1
|
Tian X, Yuan L, Zeng Y. Butyrate attenuates SA-AKI by inhibiting pyroptosis via the STING-GSDMD axis. Biochem Biophys Res Commun 2025; 743:151143. [PMID: 39693943 DOI: 10.1016/j.bbrc.2024.151143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is a common and serious complication with high morbidity and mortality. The pathophysiology of SA-AKI is complex. The underlying mechanisms of SA-AKI remain unclear, and effective therapeutic strategies are limited. Butyrate is a type of short-chain fatty acid (SCFA) derived from the gut microbiota that plays a key role in kidney disease. However, the effect of butyrate on SA-AKI and its underlying mechanisms remain unclear. In this study, LPS was used to establish an SA-AKI model in C57BL/6 mice. Our results indicated that butyrate levels were substantially reduced in SA-AKI model mice. Notably, butyrate intervention attenuated kidney injury and inflammation in SA-AKI model mice. Moreover, the levels of NLRP3, STING, and GSDMD (a marker of pyroptosis) were significantly decreased by butyrate intervention. An in vitro model induced by LPS was established using HK-2 cells. Butyrate mitigated pyroptosis and reduced NLRP3, STING, and GSDMD protein expression. Furthermore, STING overexpression abrogated the downregulation of several proteins (NLRP3 and caspase 1) invovled in NLRP3 inflammsome-mediated pyroptosis and weakened the protective effect of butyrate. Hence, butyrate may attenuate SA-AKI by inhibiting pyroptosis via the STING-GSDMD axis, which provides a potential therapeutic strategy for preventing SA-AKI progression.
Collapse
Affiliation(s)
- Xiaofang Tian
- Department of Nephrology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 563000, Zunyi, Guizhou, China; Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 563000, Zunyi, Guizhou, China
| | - Liying Yuan
- Department of Nephrology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 563000, Zunyi, Guizhou, China; Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 563000, Zunyi, Guizhou, China
| | - Yizhou Zeng
- Department of Urology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 563000, Zunyi, China; Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 563000, Zunyi, Guizhou, China.
| |
Collapse
|
2
|
Zhang H, Li X, Bai J, Zhang C. Mice with NOP2/sun RNA methyltransferase 5 deficiency die before reaching puberty due to fatal kidney damage. Ren Fail 2024; 46:2349139. [PMID: 38712768 PMCID: PMC11078075 DOI: 10.1080/0886022x.2024.2349139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND NOP2/Sun RNA methyltransferase 5 (NSUN5) is an RNA methyltransferase that has a broad distribution and plays critical roles in various biological processes. However, our knowledge of the biological functions of NSUN5 in mammals is very limited. Therefore, in this study, we investigate the role of NSUN5 in mice. METHODS In the present research, we built a mouse model (Nsun5-/-) using the CRISPR/Cas9 system to investigated the specific role of NSUN5. RESULTS We observed that Nsun5-/- mice had a reduced body weight compared to wild-type mice. Additionally, their survival rate gradually decreased to 20% after postnatal day (PD) 21. Further examination revealed the Nsun5-/- mice had multiple organ damage, with the most severe damage occurring in the kidneys. Moreover, we observed glycogen deposition and fibrosis, along with a notable shorting of the primary foot processes of glomeruli in Nsun5-/- kidneys. Furthermore, we found that the kidneys of Nsun5-/- mice showed increased expression of the apoptotic signal Caspase-3 and accumulated stronger DNA damage at PD 21. CONCLUSIONS In our study, we found that mice lacking NSUN5 died before puberty due to kidney fatal damage caused by DNA damage and cell apoptosis. These results suggest that NSUN5 plays a vital role in preventing the accumulation of DNA damage and cell apoptosis in the kidney.
Collapse
Affiliation(s)
- Hongya Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xiaohui Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Jing Bai
- Jinan Maternal and Child Health Care Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Cong Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
| |
Collapse
|
3
|
Yang Z, Wei Y, Fu Y, Wang X, Shen W, Shi A, Zhang H, Li H, Song X, Wang J, Jin M, Zheng H, Tao J, Wang Y. Folic acids promote in vitro maturation of bovine oocytes by inhibition of ferroptosis via upregulated glutathione and downregulated Fe 2+ accumulation. Anim Reprod Sci 2024; 270:107605. [PMID: 39362062 DOI: 10.1016/j.anireprosci.2024.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Bovine embryos by in vitro fertilization have become the primary source of commercial embryo transfers globally. However, the developmental capacity of in vitro maturation (IVM) oocytes is considerably lower than that of in vivo maturation (IVO) oocytes, owing to the production of reactive oxygen species (ROS) via mitochondrial metabolism, which was higher in IVM oocytes than in IVO oocytes. To avoid the negative effects of ROS on embryo quality, folic acid (FA) was supplemented directly into the IVM medium to antagonize ROS production, however, the mechanisms remain unknown. In the present study, five levels of FA (0, 25, 50, 100, and 200 µM) were supplemented into the bovine oocyte culture medium. The maturation, cleavage, and blastocyst formation rates increased by 8.95 %, 6.94 %, and 4.36 %, respectively, in the 50 µM group compared to the 0 µM group. Moreover, 7904 differential genes were identified between 0 µM and 50 µM groups by transcriptome sequencing, and they were mainly enriched in 8 pathways. The glutathione, ROS, and Fe2+ levels in oocytes were found to be associated with ferroptosis. Our results revealed that 50 µM FA promoted the IVM of bovine oocytes and affected the expression of genes involved in the ferroptosis pathway. The downregulation of TFR1 and STEAP3 led to a decrease in intracellular Fe2+ accumulation, and the upregulation of GCL increased oocyte GSH levels, thereby reducing the production of ROS in the ferroptosis pathway. Our study provides a new insight into the molecular mechanisms by which FA promotes bovine oocyte development in vitro.
Collapse
Affiliation(s)
- Zhuo Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaochang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yu Fu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xiaoyan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Wenjuan Shen
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - An Shi
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Han Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Heqiang Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xuexiao Song
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jie Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Mengdong Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Hao Zheng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jinzhong Tao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
4
|
Yang B, Cao L, Ge K, Lv C, Zhao Z, Zheng T, Gao S, Zhang J, Wang T, Jiang J, Qin Y. FeSA‐Ir/Metallene Nanozymes Induce Sequential Ferroptosis‐Pyroptosis for Multi‐Immunogenic Responses Against Lung Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401110. [PMID: 38874051 DOI: 10.1002/smll.202401110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/01/2024] [Indexed: 06/15/2024]
Abstract
For cancer metastasis inhibition, the combining of nanozymes with immune checkpoint blockade (ICB) therapy remains the major challenge in controllable reactive oxygen species (ROS) generation for creating effective immunogenicity. Herein, new nanozymes with light-controlled ROS production in terms of quantity and variety are developed by conjugating supramolecular-wrapped Fe single atom on iridium metallene with lattice-strained nanoislands (FeSA-Ir@PF NSs). The Fenton-like catalysis of FeSA-Ir@PF NSs effectively produced •OH radicals in dark, which induced ferroptosis and apoptosis of cancer cells. While under second near-infrared (NIR-II) light irradiation, FeSA-Ir@PF NSs showed ultrahigh photothermal conversion efficiency (𝜂, 75.29%), cooperative robust •OH generation, photocatalytic O2 and 1O2 generation, and caused significant pyroptosis of cancer cells. The controllable ROS generation, sequential cancer cells ferroptosis and pyroptosis, led 99.1% primary tumor inhibition and multi-immunogenic responses in vivo. Most importantly, the inhibition of cancer lung metastasis is completely achieved by FeSA-Ir@PF NSs with immune checkpoint inhibitors, as demonstrated in different mice lung metastasis models, including circulating tumor cells (CTCs) model. This work provided new inspiration for developing nanozymes for cancer treatments and metastasis inhibition.
Collapse
Affiliation(s)
- Baochan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Lingzhi Cao
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Kun Ge
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Chaofan Lv
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Zunling Zhao
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shutao Gao
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Jinchao Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Qin
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
5
|
Wang L, Shao Z, Wang N, Liu W, Zhang L, Wang Y, Tan J, Jiao X, Liu L, Yan L, Chen S, Cao H, Shao F. Receptor-interacting protein kinase 1 confers autophagic promotion of gasdermin E-mediated pyroptosis in aristolochic acid-induced acute kidney injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116944. [PMID: 39208575 DOI: 10.1016/j.ecoenv.2024.116944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Aristolochic acid (AA) exposure is a severe public health concern worldwide. AAs damage the kidney with an inevitable acute phase that is similar to acute kidney injury (AKI). Gasdermin E (GSDME) is abundant in the kidney; thus; it-mediated pyroptosis might be essential in connecting cell death and inflammation and promoting AAs-AKI. However, the role and exact mechanism of pyroptosis in AAs-AKI have not been investigated. In this study, aristolochic acid I (AAI) was used to establish AKI models. The expression and translocation results showed GSDME-mediated pyroptosis in AAI-AKI. Knocking down GSDME attenuated AAI-induced cell death and transcription of proinflammatory cytokines. Mechanistic research inhibiting caspase (casp) 3, casp 8, and casp 9 with specific chemical antagonists demonstrated that GSDME was activated by cleaved casp 3. Furthermore, the kinase activity of upstream receptor-interacting protein kinase 1 (RIPK1) was significantly elevated, and inhibiting RIPK1 with specific inhibitors markedly improved AAI-induced cell damage. In addition, the level of autophagy was obviously increased. Pretreatment with a specific autophagic inhibitor (3-methyladenine) or knockdown of autophagic genes (Atg5 or Atg7) evidently reduced the activity of RIPK1 and downstream apoptosis and pyroptosis, thus attenuating AA-induced cell injury, which suggested that RIPK1 was a novel link conferring autophagic promotion of pyroptosis. These findings reveal GSDME-mediated pyroptosis for the first time in AAI-induced AKI, propose its novel role in the transcription of cytokines, and demonstrate that autophagy promotes pyroptosis via the RIPK1-dependent apoptotic pathway. This study promotes the understanding of the toxic effects and exact mechanisms of AAs. This will contribute to evaluating the environmental risk of AA exposure and might provide potential therapeutic targets for AA-AKI.
Collapse
Affiliation(s)
- Limeng Wang
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450053, China
| | - Zehua Shao
- Children's Heart Center, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450053, China
| | - Ning Wang
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450053, China
| | - Wenna Liu
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450053, China; Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan 451464, China
| | - Lina Zhang
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450053, China
| | - Yanliang Wang
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450053, China
| | - Jing Tan
- Department of Internal Medicine, Henan Medical College, Longhu Town, Zhengzhou, Henan 451191, China
| | - Xiaojing Jiao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450053, China
| | - Lu Liu
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450053, China
| | - Lei Yan
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450053, China
| | - Song Chen
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450053, China.
| | - Huixia Cao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450053, China.
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450053, China.
| |
Collapse
|
6
|
Liu Y, Pan R, Ouyang Y, Gu W, Xiao T, Yang H, Tang L, Wang H, Xiang B, Chen P. Pyroptosis in health and disease: mechanisms, regulation and clinical perspective. Signal Transduct Target Ther 2024; 9:245. [PMID: 39300122 DOI: 10.1038/s41392-024-01958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Pyroptosis is a type of programmed cell death characterized by cell swelling and osmotic lysis, resulting in cytomembrane rupture and release of immunostimulatory components, which play a role in several pathological processes. Significant cellular responses to various stimuli involve the formation of inflammasomes, maturation of inflammatory caspases, and caspase-mediated cleavage of gasdermin. The function of pyroptosis in disease is complex but not a simple angelic or demonic role. While inflammatory diseases such as sepsis are associated with uncontrollable pyroptosis, the potent immune response induced by pyroptosis can be exploited as a therapeutic target for anti-tumor therapy. Thus, a comprehensive review of the role of pyroptosis in disease is crucial for further research and clinical translation from bench to bedside. In this review, we summarize the recent advancements in understanding the role of pyroptosis in disease, covering the related development history, molecular mechanisms including canonical, non-canonical, caspase 3/8, and granzyme-mediated pathways, and its regulatory function in health and multiple diseases. Moreover, this review also provides updates on promising therapeutic strategies by applying novel small molecule inhibitors and traditional medicines to regulate pyroptosis. The present dilemmas and future directions in the landscape of pyroptosis are also discussed from a clinical perspective, providing clues for scientists to develop novel drugs targeting pyroptosis.
Collapse
Affiliation(s)
- Yifan Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Oncology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Renjie Pan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Yuzhen Ouyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Neurology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Ling Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Bo Xiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| |
Collapse
|
7
|
Li ZL, Li XY, Zhou Y, Wang B, Lv LL, Liu BC. Renal tubular epithelial cells response to injury in acute kidney injury. EBioMedicine 2024; 107:105294. [PMID: 39178744 PMCID: PMC11388183 DOI: 10.1016/j.ebiom.2024.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid and significant decrease in renal function that can arise from various etiologies, and is associated with high morbidity and mortality. The renal tubular epithelial cells (TECs) represent the central cell type affected by AKI, and their notable regenerative capacity is critical for the recovery of renal function in afflicted patients. The adaptive repair process initiated by surviving TECs following mild AKI facilitates full renal recovery. Conversely, when injury is severe or persistent, it allows the TECs to undergo pathological responses, abnormal adaptive repair and phenotypic transformation, which will lead to the development of renal fibrosis. Given the implications of TECs fate after injury in renal outcomes, a deeper understanding of these mechanisms is necessary to identify promising therapeutic targets and biomarkers of the repair process in the human kidney.
