1
|
Wang D, Li L, Zhang Y, Ye K. Lipopolysaccharide-Educated Cancer-Associated Fibroblasts Facilitate Malignant Progression of Ovarian Cancer Cells via the NF-kB/IL-6/JAK2 Signal Transduction. Mol Biotechnol 2025; 67:317-328. [PMID: 38305842 DOI: 10.1007/s12033-024-01055-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024]
Abstract
Gram-negative bacteria increase in ovarian cancer (OC) tissues, but its association with OC progression remains largely unknown. The present study aimed to investigate whether and how cancer-associated fibroblasts (CAFs) pretreated by the main components of bacterial outer membrane lipopolysaccharide (LPS) influence the malignancy of OC cells. Specifically, the culture medium of LPS-preconditioned CAFs (LPS-CM) further accelerated cell proliferation, colony formation and tumorigenesis of OC cells SKOV3 and HEY A8, compared with culture medium of CAFs. Next, we found that LPS pretreatment activated the nuclear factor-kappa B (NF-kB) pathway in CAFs to secret cytokines, including interleukin 1β (IL-1β), interleukin 6 (IL-6), vascular endothelial growth factor (VEGF), etc. Neutralization of IL-6 in LPS-CM abolished the promoting effect of LPS-CM on cell proliferation, survival and epithelial-mesenchymal transition (EMT) in SKOV3 and HEY A8 cells. Mechanistically, LPS-CM activated the Janus kinases 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway, while application with JAK2 inhibitor also reversed the promoting effect of LPS-CM on malignancy of OC cells. In summary, LPS-pretreated CAFs IL-6-dependently accelerate OC progression via activating the JAK2/STAT3 signal pathway, which enriches our understanding of the molecular mechanisms underlying ovaries-colonized gram-negative bacteria in OC progression.
Collapse
Affiliation(s)
- Dongjie Wang
- Department of Gynecology, The First People's Hospital of Yunnan Province, No. 157, Jinbi Road, Xishan District, Kunming, 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Lingchuan Li
- Department of Gynecology, The First People's Hospital of Yunnan Province, No. 157, Jinbi Road, Xishan District, Kunming, 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yifeng Zhang
- Department of Gynecology, The First People's Hospital of Yunnan Province, No. 157, Jinbi Road, Xishan District, Kunming, 650032, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| | - Kefan Ye
- Department of Gynecology, The First People's Hospital of Yunnan Province, No. 157, Jinbi Road, Xishan District, Kunming, 650032, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| |
Collapse
|
2
|
Zhang X, Zhang M, Sun H, Wang X, Wang X, Sheng W, Xu M. The role of transcription factors in the crosstalk between cancer-associated fibroblasts and tumor cells. J Adv Res 2025; 67:121-132. [PMID: 38309692 PMCID: PMC11725164 DOI: 10.1016/j.jare.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Transcription factors (TFs) fulfill a critical role in the formation and maintenance of different cell types during the developmental process as well as disease. It is believed that cancer-associated fibroblasts (CAFs) are activation status of tissue-resident fibroblasts or derived from form other cell types via transdifferentiation or dedifferentiation. Despite a subgroup of CAFs exhibit anti-cancer effects, most of them are reported to exert effects on tumor progression, further indicating their heterogeneous origin. AIM OF REVIEW This review aimed to summarize and review the roles of TFs in the reciprocal crosstalk between CAFs and tumor cells, discuss the emerging mechanisms, and their roles in cell-fate decision, cellular reprogramming and advancing our understanding of the gene regulatory networks over the period of cancer initiation and progression. KEY SCIENTIFIC CONCEPTS OF REVIEW This manuscript delves into the key contributory factors of TFs that are involved in activating CAFs and maintaining their unique states. Additionally, it explores how TFs play a pivotal and multifaceted role in the reciprocal crosstalk between CAFs and tumor cells. This includes their involvement in processes such as epithelial-mesenchymal transition (EMT), proliferation, invasion, and metastasis, as well as metabolic reprogramming. TFs also have a role in constructing an immunosuppressive microenvironment, inducing resistance to radiation and chemotherapy, facilitating angiogenesis, and even 'educating' CAFs to support the malignancies of tumor cells. Furthermore, this manuscript delves into the current status of TF-targeted therapy and considers the future directions of TFs in conjunction with anti-CAFs therapies to address the challenges in clinical cancer treatment.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Meng Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Hui Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xu Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xin Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China.
