blotting was used to detect the expression of pyroptosis-related proteins and HMGB1 in the synovial tissue.In the cell experiment, rat FLSs were treated with PBS (control group), LPS+ATP (to induce cell pyroptosis), or LPS+ATP+siRNAs (to inhibit pyroptosis of the FLSs), and the cellular expressions of apoptosis-related proteins and HMGB1 were detected using Western blotting; the level of HMGB1 in the culture supernatant was detected with ELISA. RESULTS In the rat models of KOA, the expressions of pyroptosis-related proteins and HMGB1 in the synovial tissue and Mankin score were significantly increased as compared with those in the control group(P < 0.05).In cultured rat FLSs, the expressions of apoptosis related proteins and HMGB1 were significantly higher in the pyroptosis group than in the control group and in cells transfected with the siRNAs targeting NLRP1, NLRP3, ASC and caspase-1(P < 0.05).The protein level of HMGB1 in the culture supernatant was significantly higher in pyroptosis group than in the control and siRNA groups (P < 0.05). CONCLUSION In the pathological process of KOA, NLRPs inflammasome-mediated FLS pyroptosis causes massive release of HMGB1, which is associated with the activation of the downstream molecule caspase-1.
Collapse
Affiliation(s)
- W Mei
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - B Hong
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - G Huang
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China
| |
Collapse
|
20
|
Li J, Du W, Xu N, Tao T, Tang X, Huang L. RNA-seq analysis for exploring the pathogenesis of Retinitis pigmentosa in P23H knock-in mice. Ophthalmic Res 2021; 64:798-810. [PMID: 33971646 DOI: 10.1159/000515727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/05/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Jiarui Li
- Eye diseases and Optometry Institute, Department of Ophthalmology, Peking University People's Hospital, Beijing, China,
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China,
- College of Optometry, Peking University Health Science Center, Beijing, China,
| | - Wei Du
- Eye diseases and Optometry Institute, Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Ningda Xu
- Eye diseases and Optometry Institute, Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Tianchang Tao
- Eye diseases and Optometry Institute, Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Xin Tang
- Eye diseases and Optometry Institute, Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Lvzhen Huang
- Eye diseases and Optometry Institute, Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| |
Collapse
|