Collapse
Affiliation(s)
- Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Xin-Yan Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yan Zhou
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Li Y, He Y, Yang F, Liang R, Xu W, Li Y, Cheng J, Liang B, Tang M, Shi X, Zhuang J, Luo M, Li L, Zhang R, Liu H, Jie H, Li X, Han X, Sun E, Zhai Z. Gasdermin E-mediated keratinocyte pyroptosis participates in the pathogenesis of psoriasis by promoting skin inflammation. Br J Dermatol 2024; 191:385-396. [PMID: 38655652 DOI: 10.1093/bjd/ljae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Psoriasis is a common chronic inflammatory disease with an unclear aetiology. Keratinocytes in psoriasis are susceptible to exogenous triggers that induce inflammatory cell death. OBJECTIVES To investigate whether gasdermin E (GSDME)-mediated pyroptosis in keratinocytes contributes to the pathogenesis of psoriasis. METHODS Skin samples from patients with psoriasis and from healthy controls were collected to evaluate the expression of GSDME, cleaved caspase-3 and inflammatory factors. We then analysed the data series GSE41662 to further compare the expression of GSDME between lesional and nonlesional skin samples in those with psoriasis. In vivo, a caspase-3 inhibitor and GSDME-deficient mice (Gsdme-/-) were used to block caspase-3/GSDME activation in an imiquimod-induced psoriasis model. Skin inflammation, disease severity and pyroptosis-related proteins were analysed. In vitro, tumour necrosis factor (TNF)-α-induced caspase-3/GSDME-mediated pyroptosis in the HACAT cell line was explored. RESULTS Our analysis of the GSE41662 data series found that GSDME was upregulated in psoriasis lesions vs. normal skin. High levels of inflammatory cytokines such as interleukin (IL)-1β, IL-6 and TNF-α were also found in psoriasis lesions. In mice in the Gsdme-/- and caspase-3 inhibitor groups, the severity of skin inflammation was attenuated and GSDME and cleaved caspase-3 levels decreased after imiquimod treatment. Similarly, IL-1β, IL-6 and TNF-α expression was decreased in the Gsdme-/- and caspase-3 inhibitor groups. In vitro, TNF-α induced HACAT cell pyroptosis through caspase-3/GSDME pathway activation, which was suppressed by blocking caspase-3 or silencing Gsdme. CONCLUSIONS Our study provides a novel explanation of TNF-α/caspase-3/GSDME-mediated keratinocyte pyroptosis in the initiation and -acceleration of skin inflammation and the progression of psoriasis.
Collapse
Affiliation(s)
- Yingfei Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Fangyuan Yang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Rongmei Liang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wenchao Xu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yehao Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jingbo Cheng
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Baozhu Liang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ming Tang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xingliang Shi
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jian Zhuang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Minshuang Luo
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Liuying Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ruilin Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Huijuan Liu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hongyu Jie
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xing Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinai Han
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zeqing Zhai
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Clinical Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Chen Y, Wu MF, Xie MM, Lu Y, Li C, Xie SS, Ma WX, Ji ML, Hou R, Dong ZH, He RB, Zhang MM, Lu H, Gao L, Wen JG, Jin J, Dong XW, Che JX, Meng XM. Cpd-A1 alleviates acute kidney injury by inhibiting ferroptosis. Acta Pharmacol Sin 2024; 45:1673-1685. [PMID: 38641746 PMCID: PMC11272937 DOI: 10.1038/s41401-024-01277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/25/2024] [Indexed: 04/21/2024] Open
Abstract
Acute kidney injury (AKI) is defined as sudden loss of renal function characterized by increased serum creatinine levels and reduced urinary output with a duration of 7 days. Ferroptosis, an iron-dependent regulated necrotic pathway, has been implicated in the progression of AKI, while ferrostatin-1 (Fer-1), a selective inhibitor of ferroptosis, inhibited renal damage, oxidative stress and tubular cell death in AKI mouse models. However, the clinical translation of Fer-1 is limited due to its lack of efficacy and metabolic instability. In this study we designed and synthesized four Fer-1 analogs (Cpd-A1, Cpd-B1, Cpd-B2, Cpd-B3) with superior plasma stability, and evaluated their therapeutic potential in the treatment of AKI. Compared with Fer-1, all the four analogs displayed a higher distribution in mouse renal tissue in a pharmacokinetic assay and a more effective ferroptosis inhibition in erastin-treated mouse tubular epithelial cells (mTECs) with Cpd-A1 (N-methyl-substituted-tetrazole-Fer-1 analog) being the most efficacious one. In hypoxia/reoxygenation (H/R)- or LPS-treated mTECs, treatment with Cpd-A1 (0.25 μM) effectively attenuated cell damage, reduced inflammatory responses, and inhibited ferroptosis. In ischemia/reperfusion (I/R)- or cecal ligation and puncture (CLP)-induced AKI mouse models, pre-injection of Cpd-A1 (1.25, 2.5, 5 mg·kg-1·d-1, i.p.) dose-dependently improved kidney function, mitigated renal tubular injury, and abrogated inflammation. We conclude that Cpd-A1 may serve as a promising therapeutic agent for the treatment of AKI.
Collapse
Affiliation(s)
- Ying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ming-Fei Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Man-Man Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Wen-Xian Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ming-Lu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Rui Hou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ze-Hui Dong
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230061, China
| | - Ruo-Bing He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Meng-Meng Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Hao Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Juan Jin
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Wu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Xin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
10
|
Long Y, Jia X, Chu L. Insight into the structure, function and the tumor suppression effect of gasdermin E. Biochem Pharmacol 2024; 226:116348. [PMID: 38852642 DOI: 10.1016/j.bcp.2024.116348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Gasdermin E (GSDME), which is also known as DFNA5, was first identified as a deafness-related gene that is expressed in cochlear hair cells, and mutation of this gene causes autosomal dominant neurogenic hearing loss. Later studies revealed that GSDME is mostly expressed in the kidney, placenta, muscle and brain cells, but it is expressed at low levels in tumor cells. The GSDME gene encodes the GSDME protein, which is a member of the gasdermin (GSDM) family and has been shown to participate in the induction of apoptosis and pyroptosis. The current literature suggests that Caspase-3 and Granzyme B (Gzm B) can cleave GSDME to generate the active N-terminal fragment (GSDME-NT), which integrates with the cell membrane and forms pores in this membrane to induce pyroptosis. Furthermore, GSDME also forms pores in mitochondrial membranes to release apoptosis factors, such as cytochrome c (Cyt c) and high-temperature requirement protein A2 (HtrA2/Omi), and subsequently activates the intrinsic apoptosis pathway. In recent years, GSDME has been shown to exert tumor-suppressive effects, suggesting that it has potential therapeutic effects on tumors. In this review, we introduce the structure and function of GSDME and the mechanism by which it induces cell death, and we discuss its tumor suppressive effect.
Collapse
Affiliation(s)
- Yuge Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
11
|
Chen Z, Chen C, Lai K, Wu C, Wu F, Chen Z, Ye K, Xie J, Ma H, Chen H, Wang Y, Xu Y. GSDMD and GSDME synergy in the transition of acute kidney injury to chronic kidney disease. Nephrol Dial Transplant 2024; 39:1344-1359. [PMID: 38244230 DOI: 10.1093/ndt/gfae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND AND HYPOTHESIS Acute kidney injury (AKI) could progress to chronic kidney disease (CKD) and the AKI-CKD transition has major clinical significance. A growing body of evidence has unveiled the role of pyroptosis in kidney injury. We postulate that GSDMD and GSDME exert cumulative effects on the AKI-CKD transition by modulating different cellular responses. METHODS We established an AKI-CKD transition model induced by folic acid in wildtype (WT), Gsdmd-/-, Gsdme-/-, and Gsdmd-/-Gsdme-/- mice. Tubular injury, renal fibrosis and inflammatory responses were evaluated. In vitro studies were conducted to investigate the interplay among tubular cells, neutrophils, and macrophages. RESULTS Double deletion of Gsdmd and Gsdme conferred heightened protection against AKI, mitigating inflammatory responses, including the formation of neutrophil extracellular traps (NETs), macrophage polarization and differentiation, and ultimately renal fibrosis, compared with wildtype mice and mice with single deletion of either Gsdmd or Gsdme. Gsdme, but not Gsdmd deficiency, shielded tubular cells from pyroptosis. GSDME-dependent tubular cell death stimulated NETs formation and prompted macrophage polarization towards a pro-inflammatory phenotype. Gsdmd deficiency suppressed NETs formation and subsequently hindered NETs-induced macrophage-to-myofibroblast transition (MMT). CONCLUSION GSDMD and GSDME collaborate to contribute to AKI and subsequent renal fibrosis induced by folic acid. Synchronous inhibition of GSDMD and GSDME could be an innovative therapeutic strategy for mitigating the AKI-CKD transition.
Collapse
Affiliation(s)
- Zhengyue Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Caiming Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Kunmei Lai
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chengkun Wu
- School of Medicine, Nankai University, Tianjin, China
| | - Fan Wu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhimin Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Keng Ye
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jingzhi Xie
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huabin Ma
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hong Chen
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yujia Wang
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Zuo Z, Luo M, Liu Z, Liu T, Wang X, Huang X, Li S, Wu H, Pan Q, Chen T, Yang L, Liu HF. Selenium nanoparticles alleviate renal ischemia/reperfusion injury by inhibiting ferritinophagy via the XBP1/NCOA4 pathway. Cell Commun Signal 2024; 22:376. [PMID: 39061070 PMCID: PMC11282718 DOI: 10.1186/s12964-024-01751-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Acute kidney injury (AKI) is closely related to lysosomal dysfunction and ferroptosis in renal tubular epithelial cells (TECs), for which effective treatments are urgently needed. Although selenium nanoparticles (SeNPs) have emerged as promising candidates for AKI therapy, their underlying mechanisms have not been fully elucidated. Here, we investigated the effect of SeNPs on hypoxia/reoxygenation (H/R)-induced ferroptosis and lysosomal dysfunction in TECs in vitro and evaluated their efficacy in a murine model of ischemia/reperfusion (I/R)-AKI. We observed that H/R-induced ferroptosis was accompanied by lysosomal Fe2+ accumulation and dysfunction in TECs, which was ameliorated by SeNPs administration. Furthermore, SeNPs protected C57BL/6 mice against I/R-induced inflammation and ferroptosis. Mechanistically, we found that lysosomal Fe2+ accumulation and ferroptosis were associated with the excessive activation of NCOA4-mediated ferritinophagy, a process mitigated by SeNPs through the upregulation of X-box binding protein 1 (XBP1). Downregulation of XBP1 promoted ferritinophagy and partially counteracted the protective effects of SeNPs on ferroptosis inhibition in TECs. Overall, our findings revealed a novel role for SeNPs in modulating ferritinophagy, thereby improving lysosomal function and attenuating ferroptosis of TECs in I/R-AKI. These results provide evidence for the potential application of SeNPs as therapeutic agents for the prevention and treatment of AKI.
Collapse
Affiliation(s)
- Zhenying Zuo
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mianna Luo
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhongyu Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ting Liu
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Xi Wang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shangmei Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hongluan Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Lawei Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
13
|
Duan S, Ding Z, Liu C, Wang X, Dai E. Icariin suppresses nephrotic syndrome by inhibiting pyroptosis and epithelial-to-mesenchymal transition. PLoS One 2024; 19:e0298353. [PMID: 38995910 PMCID: PMC11244770 DOI: 10.1371/journal.pone.0298353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/22/2024] [Indexed: 07/14/2024] Open
Abstract
CONTEXT Nephrotic syndrome(NS) has emerged as a worldwide public health problem. Renal fibrosis is the most common pathological change from NS to end-stage renal failure, seriously affecting the prognosis of renal disease. Although tremendous efforts have been made to treat NS, specific drug therapies to delay the progression of NS toward end-stage renal failure are limited. Epimedium is generally used to treat kidney disease in traditional Chinese medicine. Icariin is a principal active component of Epimedium. METHODS We used Sprague Dawley rats to establish NS models by injecting doxorubicin through the tail vein. Then icariin and prednisone were intragastric administration. Renal function was examined by an automatic biochemical analyzer. Pathology of the kidney was detected by Hematoxylin-Eosin and Masson staining respectively. Furthermore, RT-PCR, Enzyme-Linked Immunosorbent Assay, Immunohistochemistry, Western Blot and Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling staining were employed to detect the proteins related to pyroptosis and EMT. HK-2 cells exposed to doxorubicin were treated with icariin, and cell viability was assessed using the MTT. EMT was assessed using Enzyme-Linked Immunosorbent Assay and Western Blot. RESULTS The study showed that icariin significantly improved renal function and renal fibrosis in rats. In addition, icariin effectively decreased NOD-like receptor thermal protein domain associated protein 3,Caspase-1, Gasdermin D, Ly6C, and interleukin (IL)-1β. Notably, treatment with icariin also inhibited the levels of TGF-β, α-SMA and E-cadherin. DISCUSSION AND CONCLUSIONS It is confirmed that icariin can improve renal function and alleviate renal fibrosis by inhibiting pyroptosis and the mechanism may be related to epithelial-to-mesenchymal transition. Icariin treatment might be recommended as a new approach for NS.