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Chen Y, Zhang M, Jia R, Qian B, Jing C, Zeng C, Zhu D, Liu Z, Zen K, Li L. Podocyte SIRPα reduction in diabetic nephropathy aggravates podocyte injury by promoting pyruvate kinase M2 nuclear translocation. Redox Biol 2024; 78:103439. [PMID: 39586122 PMCID: PMC11625355 DOI: 10.1016/j.redox.2024.103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Podocyte injury is a critical event in the pathogenesis of diabetic nephropathy (DN). Hyperglycemia, oxidative stress, inflammation, and other factors contribute to podocyte damage in DN. In this study, we demonstrate that signaling regulatory protein alpha (SIRPα) plays a pivotal role in regulating the metabolic and immune homeostasis of podocytes. Deletion of SIRPα in podocytes exacerbates, while transgenic overexpression of SIRPα alleviates, podocyte injury in experimental DN mice. Mechanistically, SIRPα downregulation promotes pyruvate kinase M2 (PKM2) phosphorylation, initiating a positive feedback loop that involves PKM2 nuclear translocation, NF-κB activation, and oxidative stress, ultimately impairing aerobic glycolysis. Consistent with this mechanism, shikonin ameliorates podocyte injury by reducing PKM2 nuclear translocation, preventing oxidative stress and NF-κB activation, thereby restoring aerobic glycolysis.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, 210002, China
| | - Ruoyu Jia
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Bin Qian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chenyang Jing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Dihan Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, 210002, China.
| | - Ke Zen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Limin Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
4
|
Khaleel AQ, Alshahrani MY, Rizaev JA, Malathi H, Devi S, Pramanik A, Mustafa YF, Hjazi A, Muazzamxon I, Husseen B. siRNA-based strategies to combat drug resistance in gastric cancer. Med Oncol 2024; 41:293. [PMID: 39428440 DOI: 10.1007/s12032-024-02528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024]
Abstract
Chemotherapy is a key treatment option for gastric cancer, but over 50% of patients develop either inherent or acquired resistance to these drugs, resulting in a 5-year survival rate of only about 20%. The primary treatment for advanced gastric cancer typically involves chemotherapy based on platinum or fluorouracil. Several factors can contribute to platinum resistance, including decreased drug uptake, increased drug efflux or metabolism, enhanced DNA repair, activation of pro-survival pathways, and inhibition of pro-apoptotic pathways. In recent years, there has been significant progress in biology aimed at finding innovative and more effective methods to overcome chemotherapy resistance. Small interfering RNAs (siRNAs) have emerged as a significant advancement in gene expression regulation, showing promise in enhancing the sensitivity of gastric cancer cells to chemotherapy drugs. However, siRNA therapies still face major challenges, particularly in terms of stability and efficient delivery in vivo. This article discusses the advances in siRNA therapy and its potential role in overcoming resistance to chemotherapeutic drugs such as cisplatin, 5-FU, doxorubicin, and paclitaxel in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, College of Engineering, University of Al Maarif, Ramadi, Al Anbar, 31001, Iraq.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan.
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences Jain (Deemed to be University), Bangalore, Karnataka, India
| | - Seema Devi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, 140307, Punjab, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Ismoilova Muazzamxon
- Department of Propaedeutics of Internal Diseases, Fergana Medical Institute of Public Health, Fergana, Uzbekistan
- Western Caspian University, Scientific Researcher, Baku, Azerbaijan
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Shu T, Li J, Gu J, Wu L, Xie P, Zhang D, Li W, Wan J, Zheng X. Long noncoding RNA UCA1 promotes the chondrogenic differentiation of human bone marrow mesenchymal stem cells via regulating PARP1 ubiquitination. Stem Cells 2024; 42:752-762. [PMID: 38829368 DOI: 10.1093/stmcls/sxae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 04/30/2024] [Indexed: 06/05/2024]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) possess the potential to differentiate into cartilage cells. Long noncoding RNA (lncRNAs) urothelial carcinoma associated 1 (UCA1) has been confirmed to improve the chondrogenic differentiation of marrow mesenchymal stem cells (MSCs). Herein, we further investigated the effects and underlying mechanisms of these processes. The expression of UCA1 was positively associated with chondrogenic differentiation and the knockdown of UCA1 has been shown to attenuate the expression of chondrogenic markers. RNA pull-down assay and RNA immunoprecipitation showed that UCA1 could directly bind to PARP1 protein. UCA1 could improve PARP1 protein via facilitating USP9X-mediated PARP1 deubiquitination. Then these processes stimulated the NF-κB signaling pathway. In addition, PARP1 was declined in UCA1 knockdown cells, and silencing of PARP1 could diminish the increasing effects of UCA1 on the chondrogenic differentiation from MSCs and signaling pathway activation. Collectively, these outcomes suggest that UCA1 could act as a mediator of PARP1 protein ubiquitination and develop the chondrogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Tao Shu
- Department of Orthopaedics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518000, People's Republic of China
- Department of Spine Surgery, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Jiachun Li
- Department of Orthopaedics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518000, People's Republic of China
| | - Juyuan Gu
- Department of Orthopedics, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Liang Wu
- Department of Orthopedics, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, People's Republic of China
| | - Peng Xie
- Department of Nuclear Medicine, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Dongfeng Zhang
- Department of Orthopedics, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, People's Republic of China
| | - Wen Li
- Department of Spine Surgery, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Junming Wan
- Department of Orthopaedics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518000, People's Republic of China
| | - Xiaozuo Zheng
- Department of Orthopedics, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050051, People's Republic of China
| |
Collapse
|
6
|
Tang H, You T, Ge H, Gao J, Wang Y, Bai C, Sun Z, Han Q, Zhao RC. Anlotinib may enhance the efficacy of anti-PD1 therapy by inhibiting the AKT pathway and promoting the apoptosis of CAFs in lung adenocarcinoma. Int Immunopharmacol 2024; 133:112053. [PMID: 38615380 DOI: 10.1016/j.intimp.2024.112053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Although PD-1 inhibitors have revolutionized the treatment paradigm of non-small cell lung cancer (NSCLC), their efficacy in treating NSCLC has remained unsatisfactory. Targeting cancer-associated fibroblasts (CAFs) is a potential approach for improving the immunotherapy response. Multitarget antiangiogenic tyrosine kinase receptor inhibitors (TKIs) can enhance the efficacy of PD-1 inhibitors in NSCLC patients. However, the effects and mechanisms of antiangiogenic TKIs on CAFs have not been elucidated. In this study, we first compared anlotinib with other antiangiogenic TKIs and confirmed the superior efficacy of anlotinib. Furthermore, we established NSCLC-associated CAF models and found that anlotinib impaired CAF viability and migration capacity and contributed to CAF apoptosis and cell cycle arrest in the G2/M phase. Moreover, anlotinib treatment attenuated the capacity of CAFs to recruit lung cancer cells and macrophages. Experiments in animal models suggested that anlotinib could enhance the efficacy of anti-PD1 therapy in NSCLC and affect CAF proliferation and apoptosis. Anlotinib increased the abundance of tumor-infiltrating CD8 + T cells, and PD-1 inhibitor-induced cytotoxicity to tumor cells was achieved through the transformation of the tumor microenvironment (TME) caused by anlotinib, which may partly explain the synergistic antitumor effect of anlotinib and PD-1 inhibitors. Mechanistically, anlotinib affects CAF apoptosis and cell viability at least in part by inhibiting the AKT pathway. In conclusion, our study suggested that anlotinib could regulate the TME, inhibit the AKT pathway and promote CAF apoptosis, providing new insights into the antitumor effect of anlotinib and improving the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Hui Tang
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tingting You
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui Ge
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jingxi Gao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China
| | - Yingyi Wang
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Chunmei Bai
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Zhao Sun
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Qin Han
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China; School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
7
|
Upadhyay S, Khan S, Hassan MI. Exploring the diverse role of pyruvate kinase M2 in cancer: Navigating beyond glycolysis and the Warburg effect. Biochim Biophys Acta Rev Cancer 2024; 1879:189089. [PMID: 38458358 DOI: 10.1016/j.bbcan.2024.189089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Pyruvate Kinase M2, a key enzyme in glycolysis, has garnered significant attention in cancer research due to its pivotal role in the metabolic reprogramming of cancer cells. Originally identified for its association with the Warburg effect, PKM2 has emerged as a multifaceted player in cancer biology. The functioning of PKM2 is intricately regulated at multiple levels, including controlling the gene expression via various transcription factors and non-coding RNAs, as well as adding post-translational modifications that confer distinct functions to the protein. Here, we explore the diverse functions of PKM2, encompassing newly emerging roles in non-glycolytic metabolic regulation, immunomodulation, inflammation, DNA repair and mRNA processing, beyond its canonical role in glycolysis. The ever-expanding list of its functions has recently grown to include roles in subcellular compartments such as the mitochondria and extracellular milieu as well, all of which make PKM2 an attractive drug target in the pursuit of therapeutics for cancer.