Collapse
Affiliation(s)
- Shuwen Duan
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhaoran Ding
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Can Liu
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaohui Wang
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Enlai Dai
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
14
|
Noh MR, Padanilam BJ. Cell death induced by acute renal injury: a perspective on the contributions of accidental and programmed cell death. Am J Physiol Renal Physiol 2024; 327:F4-F20. [PMID: 38660714 PMCID: PMC11390133 DOI: 10.1152/ajprenal.00275.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
The involvement of cell death in acute kidney injury (AKI) is linked to multiple factors including energy depletion, electrolyte imbalance, reactive oxygen species, inflammation, mitochondrial dysfunction, and activation of several cell death pathway components. Since our review in 2003, discussing the relative contributions of apoptosis and necrosis, several other forms of cell death have been identified and are shown to contribute to AKI. Currently, these various forms of cell death can be fundamentally divided into accidental cell death and regulated or programmed cell death based on functional aspects. Several death initiator and effector molecules switch molecules that may act as signaling components triggering either death or protective mechanisms or alternate cell death pathways have been identified as part of the machinery. Intriguingly, several of these cell death pathways share components and signaling pathways suggesting complementary or compensatory functions. Thus, defining the cross talk between distinct cell death pathways and identifying the unique molecular effectors for each type of cell death may be required to develop novel strategies to prevent cell death. Furthermore, depending on the multiple forms of cell death simultaneously induced in different AKI settings, strategies for combination therapies that block multiple cell death pathways need to be developed to completely prevent injury, cell death, and renal function. This review highlights the various cell death pathways, cross talk, and interactions between different cell death modalities in AKI.
Collapse
Affiliation(s)
- Mi Ra Noh
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Babu J Padanilam
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
15
|
Kozlovski I, Jaimes-Becerra A, Sharoni T, Lewandowska M, Karmi O, Moran Y. Induction of apoptosis by double-stranded RNA was present in the last common ancestor of cnidarian and bilaterian animals. PLoS Pathog 2024; 20:e1012320. [PMID: 39012849 PMCID: PMC11251625 DOI: 10.1371/journal.ppat.1012320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Apoptosis, a major form of programmed cell death, is an essential component of host defense against invading intracellular pathogens. Viruses encode inhibitors of apoptosis to evade host responses during infection, and to support their own replication and survival. Therefore, hosts and their viruses are entangled in a constant evolutionary arms race to control apoptosis. Until now, apoptosis in the context of the antiviral immune system has been almost exclusively studied in vertebrates. This limited phyletic sampling makes it impossible to determine whether a similar mechanism existed in the last common ancestor of animals. Here, we established assays to probe apoptosis in the sea anemone Nematostella vectensis, a model species of Cnidaria, a phylum that diverged approximately 600 million years ago from the rest of animals. We show that polyinosinic:polycytidylic acid (poly I:C), a synthetic long double-stranded RNA mimicking viral RNA and a primary ligand for the vertebrate RLR melanoma differentiation-associated protein 5 (MDA5), is sufficient to induce apoptosis in N. vectensis. Furthermore, at the transcriptomic level, apoptosis related genes are significantly enriched upon poly(I:C) exposure in N. vectensis as well as bilaterian invertebrates. Our phylogenetic analysis of caspase family genes in N. vectensis reveals conservation of all four caspase genes involved in apoptosis in mammals and revealed a cnidarian-specific caspase gene which was strongly upregulated. Altogether, our findings suggest that apoptosis in response to a viral challenge is a functionally conserved mechanism that can be traced back to the last common ancestor of Bilateria and Cnidaria.
Collapse
Affiliation(s)
- Itamar Kozlovski
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adrian Jaimes-Becerra
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ton Sharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ola Karmi
- Research Infrastructure Facility, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
16
|
Fan Q, Li R, Wei H, Xue W, Li X, Xia Z, Zhao L, Qiu Y, Cui D. Research Progress of Pyroptosis in Diabetic Kidney Disease. Int J Mol Sci 2024; 25:7130. [PMID: 39000237 PMCID: PMC11241146 DOI: 10.3390/ijms25137130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Pyroptosis, known as one typical mode of programmed cell death, is generally characterized by the cleaved gasdermin family (GSDMs) forming pores in the cell membrane and inducing cell rupture, and the activation of aspartate-specific proteases (caspases) has also been found during this process. Diabetic Kidney Disease (DKD) is caused by the complication of diabetes in the kidney, and the most important kidney's function, Glomerular Filtration Rate (GFR), happens to drop to less than 90% of its usual and even lead to kidney failure in severe cases. The persistent inflammatory state induced by high blood glucose implies the key pathology of DKD, and growing evidence shows that pyroptosis serves as a significant contributor to this chronic immune-mediated inflammatory disorder. Currently, the expanded discovery of GSDMs, pyroptosis, and its association with innate immunity has been more attractive, and overwhelming research is needed to sort out the implication of pyroptosis in DKD pathology. In this review, we comb both classical studies and newly founds on pyroptosis, prick off the novel awakening of pyroptosis in DKD, and center on the significance of pyroptosis in DKD treatment, aiming to provide new research targets and treatment strategies on DKD.
Collapse
Affiliation(s)
- Qingqing Fan
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Rongxuan Li
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Huiting Wei
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Weiyue Xue
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Xiang Li
- Department of Physical Education, Jiangnan University, Wuxi 214122, China
| | - Ziyao Xia
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Le Zhao
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Ye Qiu
- The State Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410000, China
| | - Di Cui
- Department of Physical Education, Hunan University, Changsha 410000, China
- The State Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410000, China
| |
Collapse
|
17
|
Shu HM, Lin CQ, He B, Wang W, Wang L, Wu T, He HJ, Wang HJ, Zhou HP, Ding GZ. Pyroptosis-Related Genes as Diagnostic Markers in Chronic Obstructive Pulmonary Disease and Its Correlation with Immune Infiltration. Int J Chron Obstruct Pulmon Dis 2024; 19:1491-1513. [PMID: 38957709 PMCID: PMC11217143 DOI: 10.2147/copd.s438686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) stands as a predominant cause of global morbidity and mortality. This study aims to elucidate the relationship between pyroptosis-related genes (PRGs) and COPD diagnosis in the context of immune infiltration, ultimately proposing a PRG-based diagnostic model for predicting COPD outcomes. Methods Clinical data and PRGs of COPD patients were sourced from the GEO database. The "ConsensusClusterPlus" package was employed to generate molecular subtypes derived from PRGs that were identified through differential expression analysis and LASSO Cox analysis. A diagnostic signature including eight genes (CASP4, CASP5, ELANE, GPX4, NLRP1, GSDME, NOD1and IL18) was also constructed. Immune cell infiltration calculated by the ESTIMATE score, Stroma scores and Immune scores were also compared on the basis of pyroptosis-related molecular subtypes and the risk signature. We finally used qRT - PCR to detect the expression levels of eight genes in COPD patient and normal. Results The diagnostic model, anchored on eight PRGs, underwent validation with an independent experimental cohort. The area under the receiver operating characteristic (ROC) curves (AUC) for the diagnostic model showcased values of 0.809, 0.765, and 0.956 for the GSE76925, GSE8545, and GSE5058 datasets, respectively. Distinct expression patterns and clinical attributes of PRGs were observed between the comparative groups, with functional analysis underscoring a disparity in immune-related functions between them. Conclusion In this study, we developed a potential as diagnostic biomarkers for COPD and have a significant role in modulating the immune response. Such insights pave the way for novel diagnostic and therapeutic strategies for COPD.
Collapse
Affiliation(s)
- Hong-Mei Shu
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Chang-Qing Lin
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Bei He
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Wang Wang
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Ling Wang
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Ting Wu
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Hai-Juan He
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Hui-Juan Wang
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - He-Ping Zhou
- Neurosurgery Department, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Guo-Zheng Ding
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| |
Collapse
|
18
|
Dong W, Zhang K, Wang X, Li J, Zou H, Yuan Y, Gu J, Zhu J, Liu G, Liu Z, Song R. SIRT1 alleviates Cd nephrotoxicity through NF-κB/p65 deacetylation-mediated pyroptosis in rat renal tubular epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172392. [PMID: 38608885 DOI: 10.1016/j.scitotenv.2024.172392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Cadmium (Cd) is a widely distributed environmental pollutant, primarily causing nephrotoxicity through renal proximal tubular cell impairment. Pyroptosis is an inflammation-related nucleotide-binding oligomerization segment-like receptor family 3 (NLRP3)-dependent pathway for programmed cell death. We previously reported that inappropriate inflammation caused by Cd is a major contributor to kidney injury. Therefore, research on Cd-induced inflammatory response and pyroptosis may clarify the mechanisms underlying Cd-induced nephrotoxicity. In this study, we observed that Cd-induced nephrotoxicity is associated with NLRP3 inflammasome activation, leading to an increase in proinflammatory cytokine expression and secretion, as well as pyroptosis-related gene upregulation, both in primary rat proximal tubular (rPT) cells and kidney tissue from Cd-treated rats. In vitro, these effects were significantly abrogated through siRNA-based Nlrp3 silencing; thus, Cd may trigger pyroptosis through an NLRP3 inflammasome-dependent pathway. Moreover, Cd exposure considerably elevated reactive oxygen species (ROS) content. N-acetyl-l-cysteine, an ROS scavenger, mitigated Cd-induced NLRP3 inflammasome activation and subsequent pyroptosis. Mechanistically, Cd hindered the expression and deacetylase activity of SIRT1, eventually leading to a decline in SIRT1-p65 interactions, followed by an elevation in acetylated p65 levels. The administration of resveratrol (a SIRT1 agonist) or overexpression of Sirt1 counteracted Cd-induced RELA/p65/NLRP3 pathway activation considerably, leading to pyroptosis. This is the first study to reveal significant contributions of SIRT1-triggered p65 deacetylation to pyroptosis and its protective effects against Cd-induced chronic kidney injury. Our results may aid in developing potential therapeutic strategies for preventing Cd-induced pyroptosis through SIRT1-mediated p65 deacetylation.
Collapse
Affiliation(s)
- Wenxuan Dong
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China; College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Xueru Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jiahui Li
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
19
|
Ji Y, Wang H, Liu X, Zhu Z, Song A, Chen L, Ren J. Targeted inhibition of pyroptosis via a carbonized nanoinhibitor for alleviating drug-induced acute kidney injury. J Mater Chem B 2024; 12:5609-5618. [PMID: 38764416 DOI: 10.1039/d4tb00382a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Pyroptosis is a form of pro-inflammatory programmed cell death and it represents a potential therapeutic target for alleviating drug-induced acute kidney injury (AKI). However, there is a lack of effective and kidney-targeted pyroptosis inhibitors for AKI treatment so far. Herein, we report a pharmacologically active carbonized nanoinhibitor (P-RCDs) derived from 3,4',5-trihydroxystilbene that can preferentially accumulate in the kidneys and ameliorate chemotherapeutic drug-induced AKI by inhibiting pyroptosis. In particular, such a carbonized nanoformulation enables the transfer of desired pyroptosis inhibitory activity as well as the radical eliminating activity to the nanoscale, endowing P-RCDs with a favorable kidney-targeting ability. In cisplatin-induced AKI mice, P-RCDs can not only pharmacologically inhibit GSDME-mediated pyroptosis in renal cells with high efficacy, but also exhibit high antioxidative activity that protects the kidneys from oxidative injury. The present study proposes a feasible but efficacious strategy to construct versatile carbonized nanomedicine for targeted delivery of the desired pharmacological activities.
Collapse
Affiliation(s)
- Yanjun Ji
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Xinchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Zitong Zhu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Anjun Song
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Li Chen
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
20
|
Wu L, Chang E, Zhao H, Ma D. Regulated cell death in hypoxic-ischaemic encephalopathy: recent development and mechanistic overview. Cell Death Discov 2024; 10:277. [PMID: 38862503 PMCID: PMC11167026 DOI: 10.1038/s41420-024-02014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
Hypoxic-ischaemic encephalopathy (HIE) in termed infants remains a significant cause of morbidity and mortality worldwide despite the introduction of therapeutic hypothermia. Depending on the cell type, cellular context, metabolic predisposition and insult severity, cell death in the injured immature brain can be highly heterogenous. A continuum of cell death exists in the H/I-injured immature brain. Aside from apoptosis, emerging evidence supports the pathological activation of necroptosis, pyroptosis and ferroptosis as alternative regulated cell death (RCD) in HIE to trigger neuroinflammation and metabolic disturbances in addition to cell loss. Upregulation of autophagy and mitophagy in HIE represents an intrinsic neuroprotective strategy. Molecular crosstalk between RCD pathways implies one RCD mechanism may compensate for the loss of function of another. Moreover, mitochondrion was identified as the signalling "hub" where different RCD pathways converge. The highly-orchestrated nature of RCD makes them promising therapeutic targets. Better understanding of RCD mechanisms and crosstalk between RCD subtypes likely shed light on novel therapy development for HIE. The identification of a potential RCD converging node may open up the opportunity for simultaneous and synergistic inhibition of cell death in the immature brain.
Collapse
Affiliation(s)
- Lingzhi Wu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Enqiang Chang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
- Perioperative and Systems Medicine Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| |
Collapse
|
21
|
Liu X, Lieberman J. Inflammasome-independent pyroptosis. Curr Opin Immunol 2024; 88:102432. [PMID: 38875738 DOI: 10.1016/j.coi.2024.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
Gasdermins are membrane pore-forming proteins that cause pyroptosis, an inflammatory cell death in which cells burst and release cytokines, chemokines, and other host alarm signals, such as ATP and HMGB1, which recruit and activate immune cells at sites of infection and danger. There are five gasdermins in humans - gasdermins A to E. Pyroptosis was first described in myeloid cells and mucosal epithelia, which express gasdermin D and activate it when cytosolic sensors of invasive infection or tissue damage assemble into large macromolecular structures, called inflammasomes. Inflammasomes recruit and activate inflammatory caspases (caspase 1, 4, 5, and 11), which cut gasdermin D to remove an inhibitory C-terminal domain, allowing the N-terminal domain to bind to membrane acidic lipids and oligomerize into pores. Recent studies have identified inflammasome-independent proteolytic pathways that activate gasdermin D and the other gasdermins. Here, we review inflammasome-independent pyroptosis pathways and what is known about their role in normal physiology and disease.
Collapse
Affiliation(s)
- Xing Liu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Zhu X, Shi Z, Mao Y, Lächelt U, Huang R. Cell Membrane Perforation: Patterns, Mechanisms and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310605. [PMID: 38344881 DOI: 10.1002/smll.202310605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Indexed: 02/21/2024]
Abstract
Cell membrane is crucial for the cellular activities, and any disruption to it may affect the cells. It is demonstrated that cell membrane perforation is associated with some biological processes like programmed cell death (PCD) and infection of pathogens. Specific developments make it a promising technique to perforate the cell membrane controllably and precisely. The pores on the cell membrane provide direct pathways for the entry and exit of substances, and can also cause cell death, which means reasonable utilization of cell membrane perforation is able to assist intracellular delivery, eliminate diseased or cancerous cells, and bring about other benefits. This review classifies the patterns of cell membrane perforation based on the mechanisms into 1) physical patterns, 2) biological patterns, and 3) chemical patterns, introduces the characterization methods and then summarizes the functions according to the characteristics of reversible and irreversible pores, with the aim of providing a comprehensive summary of the knowledge related to cell membrane perforation and enlightening broad applications in biomedical science.
Collapse
Affiliation(s)
- Xinran Zhu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ulrich Lächelt
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Rongqin Huang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
23
|
Zhao M, Xian W, Liu W, Chen D, Wang S, Cao J. Maresin1 alleviates neuroinflammation by inhibiting caspase-3/ GSDME-mediated pyroptosis in mice cerebral ischemia-reperfusion model. J Stroke Cerebrovasc Dis 2024; 33:107789. [PMID: 38782167 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE To explore the mechanism of Maresin1 in reducing cerebral ischemia-reperfusion injury. MATERIALS AND METHODS Male C57BL/6 mice were randomly divided (n = 5 in each group), and focal middle cerebral artery occlusion (MCAO) model was used to simulate cerebral ischemia/reperfusion injury. TTC and the Longa score were used to detect the degree of neurological deficits. Western blot was used to detect the expression levels of GSDME, GSDME-N, caspase-3 and cleaved caspase-3 in cerebral ischemic penumbra tissue, and immunofluorescence was used to detect the expression levels of GSDME-N. The mRNA expression levels of GSDME and pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) were detected by RT-PCR. RESULTS Compared with sham group, GSDME mRNA levels in MCAO group were significantly increased at 12 h and 24 h after reperfusion, and GSDME and GSDME-N significantly increased at 6-48 h after reperfusion. Compared with sham group, the percentage of infarct size, the Longa score, the mRNA expression levels of IL-1β, IL-6 and TNF-α, and GSDME, GSDME-N, caspase-3 and cleaved caspase-3 in MCAO group was significantly increased. Then, the percentage of infarct size and the Longa score significantly decreased after MaR1 administration, the mRNA expression levels of IL-1β and IL-6 downregulated, and GSDME, GSDME-N, caspase-3 and cleaved caspase-3 were also reduced. After administration of Z-DEVD-FMK(ZDF), the expression of caspase-3, cleaved caspase-3 and GSDME-N was decreased, which in MCAO+MaR1+ZDF group was not statistically significant compared with MCAO+ ZDF group. CONCLUSION Maresin1 alleviates cerebral ischemia/reperfusion injury by inhibiting pyroptosis mediated by caspase-3/GSDME pathway and alleviating neuroinflammation.
Collapse
Affiliation(s)
- Maoji Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Wenjing Xian
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Wenyi Liu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Daiyu Chen
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Siqi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Jun Cao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China.
| |
Collapse
|
24
|
Li C, Yu Y, Zhu S, Hu Y, Ling X, Xu L, Zhang H, Guo K. The emerging role of regulated cell death in ischemia and reperfusion-induced acute kidney injury: current evidence and future perspectives. Cell Death Discov 2024; 10:216. [PMID: 38704372 PMCID: PMC11069531 DOI: 10.1038/s41420-024-01979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
Renal ischemia‒reperfusion injury (IRI) is one of the main causes of acute kidney injury (AKI), which is a potentially life-threatening condition with a high mortality rate. IRI is a complex process involving multiple underlying mechanisms and pathways of cell injury and dysfunction. Additionally, various types of cell death have been linked to IRI, including necroptosis, apoptosis, pyroptosis, and ferroptosis. These processes operate differently and to varying degrees in different patients, but each plays a role in the various pathological conditions of AKI. Advances in understanding the underlying pathophysiology will lead to the development of new therapeutic approaches that hold promise for improving outcomes for patients with AKI. This review provides an overview of the recent research on the molecular mechanisms and pathways underlying IRI-AKI, with a focus on regulated cell death (RCD) forms such as necroptosis, pyroptosis, and ferroptosis. Overall, targeting RCD shows promise as a potential approach to treating IRI-AKI.
Collapse
Affiliation(s)
- Chenning Li
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yan Hu
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Xiaomin Ling
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Liying Xu
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
25
|
Xu C, Wang Q, Du C, Chen L, Zhou Z, Zhang Z, Cai N, Li J, Huang C, Ma T. Histone deacetylase-mediated silencing of PSTPIP2 expression contributes to aristolochic acid nephropathy-induced PANoptosis. Br J Pharmacol 2024; 181:1452-1473. [PMID: 38073114 DOI: 10.1111/bph.16299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND AND PURPOSE Aristolochic acid nephropathy (AAN) is a progressive kidney disease caused by using herbal medicines. Currently, no therapies are available to treat or prevent aristolochic acid nephropathy. Histone deacetylase (HDAC) plays a crucial role in the development and progression of renal disease. We tested whether HDAC inhibitors could prevent aristolochic acid nephropathy and determined the underlying mechanism. EXPERIMENTAL APPROACH HDACs expression in the aristolochic acid nephropathy model was examined. The activation of PANoptosis of mouse kidney and renal tubular epithelial cell were assessed after exposure to HDAC1 and HDAC2 blockade. Kidney-specific knock-in of proline-serine-threonine-phosphatase-interacting protein 2 (PSTPIP2) mice were used to investigate whether PSTPIP2 affected the production of PANoptosome. KEY RESULTS Aristolochic acid upregulated the expression of HDAC1 and HDAC2 in the kidneys. Notably, the HDAC1 and HDAC2 specific inhibitor, romidepsin (FK228, depsipeptide), suppressed aristolochic acid-induced kidney injury, epithelial cell pyroptosis, apoptosis and necroptosis (PANoptosis). Moreover, romidepsin upregulated PSTPIP2 in renal tubular epithelial cells, which was enhanced by aristolochic acid treatment. Conditional knock-in of PSTPIP2 in the kidney protected against aristolochic acid nephropathy. In contrast, the knockdown of PSTPIP2 expression in PSTPIP2-knock-in mice restored kidney damage and PANoptosis. PSTPIP2 function was determined in vitro using PSTPIP2 knockdown or overexpression in mouse renal tubular epithelial cells (mTECs). Additionally, PSTPIP2 was found to regulate caspase 8 in aristolochic acid nephropathy. CONCLUSION AND IMPLICATIONS HDAC-mediated silencing of PSTPIP2 may contribute to aristolochic acid nephropathy. Hence, HDAC1 and HDAC2 specific inhibitors or PSTPIP2 could be valuable therapeutic agents for preventing aristolochic acid nephropathy.
Collapse
Affiliation(s)
- Chuanting Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei, China
| | - Qi Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Changlin Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lu Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhongnan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhenming Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Na Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
26
|
Liu H, Liu H, Huang G, Yuan H, Zhang X. The roles of pyroptosis in genitourinary diseases. Int Urol Nephrol 2024; 56:1515-1523. [PMID: 38103146 PMCID: PMC11001749 DOI: 10.1007/s11255-023-03894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Pyroptosis, a form of programmed cell death distinct from apoptosis and necrosis, is thought to be closely associated with the pathogenesis of diseases. Recently, the association between pyroptosis and urinary diseases has attracted considerable attention, and a comprehensive review focusing on this issue is not available. In this study, we reviewed the role of pyroptosis in the development and progression of benign urinary diseases and urinary malignancies. Based on this, pyroptosis has been implicated in the development of urinary diseases. In summary, this review sheds light on future research directions and provides novel ideas for using pyroptosis as a powerful tool to fight urinary diseases.
Collapse
Affiliation(s)
- Haopeng Liu
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Haoran Liu
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Guoshuai Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Hexing Yuan
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
| | - Xuefeng Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
| |
Collapse
|
27
|
Deng J, Qin L, Qin S, Wu R, Huang G, Fang Y, Huang L, Zhou Z. NcRNA Regulated Pyroptosis in Liver Diseases and Traditional Chinese Medicine Intervention: A Narrative Review. J Inflamm Res 2024; 17:2073-2088. [PMID: 38585470 PMCID: PMC10999193 DOI: 10.2147/jir.s448723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Pyroptosis is a novel pro-inflammatory mode of programmed cell death that differs from ferroptosis, necrosis, and apoptosis in terms of its onset and regulatory mechanisms. Pyroptosis is dependent on cysteine aspartate protein hydrolase (caspase)-mediated activation of GSDMD, NLRP3, and the release of pro-inflammatory cytokines, interleukin-1 (IL-1β), and interleukin-18 (IL-18), ultimately leading to cell death. Non-coding RNA (ncRNA) is a type of RNA that does not encode proteins in gene transcription but plays an important regulatory role in other post-transcriptional links. NcRNA mediates pyroptosis by regulating various related pyroptosis factors, which we termed the pyroptosis signaling pathway. Previous researches have manifested that pyroptosis is closely related to the development of liver diseases, and is essential for liver injury, alcoholic fatty liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), liver fibrosis, and liver cancer. In this review, we attempt to address the role of the ncRNA-mediated pyroptosis pathway in the above liver diseases and their pathogenesis in recent years, and briefly outline that TCM (Traditional Chinese Medicine) intervene in liver diseases by modulating ncRNA-mediated pyroptosis, which will provide a strategy to find new therapeutic targets for the prevention and treatment of liver diseases in the future.
Collapse
Affiliation(s)
- Jiasheng Deng
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, People’s Republic of China
| | - Le Qin
- Department of Pharmacy, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Sulang Qin
- School of Graduate Studies, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Ruisheng Wu
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, People’s Republic of China
| | - Guidong Huang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, People’s Republic of China
| | - Yibin Fang
- Department of Pharmacy, Liuzhou People’s Hospital, Liuzhou, Guangxi, 545006, People’s Republic of China
| | - Lanlan Huang
- Department of Pharmacy, Liuzhou People’s Hospital, Liuzhou, Guangxi, 545006, People’s Republic of China
| | - Zhipin Zhou
- Department of Pharmacy, Liuzhou People’s Hospital, Liuzhou, Guangxi, 545006, People’s Republic of China
| |
Collapse
|
28
|
Zhou Z, Shi L, Chen B, Qian H. Regulation of regulated cell death by extracellular vesicles in acute kidney injury and chronic kidney disease. Cytokine Growth Factor Rev 2024; 76:99-111. [PMID: 38182464 DOI: 10.1016/j.cytogfr.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
The imbalance between proliferation and death of kidney resident cells is a crucial factor in the development of acute or chronic renal dysfunction. Acute kidney injury (AKI) is often associated with the rapid loss of tubular epithelial cells (TECs). Sustained injury leads to the loss of glomerular endothelial cells (GECs) and podocytes, which is a key mechanism in the pathogenesis of glomerular diseases. This irreversible damage resulting from progressive cell loss eventually leads to deterioration of renal function characterized by glomerular compensatory hypertrophy, tubular degeneration, and renal fibrosis. Regulated cell death (RCD), which involves a cascade of gene expression events with tight structures, plays a certain role in regulating kidney health by determining the fate of kidney resident cells. Under pathological conditions, cells in the nephron have been demonstrated to constitutively release extracellular vesicles (EVs) which act as messengers that specifically interact with recipient cells to regulate their cell death process. For therapeutic intervention, exogenous EVs have exhibited great potential for the prevention and treatment of kidney disease by modulating RCD, with enhanced effects through engineering modification. Based on the functional role of EVs, this review comprehensively explores the regulation of RCD by EVs in AKI and chronic kidney disease (CKD), with emphasis on pathogenesis and therapeutic intervention.
Collapse
Affiliation(s)
- Zixuan Zhou
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Linru Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Binghai Chen
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Hui Qian
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
29
|
Ma Y, Xu P, Xing H, Zhang Y, Li T, Ding X, Liu L, Niu Q. Rutin mitigates fluoride-induced nephrotoxicity by inhibiting ROS-mediated lysosomal membrane permeabilization and the GSDME-HMGB1 axis involved in pyroptosis and inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116195. [PMID: 38479315 DOI: 10.1016/j.ecoenv.2024.116195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
Fluoride is known to induce nephrotoxicity; however, the underlying mechanisms remain incompletely understood. Therefore, this study aims to explore the roles and mechanisms of lysosomal membrane permeabilization (LMP) and the GSDME/HMGB1 axis in fluoride-induced nephrotoxicity and the protective effects of rutin. Rutin, a naturally occurring flavonoid compound known for its antioxidative and anti-inflammatory properties, is primarily mediated by inhibiting oxidative stress and reducing proinflammatory markers. To that end, we established in vivo and in vitro models. In the in vivo study, rats were exposed to sodium fluoride (NaF) throughout pregnancy and up until 2 months after birth. In parallel, we employed in vitro models using HK-2 cells treated with NaF, n-acetyl-L-cysteine (NAC), or rutin. We assessed lysosomal permeability through immunofluorescence and analyzed relevant protein expression via western blotting. Our findings showed that NaF exposure increased ROS levels, resulting in enhanced LMP and increased cathepsin B (CTSB) and D (CTSD) expression. Furthermore, the exposure to NaF resulted in the upregulation of cleaved PARP1, cleaved caspase-3, GSDME-N, and HMGB1 expressions, indicating cell death and inflammation-induced renal damage. Rutin mitigates fluoride-induced nephrotoxicity by suppressing ROS-mediated LMP and the GSDME/HMGB1 axis, ultimately preventing fluoride-induced renal toxicity occurrence and development. In conclusion, our findings suggest that NaF induces renal damage through ROS-mediated activation of LMP and the GSDME/HMGB1 axis, leading to pyroptosis and inflammation. Rutin, a natural antioxidative and anti-inflammatory dietary supplement, offers a novel approach to prevent and treat fluoride-induced nephrotoxicity.
Collapse
Affiliation(s)
- Yue Ma
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Panpan Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Hengrui Xing
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Yue Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Tingting Li
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Xueman Ding
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Li Liu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China.
| |
Collapse
|
30
|
Yuan Z, Yang X, Hu Z, Gao Y, Wang M, Xie L, Zhu H, Chen C, Lu H, Bai Y. Fraxetin pretreatment alleviates cisplatin-induced kidney injury by antagonizing autophagy and apoptosis via mTORC1 activation. Phytother Res 2024; 38:2077-2093. [PMID: 38558449 DOI: 10.1002/ptr.8073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/24/2023] [Accepted: 11/05/2023] [Indexed: 04/04/2024]
Abstract
Cisplatin-induced kidney injury (CKI) is a common complication of chemotherapy. Fraxetin, derived from Fraxinus bungeana A. DC. bark, has antioxidant, anti-inflammatory, and anti-fibrotic effects. This study aims to investigate fraxetin's effects on CKI and its underlying mechanism in vivo and in vitro. Tubular epithelial cells (TECs) and mice were exposed to cisplatin with and without fraxetin preconditioning assess fraxetin's role in CKI. TECs autophagy was observed using transmission electron microscopy. Apoptosis levels in animal tissues were measured using TUNEL staining. The protective mechanism of fraxetin was explored through pharmacological and genetic regulation of mTORC1. Molecular docking was used to identify potential binding sites between fraxetin and mTORC1. The results indicated that fraxetin pretreatment reduced cisplatin-induced kidney injury in a time- and concentration-dependent way. Fraxetin also decreased autophagy in TECs, as observed through electron microscopy. Tissue staining confirmed that fraxetin pretreatment significantly reduced cisplatin-induced apoptosis. Inhibition of mTORC1 using rapamycin or siRNA reversed the protective effects of fraxetin on apoptosis and autophagy in cisplatin-treated TECs, while activation of mTORC1 enhanced fraxetin's protective effect. Molecular docking analysis revealed that fraxetin can bind to HEAT-repeats binding site on mTORC1 protein. In summary, fraxetin pretreatment alleviates CKI by antagonizing autophagy and apoptosis via mTORC1 activation. This provides evidence for the potential therapeutic application of fraxetin in CKI.
Collapse
Affiliation(s)
- Ziwei Yuan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuejia Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zujian Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengsi Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Xie
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hengyue Zhu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Hong Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
31
|
Xiong J, Zhao J. Pyroptosis: The Determinator of Cell Death and Fate in Acute Kidney Injury. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:118-131. [PMID: 38751798 PMCID: PMC11095617 DOI: 10.1159/000535894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/15/2023] [Indexed: 05/18/2024]
Abstract
Background Acute kidney injury (AKI) is kidney damage that leads to a rapid decline in function. AKI primarily occurs when the tubular epithelium is damaged, causing swelling, loss of brush margin, and eventual apoptosis. Research has shown that tubular epithelial cell damage in AKI is linked to cell cycle arrest, autophagy, and regulation of cell death. Summary Pyroptosis, a type of programmed cell death triggered by inflammation, is believed to play a role in the pathophysiology of AKI. Cumulative evidence has shown that pyroptosis is the main cause of tubular cell death in AKI. Thus, targeted intervention of pyroptosis may be a promising therapeutic approach for AKI. This review delves deep into the cutting-edge research surrounding pyroptosis in the context of AKI, shedding light on its intricate mechanisms and potential implications for clinical practice. Additionally, we explore the exciting realm of potential preclinical treatment options for AKI, aiming to pave the way for future therapeutic advancements. Key Messages Pyroptosis, a highly regulated form of cell death, plays a crucial role in determining the fate of cells during the development of AKI. This intricate process involves the activation of inflammasomes, which are multi-protein complexes that initiate pyroptotic cell death. By understanding the mechanisms underlying pyroptosis, researchers aim to gain insights into the pathogenesis of AKI and potentially identify new therapeutic targets for this condition.
Collapse
Affiliation(s)
- Jiachuan Xiong
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
| |
Collapse
|
32
|
Hu X, Wang J, Jiang L, Liu X, Ge Q, Wang Q, Qi X, Wu Y. Rutaecarpine protects podocytes in diabetic kidney disease by targeting VEGFR2/NLRP3-mediated pyroptosis. Int Immunopharmacol 2024; 130:111790. [PMID: 38447417 DOI: 10.1016/j.intimp.2024.111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE Diabetic kidney disease (DKD) is the most common cause of the end-stage renal disease, which has limited treatment options. Rutaecarpine has anti-inflammatory effects, however, it has not been studied in DKD. Pyroptosis is a newly discovered mode of podocyte death related to inflammation. This study aimed to explore whether Rutaecarpine can ameliorate DKD and to clarify its possible mechanism. METHODS In this study, we investigated the effects of Rutaecarpine on DKD using diabetic mice model (db/db mice) and high glucose (HG)-stimulated mouse podocyte clone 5 (MPC5) cells. Quantitative reverse transcription polymerase chain reaction and western blot were performed to detect the related gene and protein levels. We applied pharmacological prediction, co-immunoprecipitation assay, cellular thermal shift assay, surface plasmon resonance to find the target and pathway of the substances. Gene knockdown experiments confirmed this view in HG-stimulated MPC5 cells. RESULTS Rutaecarpine significantly reduced proteinuria, histopathological damage, and pyroptosis of podocytes in a dose-dependent manner in db/db mice. Rutaecarpine also protected high glucose induced MPC5 injury in vitro experiments. Mechanistically, Rutaecarpine can inhibit pyroptosis in HG-stimulated MPC5 by reducing the expression of VEGFR2. VEGFR2 is a target of Rutaecarpine in MPC5 cells and directly binds to the pyroptosis initiation signal, NLRP3. VEGFR2-knockdown disrupted the beneficial effects of Rutaecarpine in HG-stimulated MPC5 cells. CONCLUSION Rutaecarpine inhibits renal inflammation and pyroptosis through VEGFR2/NLRP3 pathway, thereby alleviating glomerular podocyte injury. These findings highlight the potential of Rutaecarpine as a novel drug for DKD treatment.
Collapse
Affiliation(s)
- Xueru Hu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Jingjing Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xueqi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Qingmiao Ge
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Qianhui Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xiangming Qi
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
33
|
Zhou Y, Zhang W, Wang B, Wang P, Li D, Cao T, Zhang D, Han H, Bai M, Wang X, Zhao X, Lu Y. Mitochondria-targeted photodynamic therapy triggers GSDME-mediated pyroptosis and sensitizes anti-PD-1 therapy in colorectal cancer. J Immunother Cancer 2024; 12:e008054. [PMID: 38429070 PMCID: PMC10910688 DOI: 10.1136/jitc-2023-008054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The effectiveness of immune checkpoint inhibitors in colorectal cancer (CRC) is limited due to the low tumor neoantigen load and low immune infiltration in most microsatellite-stable (MSS) tumors. This study aimed to develop a mitochondria-targeted photodynamic therapy (PDT) approach to provoke host antitumor immunity of MSS-CRC and elucidate the underlying molecular mechanisms. METHODS The role and mechanism of mitochondria-targeted PDT in inhibiting CRC progression and inducing pyroptosis were evaluated both in vitro and in vivo. The immune effects of PDT sensitization on PD-1 blockade were also assessed in CT26 and 4T1 tumor-bearing mouse models. RESULTS Here, we report that PDT using IR700DX-6T, a photosensitizer targeting the mitochondrial translocation protein, may trigger an antitumor immune response initiated by pyroptosis in CRC. Mechanistically, IR700DX-6T-PDT produced reactive oxygen species on light irradiation and promoted downstream p38 phosphorylation and active caspase3 (CASP3)-mediated cleavage of gasdermin E (GSDME), subsequently inducing pyroptosis. Furthermore, IR700DX-6T-PDT enhanced the sensitivity of MSS-CRC cells to PD-1 blockade. Decitabine, a demethylation drug used to treat hematologic neoplasms, disrupted the abnormal methylation pattern of GSDME in tumor cells, enhanced the efficacy of IR700DX-6T-PDT, and elicited a potent antitumor immune response in combination with PD-1 blockade and IR700DX-6T-PDT. CONCLUSION Our work provides clear a understanding of immunogenic cell death triggered by mitochondria-targeted PDT, offering a new approach for enhancing the efficacy of PD-1 blockade in CRC.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Wenyao Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Boda Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pei Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Danxiu Li
- Department of Gastroenterology, The 980th Hospital of the PLA Joint Logistics Support Force (Primary Bethune International Peace Hospital of PLA), Shijiazhuang, Hebei, China
| | - Tianyu Cao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dawei Zhang
- Department of Pancreatic Hepatobiliary Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hua Han
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mingfeng Bai
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xin Wang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
34
|
Wang L, Xie Y, Xiao B, He X, Ying G, Zha H, Yang C, Jin X, Li G, Ping L, Wang J, Weng Q. Isorhamnetin alleviates cisplatin-induced acute kidney injury via enhancing fatty acid oxidation. Free Radic Biol Med 2024; 212:22-33. [PMID: 38101584 DOI: 10.1016/j.freeradbiomed.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Cisplatin is an effective chemotherapy drug widely used in the treatment of various solid tumors. However, the clinical usage of cisplatin is limited by its nephrotoxicity. Isorhamnetin, a natural flavanol compound, displays remarkable pharmacological effects, including anti-inflammatory and anti-oxidation. In this study, we aimed to investigate the potential of isorhamnetin in alleviating acute kidney injury induced by cisplatin. In vitro study showed that isorhamnetin significantly suppressed the cytotoxic effects of cisplatin on human tubular epithelial cells. Furthermore, isorhamnetin exerted significantly inhibitory effects on cisplatin-induced apoptosis and inflammatory response. In acute kidney injury mice induced by a single intraperitoneal injection with 20 mg/kg cisplatin, oral administration of isorhamnetin two days before or 2 h after cisplatin injection effectively ameliorated renal function and renal tubule injury. Transcriptomics RNA-seq analysis of the mice kidney tissues suggested that isorhamnetin treatment may protect against cisplatin-induced nephrotoxicity via PGC-1α mediated fatty acid oxidation. Isorhamnetin achieved significant enhancements in the lipid clearance, ATP level, as well as the expression of PGC-1α and its downstream target genes PPARα and CPT1A, which were otherwise impaired by cisplatin. In addition, the protection effects of isorhamnetin against cisplatin-induced nephrotoxicity were abolished by a PGC-1α inhibitor, SR-18292. In conclusion, our findings indicate that isorhamnetin could protect against cisplatin-induced acute kidney injury by inducing PGC-1α-dependent reprogramming of fatty acid oxidation, which highlights the clinical potential of isorhamnetin as a therapeutic approach for the management of cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Lingkun Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Yaochen Xie
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Boneng Xiao
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuelin He
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Department of Nephrology, Beilun People's Hospital, Ningbo, 315826, China
| | - Guanghui Ying
- Department of Nephrology, Beilun People's Hospital, Ningbo, 315826, China
| | - Huiyan Zha
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Chen Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Xuejin Jin
- Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310053, China
| | - Guilin Li
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Li Ping
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China; Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China; Beijing Life Science Academy, Beijing, 102200, China.
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China; Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
35
|
Park CH, Park JY, Cho WG. Chemical Hypoxia Induces Pyroptosis in Neuronal Cells by Caspase-Dependent Gasdermin Activation. Int J Mol Sci 2024; 25:2185. [PMID: 38396860 PMCID: PMC10889762 DOI: 10.3390/ijms25042185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Hypoxia-induced neuronal death is a major cause of neurodegenerative diseases. Pyroptosis is a type of inflammatory programmed cell death mediated by elevated intracellular levels of reactive oxygen species (ROS). Therefore, we hypothesized that hypoxia-induced ROS may trigger pyroptosis via caspase-dependent gasdermin (GSDM) activation in neuronal cells. To test this, we exposed SH-SY5Y neuronal cells to cobalt chloride (CoCl2) to trigger hypoxia and then evaluated the cellular and molecular responses to hypoxic conditions. Our data revealed that CoCl2 induced cell growth inhibition and the expression of hypoxia-inducible factor-1α in SH-SY5Y cells. Exposure to CoCl2 elicits excessive accumulation of cytosolic and mitochondrial ROS in SH-SY5Y cells. CoCl2-induced hypoxia not only activated the intrinsic (caspases-3, -7, and -9) apoptotic pathway but also induced caspase-3/GSDME-dependent and NLRP3/caspase-1/GSDMD-mediated pyroptosis in SH-SY5Y cells. Importantly, inhibition of caspase-3 and -1 using selective inhibitors ameliorated pyroptotic cell death and downregulated GSDM protein expression. Additionally, treatment with a ROS scavenger significantly suppressed caspase- and pyroptosis-related proteins in CoCl2-treated SH-SY5Y cells. Our findings indicate that hypoxia-mediated ROS production plays an important role in the activation of both apoptosis and pyroptosis in SH-SY5Y neuronal cells, thus providing a potential therapeutic strategy for hypoxia-related neurological diseases.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea;
| | - Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - Won Gil Cho
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea;
| |
Collapse
|
36
|
Gao X, Guo C, Li W, Deng Y, Ning W, Xie J, Zhan X, Fan Y, Chen H, Huang Z, Zhou J. Quercetin inhibits caspase-1-dependent macrophage pyroptosis in experimental folic acid nephropathy. Chin Med 2024; 19:11. [PMID: 38229085 DOI: 10.1186/s13020-024-00885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND The role of pyroptosis in kidney disease is limited and incomplete. Quercetin, a flavonoid compound present in a variety of fruits, vegetables, and plants, has shown antioxidant and anti-inflammatory properties. This study was designed to validate the importance of pyroptosis in an experimental model of folic acid nephropathy and to explore the effect of quercetin in protecting against pyroptosis. METHODS Gene set enrichment analysis (GSEA) and weighted gene co-expression network analysis (WGCNA) were used to establish the correlation between pyroptosis and folic acid nephropathy. Immune cell infiltration, network pharmacology and single-cell RNA sequencing analysis were utilized to ascertain the specific target of quercetin in relation to pyroptosis. Finally, quercetin's role was verified in vivo and in vitro. RESULTS The GSEA analysis revealed a significant correlation between pyroptosis and folic acid nephropathy (NES = 1.764, P = 0.004). The hub genes identified through WGCNA were closely associated with inflammation. Molecular docking demonstrated a strong binding affinity between quercetin and caspase-1, a protein known to be involved in macrophage function, as confirmed by immune cell infiltration and single-cell analysis. Quercetin demonstrated a significant amelioration of kidney injury and reduction in macrophage infiltration in the animal model. Furthermore, quercetin exhibited a significant inhibition of caspase-1 expression, subsequently leading to the inhibition of pro-inflammatory cytokines expression, such as IL-1β, IL-18, TNF-α, and IL-6. The inhibitory effect of quercetin on macrophage pyroptosis was also confirmed in RAW264.7 cells. CONCLUSION This study contributes substantial evidence to support the significant role of pyroptosis in the development of folic acid nephropathy, and highlights the ability of quercetin to downregulate caspase-1 in macrophages as a protective mechanism against pyroptosis.
Collapse
Affiliation(s)
- Xianli Gao
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Anesthesiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Caiyun Guo
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wenjun Li
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yingdong Deng
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wenjun Ning
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jiaqi Xie
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaoying Zhan
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Youling Fan
- Department of Anesthesiology, The First People's Hospital of Kashgar, Xinjiang, China
- Department of Anesthesiology, The Second People's Hospital of Panyu, Guangzhou, China
| | - Hongtao Chen
- Department of Anesthesiology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zengping Huang
- Department of Anesthesiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
37
|
Hu B, Ma K, Wang W, Han Z, Chi M, Nasser MI, Liu C. Research Progress of Pyroptosis in Renal Diseases. Curr Med Chem 2024; 31:6656-6671. [PMID: 37861024 DOI: 10.2174/0109298673255656231003111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 10/21/2023]
Abstract
Kidney diseases, particularly Acute Kidney Injury (AKI) and Chronic Kidney Disease (CKD), are identified as global public health issues affecting millions of individuals. In addition, the frequency of renal diseases in the population has increased dramatically and rapidly in recent years. Renal disorders have become a significant public health burden. The pathophysiology of renal diseases is significantly connected with renal cell death, including apoptosis, necrosis, necroptosis, ferroptosis, pyroptosis, and autophagy, as is now recognized. Unlike other forms of cell death, pyroptosis is a unique planned cell death (PCD). Scientists have proven that pyroptosis is crucial in developing various disorders, and this phenomenon is gaining increasing attention. It is considered a novel method of inflammatory cell death. Intriguingly, inflammation is among the most significant pathological characteristics of renal disease. This study investigates the effects of pyroptosis on Acute Kidney Injury (AKI), Chronic Kidney Disease (CKD), Diabetic Nephropathy (DN), Immunoglobulin A (IgA) Nephropathy, and Lupus Nephritis (LN) to identify novel therapeutic targets for kidney diseases.
Collapse
Affiliation(s)
- Boyan Hu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Wei Wang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Moussa Ide Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
38
|
Hu Y, Liu Y, Zong L, Zhang W, Liu R, Xing Q, Liu Z, Yan Q, Li W, Lei H, Liu X. The multifaceted roles of GSDME-mediated pyroptosis in cancer: therapeutic strategies and persisting obstacles. Cell Death Dis 2023; 14:836. [PMID: 38104141 PMCID: PMC10725489 DOI: 10.1038/s41419-023-06382-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Pyroptosis is a novel regulated cell death (RCD) mode associated with inflammation and innate immunity. Gasdermin E (GSDME), a crucial component of the gasdermin (GSDM) family proteins, has the ability to convert caspase-3-mediated apoptosis to pyroptosis of cancer cells and activate anti-tumor immunity. Accumulating evidence indicates that GSDME methylation holds tremendous potential as a biomarker for early detection, diagnosis, prognosis, and treatment of tumors. In fact, GSDME-mediated pyroptosis performs a dual role in anti-tumor therapy. On the one side, pyroptotic cell death in tumors caused by GSDME contributes to inflammatory cytokines release, which transform the tumor immune microenvironment (TIME) from a 'cold' to a 'hot' state and significantly improve anti-tumor immunotherapy. However, due to GSDME is expressed in nearly all body tissues and immune cells, it can exacerbate chemotherapy toxicity and partially block immune response. How to achieve a balance between the two sides is a crucial research topic. Meanwhile, the potential functions of GSDME-mediated pyroptosis in anti-programmed cell death protein 1 (PD-1) therapy, antibody-drug conjugates (ADCs) therapy, and chimeric antigen receptor T cells (CAR-T cells) therapy have not yet been fully understood, and how to improve clinical outcomes persists obscure. In this review, we systematically summarize the latest research regarding the molecular mechanisms of pyroptosis and discuss the role of GSDME-mediated pyroptosis in anti-tumor immunity and its potential applications in cancer treatment.
Collapse
Affiliation(s)
- Yixiang Hu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Ya Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Lijuan Zong
- Department of Rehabilitation Medicine, Zhongda Hospital of Southeast University, Nanjing, 210096, China
| | - Wenyou Zhang
- Department of Pharmacy, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Renzhu Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Qichang Xing
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Zheng Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Qingzi Yan
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Wencan Li
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Haibo Lei
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China.
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China.
| | - Xiang Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China.
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China.
| |
Collapse
|
39
|
Songür HS, Kaya SA, Altınışık YC, Abanoz R, Özçelebi E, Özmen F, Kösemehmetoğlu K, Soydan G. Alamandine treatment prevents LPS-induced acute renal and systemic dysfunction with multi-organ injury in rats via inhibiting iNOS expression. Eur J Pharmacol 2023; 960:176160. [PMID: 37923157 DOI: 10.1016/j.ejphar.2023.176160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Sepsis is defined as the dysregulated immune response leading to multi-organ dysfunction and injury. Sepsis-induced acute kidney injury is a significant contributor to morbidity and mortality. Alamandine (ALA) is a novel endogenous peptide of the renin-angiotensin-aldosterone system. It is known for its anti-inflammatory and anti-apoptotic effects, but its functional and vascular effects on sepsis remain unclear. We aimed to investigate the effects of ALA, as a pre- and post-treatment agent, on lipopolysaccharide (LPS)-induced systemic and renal dysfunction and injury in the LPS-induced endotoxemia model in rats via functional, hemodynamic, vascular, molecular, biochemical, and histopathological evaluation. 10 mg/kg intraperitoneal LPS injection caused both hepatic and renal injury, decreased blood flow in several organs, and renal dysfunction at 20 h in Sprague-Dawley rats. Our results showed that ALA treatment ameliorated systemic and renal inflammation, reduced inflammatory cytokines, prevented the enhancement of the mortality rate, reversed vascular dysfunction, corrected decreased blood flows in several organs, and reduced renal and hepatic injury via inhibiting iNOS (inducible nitric oxide synthase) and caspase expressions in the kidney. In addition, expressions of different ALA-related receptors showed alterations in this model, and ALA treatment reversed these alterations. These data suggest that ALA's systemic and renal protective effects are achieved through its anti-inflammatory, anti-pyroptotic, and anti-apoptotic effects on hemodynamic and vascular functions via reduced iNOS expression.
Collapse
Affiliation(s)
- H Saltuk Songür
- Department of Medical Pharmacology, Hacettepe University, Ankara, Turkey
| | - Sinan Alperen Kaya
- Department of Medical Pharmacology, Hacettepe University, Ankara, Turkey
| | | | - Rukiye Abanoz
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| | - Esin Özçelebi
- Department of Medical Pharmacology, Hacettepe University, Ankara, Turkey
| | - Füsun Özmen
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| | | | - Güray Soydan
- Department of Medical Pharmacology, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
40
|
Ai YL, Wang WJ, Liu FJ, Fang W, Chen HZ, Wu LZ, Hong X, Zhu Y, Zhang CX, Liu LY, Hong WB, Zhou B, Chen QT, Wu Q. Mannose antagonizes GSDME-mediated pyroptosis through AMPK activated by metabolite GlcNAc-6P. Cell Res 2023; 33:904-922. [PMID: 37460805 PMCID: PMC10709431 DOI: 10.1038/s41422-023-00848-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/25/2023] [Indexed: 12/18/2023] Open
Abstract
Pyroptosis is a type of regulated cell death executed by gasdermin family members. However, how gasdermin-mediated pyroptosis is negatively regulated remains unclear. Here, we demonstrate that mannose, a hexose, inhibits GSDME-mediated pyroptosis by activating AMP-activated protein kinase (AMPK). Mechanistically, mannose metabolism in the hexosamine biosynthetic pathway increases levels of the metabolite N-acetylglucosamine-6-phosphate (GlcNAc-6P), which binds AMPK to facilitate AMPK phosphorylation by LKB1. Activated AMPK then phosphorylates GSDME at Thr6, which leads to blockade of caspase-3-induced GSDME cleavage, thereby repressing pyroptosis. The regulatory role of AMPK-mediated GSDME phosphorylation was further confirmed in AMPK knockout and GSDMET6E or GSDMET6A knock-in mice. In mouse primary cancer models, mannose administration suppressed pyroptosis in small intestine and kidney to alleviate cisplatin- or oxaliplatin-induced tissue toxicity without impairing antitumor effects. The protective effect of mannose was also verified in a small group of patients with gastrointestinal cancer who received normal chemotherapy. Our study reveals a novel mechanism whereby mannose antagonizes GSDME-mediated pyroptosis through GlcNAc-6P-mediated activation of AMPK, and suggests the utility of mannose supplementation in alleviating chemotherapy-induced side effects in clinic applications.
Collapse
Affiliation(s)
- Yuan-Li Ai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei-Jia Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Fan-Jian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hang-Zi Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Liu-Zheng Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xuehui Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ci-Xiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Long-Yu Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wen-Bin Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bo Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qi-Tao Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qiao Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
41
|
Guerrero-Mauvecin J, Villar-Gómez N, Rayego-Mateos S, Ramos AM, Ruiz-Ortega M, Ortiz A, Sanz AB. Regulated necrosis role in inflammation and repair in acute kidney injury. Front Immunol 2023; 14:1324996. [PMID: 38077379 PMCID: PMC10704359 DOI: 10.3389/fimmu.2023.1324996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Acute kidney injury (AKI) frequently occurs in patients with chronic kidney disease (CKD) and in turn, may cause or accelerate CKD. Therapeutic options in AKI are limited and mostly relate to replacement of kidney function until the kidneys recover spontaneously. Furthermore, there is no treatment that prevents the AKI-to-CKD transition. Regulated necrosis has recently emerged as key player in kidney injury. Specifically, there is functional evidence for a role of necroptosis, ferroptosis or pyroptosis in AKI and the AKI-to-CKD progression. Regulated necrosis may be proinflammatory and immunogenic, triggering subsequent waves of regulated necrosis. In a paradigmatic murine nephrotoxic AKI model, a first wave of ferroptosis was followed by recruitment of inflammatory cytokines such as TWEAK that, in turn, triggered a secondary wave of necroptosis which led to persistent kidney injury and decreased kidney function. A correct understanding of the specific forms of regulated necrosis, their timing and intracellular molecular pathways may help design novel therapeutic strategies to prevent or treat AKI at different stages of the condition, thus improving patient survival and the AKI-to-CKD transition. We now review key regulated necrosis pathways and their role in AKI and the AKI-to-CKD transition both at the time of the initial insult and during the repair phase following AKI.
Collapse
Affiliation(s)
- Juan Guerrero-Mauvecin
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
| | - Natalia Villar-Gómez
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
| | - Sandra Rayego-Mateos
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
- Cellular Biology in Renal Diseases Laboratory, IIS-FJD-Universidad Autónoma, Madrid, Spain
| | - Adrian M. Ramos
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
| | - Marta Ruiz-Ortega
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
- Cellular Biology in Renal Diseases Laboratory, IIS-FJD-Universidad Autónoma, Madrid, Spain
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
- Instituto Reina Sofia en Investigación en Nefrología (IRSIN), Madrid, Spain
| | - Ana B. Sanz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
| |
Collapse
|
42
|
Jiao C, Zhang H, Li H, Fu X, Lin Y, Cao C, Liu S, Liu Y, Li P. Caspase-3/GSDME mediated pyroptosis: A potential pathway for sepsis. Int Immunopharmacol 2023; 124:111022. [PMID: 37837715 DOI: 10.1016/j.intimp.2023.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The inflammatory response is one of the host's mechanisms to combat pathogens. Normal and controlled inflammation can accelerate the clearance of pathogens. However, in sepsis, the host often exhibits an excessive inflammatory response to infection, leading to tissue and organ damage. Therefore, studying the mechanisms underlying the occurrence and development of sepsis is of significant importance. Pyroptosis is a form of programmed cell death (PCD) executed by the gasdermins (GSDMs) family, and its pro-inflammatory characteristics are considered a crucial component of the sepsis mechanism. Previous research on pyroptosis in sepsis has mainly focused on the caspase-1/4/5/11-GSDMD pathway, which has made significant progress. However, there is a lack of research on the roles of other GSDMs family members in sepsis. New research has revealed that the caspase-3/GSDME pathway can also mediate pyroptosis, playing important roles in cancer, other inflammatory diseases, and even some sepsis-related conditions. This discovery suggests the potential value of investigating caspase-3/GSDME in sepsis research. This review provides an overview of the role of the GSDMs family in infectious diseases, summarizes current research on the caspase-1/4/5/11-GSDMD pathway, describes the role of caspase-3 in sepsis, and discusses the research findings related to pyroptosis mediated by the caspase-3/GSDME pathway in cancer, inflammatory diseases, and sepsis-related conditions. The aim of this article is to propose the concept of caspase-3/GSDME as a potential target in sepsis research. Considering the role of this pathway in other diseases, including inflammatory conditions, and given the unique nature of sepsis as an inflammatory disease, the article suggests that this pathway may also play a role in sepsis. This hypothesis provides new insights and options for future sepsis research, although direct experiments are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Chaoze Jiao
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Haidan Zhang
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Hongyao Li
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Xu Fu
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Yujie Lin
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Chenglong Cao
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Shixian Liu
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Yijing Liu
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Peiwu Li
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China.
| |
Collapse
|
43
|
Zhang RN, Jing ZQ, Zhang L, Sun ZJ. Epigenetic regulation of pyroptosis in cancer: Molecular pathogenesis and targeting strategies. Cancer Lett 2023; 575:216413. [PMID: 37769798 DOI: 10.1016/j.canlet.2023.216413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/02/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
Immune checkpoint blockade therapy has revolutionized the field of cancer treatment, leading to durable responses in patients with advanced and metastatic cancers where conventional therapies were insufficient. However, factors like immunosuppressive cells and immune checkpoint molecules within the tumor microenvironment (TME) can suppress the immune system and thus negatively affect the efficiency of immune checkpoint inhibitors. Pyroptosis, a gasdermin-induced programmed cell death, could transform "cold tumors" to "hot tumors" to improve the milieu of TME, thus enhancing the immune response and preventing tumor growth. Recently, evidence showed that epigenetics could regulate pyroptosis, which further affects tumorigenesis, suggesting that epigenetics-based tumor cells pyroptosis could be a promising therapeutic strategy. Hence, this review focuses on the pyroptotic mechanism and summarizes three common types of epigenetics, DNA methylation, histone modification, and non-coding RNA, all of which have a role in regulating the expression of transcription factors and proteins involved in pyroptosis in cancer. Especially, we discuss targeting strategies on epigenetic-regulated pyroptosis and provide insights on the future trend of cancer research which may fuel cancer therapies into a new step.
Collapse
Affiliation(s)
- Ruo-Nan Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, China
| | - Zhi-Qian Jing
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, China; Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
44
|
Shan K, Li J, Yang Q, Chen K, Zhou S, Jia L, Fu G, Qi Y, Wang Q, Chen YQ. Dietary docosahexaenoic acid plays an opposed role in ferroptotic and non-ferroptotic acute kidney injury. J Nutr Biochem 2023; 120:109418. [PMID: 37490984 DOI: 10.1016/j.jnutbio.2023.109418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Ferroptosis due to polyunsaturated fatty acid (PUFA) peroxidation has been implicated in the pathogenesis of acute kidney injury (AKI), suggesting the risk of dietary intake of PUFA for people susceptible to AKI. Clinically, however, in addition to ferroptosis, other mechanisms also contribute to different types of AKI such as inflammation associated necroptosis and pyroptosis. Therefore, the role of PUFA, especially ω3 PUFA which is a common food supplement, in various AKIs deserves further evaluation. In this study, rhabdomyolysis- and folic acid-induced AKI (Rha-AKI and FA-AKI) were established in mice fed with different fatty acids Histology of kidney, blood urea nitrogen and creatinine, lipid peroxidation, and inflammatory factors were examined. Results showed that these two types of AKIs had diametrically different pathogenesis indicated by that ferrostatin-1 (Fer-1), a lipid antioxidant, can attenuate FA-AKI rather than Rha-AKI. Further, dietary DHA (provided by fish oil) reduced tubular injury and renal lesion by inhibiting peroxidation and inflammation in mice with Rha-AKI while increasing cell death, tissue damage, peroxidation and inflammation in mice with FA-AKI. In human renal tubular epithelial cell line HK-2, MTT assay and DHE staining showed that both myoglobin and ferroptosis inducers can cause cell death and oxidative stress. Ferroptosis inducer-induced cell death was promoted by DHA, while such result was not observed in myoglobin-induced cell death when adding DHA. This study illustrates that the mechanisms of AKI might be either ferroptosis dependent or -independent and the deterioration effect of dietary DHA depends on whether ferroptosis is involved.
Collapse
Affiliation(s)
- Kai Shan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jiaqi Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Kang Chen
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland
| | - Shanshan Zhou
- The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lingling Jia
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang Province, China
| | - Guoling Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yumin Qi
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Qizai Wang
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China.
| |
Collapse
|
45
|
Yue L, Liu X, Wu C, Lai J, Wang J, Zhong H, Chen F. Toll-like receptor 4 promotes the inflammatory response in septic acute kidney injury by promoting p38 mitogen-activated protein kinase phosphorylation. J Bioenerg Biomembr 2023; 55:353-363. [PMID: 37605037 PMCID: PMC10556113 DOI: 10.1007/s10863-023-09972-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/16/2023] [Indexed: 08/23/2023]
Abstract
Septic acute kidney injury (AKI) contributes to the mortality and morbidity of sepsis patients. Toll-like Receptor 4 (TLR4) has prominent roles in septic AKI. This study investigated the functions of TLR4 in septic AKI. A septic AKI mouse model was established by cecal ligation and puncture surgery. Mouse kidney function and kidney tissue lesion were examined using corresponding kits and H&E staining. The in vitro cell model of septic AKI was established by lipopolysaccharide induction. Cell viability, inflammatory factor (TNF-α, IL-6, IL-4, IL-1β, IL-18) levels, pyroptotic cell number changes, lactate dehydrogenase (LDH) activity, myeloperoxidase (MOP) concentration, and levels of pyroptosis-associated protein and MyD88, TRIF and p38 MAPK phosphorylation were determined by MTT, ELISA, FAM-FLICA Caspase-1 Detection kit, other corresponding kits, and Western blot. TLR4 was highly expressed in septic AKI mouse kidney tissues and human septic AKI cells. TLR4 knockdown alleviated kidney injury, increased cell viability, and reduced LDH activity and MPO concentration. TLR4 knockdown reduced cell pyroptosis by repressing p38 MAPK phosphorylation through MyD88/TRIF, suppressed pro-inflammatory factor (TNF-α, IL-6, IL-4, IL-1β, IL-18) levels, promoted anti-inflammatory factor (IL-4) level, and reduced inflammatory response, thus playing a protective role in septic AKI. Briefly, TLR4 promoted the inflammatory response in septic AKI by promoting p38 MAPK phosphorylation through MyD88/TRIF.
Collapse
Affiliation(s)
- Linlin Yue
- Department of Intensive care unit, The First Affiliated Hospital of Gannan Medical University, 128 Jinling Avenue, Zhanggong District, Ganzhou, Jiangxi Province, 341000, China
| | - Xin Liu
- Department of Intensive care unit, The First Affiliated Hospital of Gannan Medical University, 128 Jinling Avenue, Zhanggong District, Ganzhou, Jiangxi Province, 341000, China
| | - Chaoyu Wu
- Department of Intensive care unit, The First Affiliated Hospital of Gannan Medical University, 128 Jinling Avenue, Zhanggong District, Ganzhou, Jiangxi Province, 341000, China
| | - Jiying Lai
- Department of Intensive care unit, The First Affiliated Hospital of Gannan Medical University, 128 Jinling Avenue, Zhanggong District, Ganzhou, Jiangxi Province, 341000, China
| | - Jie Wang
- Department of Intensive care unit, The First Affiliated Hospital of Gannan Medical University, 128 Jinling Avenue, Zhanggong District, Ganzhou, Jiangxi Province, 341000, China
| | - Huifeng Zhong
- Department of Intensive care unit, The First Affiliated Hospital of Gannan Medical University, 128 Jinling Avenue, Zhanggong District, Ganzhou, Jiangxi Province, 341000, China
| | - Feng Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Gannan Medical University, 128 Jinling Avenue, Zhanggong District, Ganzhou, Jiangxi Province, 341000, China.
- Jiangxi Provincial Clinical Research Center for Vascular Anomalies, The First Affiliated Hospital of GanNan Medical University, Ganzhou, Jiangxi Province, 341000, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China.
| |
Collapse
|
46
|
Yue Q, Liu Y, Ji J, Hu T, Lin T, Yu S, Li S, Wu N. Down-regulation of OIP5-AS1 inhibits obesity-induced myocardial pyroptosis and miR-22/NLRP3 inflammasome axis. Immun Inflamm Dis 2023; 11:e1066. [PMID: 37904706 PMCID: PMC10611552 DOI: 10.1002/iid3.1066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Obesity can induce myocardial pyroptosis, but the exact mechanism is still unknown. A recent study reported the association of opa-interacting protein 5-antisense transcript 1 (OIP5-AS1), an evolutionarily conserved long noncoding RNA, with pyroptosis. Therefore, this study aimed to investigate the role of OIP5-AS1 in obesity-induced myocardial pyroptosis. METHODS OIP5-AS1 was downregulated in H9c2 cells, followed by treatment with 400 μM palmitic acid (PA). Propidium iodide (PI) staining, lactic dehydrogenase (LDH) release assay, caspase-1 activity assay, IL-1β, and IL-18 activity assay were performed to detect pyroptotic phenotype. The interaction between OIP5-AS1 and microRNAs (miRNAs) was analyzed using RNA pull-down and luciferase assay. The effect of OIP5-AS1 knockdown in high-fat diet (HFD)-induced obesity rat on cardiac function, myocardial hypertrophy, fibrosis, and remodeling was evaluated. RESULTS Fat deposition was observed in cardiomyocytes 24 h after PA treatment; moreover, PA-treated cardiomyocytes showed significant increase in the rate of pyroptotic cells, release of LDH, protein expressions of NLRP3 and cleaved caspase-1, and the activity of caspase-1, IL-1β, and IL-18 as well as OIP5-AS1 expression. These findings suggested that PA activated pyroptosis and induced OIP5-AS1 expression in cardiomyocytes. Moreover, OIP5-AS1 knockdown inhibited PA-induced pyroptosis. Mechanistically, OIP5-AS1 was found to specifically bind to miR-22 and to regulate NLRP3 inflammasome-mediated pyroptosis via miR-22. Furthermore, OIP5-AS1 knockdown ameliorated HFD-induced cardiac dysfunction, myocardial hypertrophy, fibrosis, remodeling, and pyroptosis. CONCLUSION Our results revealed that downregulation of OIP5-AS1 can inhibit obesity-induced myocardial pyroptosis via miR-22/NLRP3 inflammasome axis. This finding lays a foundation of gene therapy for heart disease targeting OIP5-AS1.
Collapse
Affiliation(s)
- Qingxiong Yue
- Department of UltrasoundDalian Municipal Central HospitalDalianLiaoning ProvinceChina
| | - Yan Liu
- Department of UltrasoundDalian Women and Children's Medical GroupDalianLiaoning ProvinceChina
| | - Jun Ji
- Department of Central LaboratoryDalian Municipal Central HospitalDalianLiaoning ProvinceChina
| | - Tao Hu
- Department of UltrasoundDalian Municipal Central HospitalDalianLiaoning ProvinceChina
| | - Tong Lin
- Department of UltrasoundDalian Municipal Central HospitalDalianLiaoning ProvinceChina
| | - Shuang Yu
- Department of Central LaboratoryFirst Affiliated Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Shijun Li
- Department of CardiologyDalian Municipal Central HospitalDalianLiaoning ProvinceChina
| | - Nan Wu
- Department of Central LaboratoryFirst Affiliated Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| |
Collapse
|
47
|
Ma J, Xu J, Gao Q, Sun Y, Wang Y, Liu Z, Ma Z. Engineering single-domain antibodies targeting Gasdermin E activation by the chemotherapeutic agent cis-diaminodichloroplatinum. Biotechnol J 2023; 18:e2200633. [PMID: 37204010 DOI: 10.1002/biot.202200633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 05/20/2023]
Abstract
As mediators of pyroptosis, gasdermins (GSDMs) are closely associated with systemic cytotoxicity or so-called side effects and are also involved in the inflammatory response during chemotherapy. Using in situ proximity ligation assay followed by sequencing (isPLA-seq), which we recently developed, we screened a single-domain antibody (sdAb) library and identified several sdAbs against Gasdermin E (GSDME) that specifically recognize the N-terminal domain (1-270 aa) of GSDME (GSDME-NT). One of them mitigated the release of inflammatory damage-associated molecular patterns (DAMPs) and cytokines, including high mobility group protein b1 (Hmgb1) and interleukin-1β (Il-1β), in isolated mouse alveolar epithelial cells (AECs) upon chemotherapeutic agent cis-diaminodichloroplatinum (CDDP) treatment. Further investigation showed that this anti-GSDME sdAb also alleviated CDDP-induced pyroptotic cell death and lung tissue injury and decreased systemic Hmgb1 release in C57/BL6 mice, due to GSDME inactivation. Collectively, our data define an inhibitory role of the specific sdAb against GSDME, providing a potential strategy for systemically alleviating chemotherapeutic toxicities in vivo.
Collapse
Affiliation(s)
- Jinyi Ma
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jintao Xu
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiuyun Gao
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanan Sun
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yu Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhe Liu
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhenyi Ma
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
48
|
Xu Z, Zhang M, Wang W, Zhou S, Yu M, Qiu X, Jiang S, Wang X, Tang C, Li S, Wang CH, Zhu R, Peng WX, Zhao L, Fu X, Patzak A, Persson PB, Zhao L, Mao J, Shu Q, Lai EY, Zhang G. Dihydromyricetin attenuates cisplatin-induced acute kidney injury by reducing oxidative stress, inflammation and ferroptosis. Toxicol Appl Pharmacol 2023; 473:116595. [PMID: 37328118 DOI: 10.1016/j.taap.2023.116595] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cisplatin is effective against various types of cancers. However, its clinical application is limited owing to its adverse effects, especially acute kidney injury (AKI). Dihydromyricetin (DHM), a flavonoid derived from Ampelopsis grossedentata, has varied pharmacological activities. This research aimed to determine the molecular mechanism for cisplatin-induced AKI. METHODS A murine model of cisplatin-induced AKI (22 mg/kg, I.P.) and a HK-2 cell model of cisplatin-induced damage (30 μM) were established to evaluate the protective function of DHM. Renal dysfunction markers, renal morphology and potential signaling pathways were investigated. RESULTS DHM decreased the levels of renal function biomarkers (blood urea nitrogen and serum creatinine), mitigated renal morphological damage, and downregulated the protein levels of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. It upregulated the expression levels of antioxidant enzymes (superoxide dismutase and catalase expression), nuclear factor-erythroid-2-related factor 2 (Nrf2) and its downstream proteins, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic (GCLC) and modulatory (GCLM) subunits, thus eventually reducing cisplatin-induced reactive oxygen species (ROS) production. Moreover, DHM partially inhibited the phosphorylation of the active fragments of caspase-8 and -3 and mitogen-activated protein kinase and restored glutathione peroxidase 4 expression, which attenuated renal apoptosis and ferroptosis in cisplatin-treated animals. DHM also mitigated the activation of NLRP3 inflammasome and nuclear factor (NF)-κB, attenuating the inflammatory response. In addition, it reduced cisplatin-induced HK-2 cell apoptosis and ROS production, both of which were blocked by the Nrf2 inhibitor ML385. CONCLUSIONS DHM suppressed cisplatin-induced oxidative stress, inflammation and ferroptosis probably through regulating of Nrf2/HO-1, MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Zheming Xu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Minjing Zhang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Wenwen Wang
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310051, China
| | - Suhan Zhou
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Minghua Yu
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xingyu Qiu
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shan Jiang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaohua Wang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Shuijie Li
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chih-Hong Wang
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Runzhi Zhu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Wan Xin Peng
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Lin Zhao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Xiaodong Fu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510260, China
| | - Andreas Patzak
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Translational Physiology, Berlin, Germany
| | - Pontus B Persson
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Translational Physiology, Berlin, Germany
| | - Liang Zhao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China; Children's Hospital, Zhejiang University School of Medicine, Pediatric Nephrology & Urology Medical Research Center, Hangzhou 310052, China
| | - Jianhua Mao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China; Children's Hospital, Zhejiang University School of Medicine, Pediatric Nephrology & Urology Medical Research Center, Hangzhou 310052, China
| | - Qiang Shu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China.
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Translational Physiology, Berlin, Germany.
| | - Gensheng Zhang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China; Children's Hospital, Zhejiang University School of Medicine, Pediatric Nephrology & Urology Medical Research Center, Hangzhou 310052, China.
| |
Collapse
|
49
|
Li N, Wang X, Wang Y, Wang P, Sun N, Chen J, Han L, Li Z, Fan H, Gong Y. Delayed step-by-step decompression with DSF alleviates skeletal muscle crush injury by inhibiting NLRP3/CASP-1/GSDMD pathway. Cell Death Discov 2023; 9:280. [PMID: 37528068 PMCID: PMC10394048 DOI: 10.1038/s41420-023-01570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
Crush injury (CI) is a common disease in earthquake and traffic accidents. It refers to long-term compression that induces ischemia and hypoxia injury of skeletal muscle rich parts, leading to rupture of muscle cells and release of contents into the blood circulation. Crush syndrome (CS) is the systemic manifestation of severe, traumatic muscle injury. CI rescue faces a dilemma. Ischemic reperfusion due to decompression is a double-edged sword for the injured. Death often occurs when the injured are glad to be rescued. Programmed cell death (PCD) predominates in muscle CI or ischemia-reperfusion injury. However, the function and mechanism of pyroptosis and apoptosis in the pathogenesis of skeletal muscle injury in CI remain elusive. Here, we identified that pyroptosis and apoptosis occur independently of each other and are regulated differently in the injured mice's skeletal muscle of CI. While in vitro model, we found that glucose-deprived ischemic myoblast cells could occur pyroptosis. However, the cell damage degree was reduced if the oxygen was further deprived. Then, we confirmed that delayed step-by-step decompression of CI mice could significantly reduce skeletal muscle injury by substantially inhibiting NLRP3/Casp-1/GSDMD pyroptosis pathway but not altering the Casp-3/PARP apoptosis pathway. Moreover, pyroptotic inhibitor DSF therapy alone, or the combination of delayed step-by-step decompression and pyroptotic inhibitor therapy, significantly alleviated muscle injury of CI mice. The new physical stress relief and drug intervention method proposed in this study put forward new ideas and directions for rescuing patients with CI, even CS-associated acute kidney injury (CS-AKI).
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Yuru Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Pengtao Wang
- Department of Intensive Care Unit, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Na Sun
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Jiale Chen
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Lu Han
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Zizheng Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China.
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China.
| |
Collapse
|
50
|
Han J, Wu J, Liu H, Huang Y, Ju W, Xing Y, Zhang X, Yang J. Inhibition of pyroptosis and apoptosis by capsaicin protects against LPS-induced acute kidney injury through TRPV1/UCP2 axis in vitro. Open Life Sci 2023; 18:20220647. [PMID: 37528882 PMCID: PMC10389676 DOI: 10.1515/biol-2022-0647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 08/03/2023] Open
Abstract
Acute kidney injury is a fatal disease characterized by a rapid deterioration of kidney function. Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is a natural product extracted from Capsicum. The aim of this study was to explore the protective effect of capsaicin on inflammation, apoptosis, and mitochondrial dysfunction in an in vitro model of acute kidney injury. Lipopolysaccharide (LPS)-induced acute kidney injury model was established in HK-2 cells to investigate the protective effect of capsaicin. Cell viability was assessed using CCK-8 assay, and protein expression was detected using western blot and immunofluorescence assay. Intracellular reactive oxygen species (ROS) level and mitochondrial membrane potential were analyzed by flow cytometry. Cell apoptosis was detected by propidium iodide staining. The results showed that capsaicin ameliorated LPS-induced cytotoxicity in vitro and attenuated the release of interleukin (IL)-1β and IL-18. Intriguingly, genipin abolished the protective effect of capsaicin. Molecularly, capsaicin activated transient receptor potential cation channel subfamily V member 1 -mitochondrial uncoupling protein 2 axis and inhibited caspase-1-mediated pyroptosis. In addition, capsaicin alleviated LPS-induced ROS production and mitochondrial membrane potential disruption and inhibited apoptosis. These findings suggest that capsaicin shows a protective effect in in vitro acute kidney injury model.
Collapse
Affiliation(s)
- Jinrun Han
- The Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Jinhao Wu
- The Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Hong Liu
- The Intensive Care Unit, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Huang
- The Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Ju
- The Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yifei Xing
- The Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoping Zhang
- The Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Yang
- The Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|