Collapse
Affiliation(s)
- Saurabh Upadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shumayila Khan
- International Health Division, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
8
|
Qian J, Huang C, Wang M, Liu Y, Zhao Y, Li M, Zhang X, Gao X, Zhang Y, Wang Y, Huang J, Li J, Zhou Q, Liu R, Wang X, Cui J, Yang Y. Nuclear translocation of metabolic enzyme PKM2 participates in high glucose-promoted HCC metastasis by strengthening immunosuppressive environment. Redox Biol 2024; 71:103103. [PMID: 38471282 PMCID: PMC10945175 DOI: 10.1016/j.redox.2024.103103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Although some cohort studies have indicated a close association between diabetes and HCC, the underlying mechanism about the contribution of diabetes to HCC progression remains largely unknown. In the study, we applied a novel HCC model in SD rat with diabetes and a series of high glucose-stimulated cell experiments to explore the effect of a high glucose environment on HCC metastasis and its relevant mechanism. Our results uncovered a novel regulatory mechanism by which nuclear translocation of metabolic enzyme PKM2 mediated high glucose-promoted HCC metastasis. Specifically, high glucose-increased PKM2 nuclear translocation downregulates chemerin expression through the redox protein TRX1, and then strengthens immunosuppressive environment to promote HCC metastasis. To the best of our knowledge, this is the first report to elucidate the great contribution of a high glucose environment to HCC metastasis from a new perspective of enhancing the immunosuppressive microenvironment. Simultaneously, this work also highlights a previously unidentified non-metabolic role of PKM2 and opens a novel avenue for cross research and intervention for individuals with HCC and comorbid diabetes.
Collapse
Affiliation(s)
- Jiali Qian
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuxin Huang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mimi Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Ying Liu
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Miao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xi Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xiangyu Gao
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yawen Zhang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinya Huang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiajun Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Qiwen Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Rui Liu
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuanchun Wang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.
| | - Yehong Yang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Li G, Xiong Z, Li Y, Yan C, Cheng Y, Wang Y, Li J, Dai Z, Zhang D, Du W, Men C, Shi C. Hypoxic microenvironment-induced exosomes confer temozolomide resistance in glioma through transfer of pyruvate kinase M2. Discov Oncol 2024; 15:110. [PMID: 38598023 PMCID: PMC11006647 DOI: 10.1007/s12672-024-00963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
OBJECTIVE Glioma, a malignant primary brain tumor, is notorious for its high incidence rate. However, the clinical application of temozolomide (TMZ) as a treatment option for glioma is often limited due to resistance, which has been linked to hypoxic glioma cell-released exosomes. In light of this, the present study aimed to investigate the role of exosomal pyruvate kinase M2 (PKM2) in glioma cells that exhibit resistance to TMZ. METHODS Sensitive and TMZ-resistant glioma cells were subjected to either a normoxic or hypoxic environment, and the growth patterns and enzymatic activity of glycolysis enzymes were subsequently measured. From these cells, exosomal PKM2 was isolated and the subsequent effect on TMZ resistance was examined and characterized, with a particular focus on understanding the relevant mechanisms. Furthermore, the intercellular communication between hypoxic resistant cells and tumor-associated macrophages (TAMs) via exosomal PKM2 was also assessed. RESULTS The adverse impact of hypoxic microenvironments on TMZ resistance in glioma cells was identified and characterized. Among the three glycolysis enzymes that were examined, PKM2 was found to be a critical mediator in hypoxia-triggered TMZ resistance. Upregulation of PKM2 was found to exacerbate the hypoxia-mediated TMZ resistance. Exosomal PKM2 were identified and isolated from hypoxic TMZ-resistant glioma cells, and were found to be responsible for transmitting TMZ resistance to sensitive glioma cells. The exosomal PKM2 also contributed towards mitigating TMZ-induced apoptosis in sensitive glioma cells, while also causing intracellular ROS accumulation. Additionally, hypoxic resistant cells also released exosomal PKM2, which facilitated TMZ resistance in tumor-associated macrophages. CONCLUSION In the hypoxic microenvironment, glioma cells become resistant to TMZ due to the delivery of PKM2 by exosomes. Targeted modulation of exosomal PKM2 may be a promising strategy for overcoming TMZ resistance in glioma.
Collapse
Affiliation(s)
- Guofu Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Ziyu Xiong
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Li
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Cong Yan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingying Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yuwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zifeng Dai
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dongdong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wenzhong Du
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chunyang Men
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Changbin Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
10
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
11
|
Liu J, Yuan Q, Guo H, Guan H, Hong Z, Shang D. Deciphering drug resistance in gastric cancer: Potential mechanisms and future perspectives. Biomed Pharmacother 2024; 173:116310. [PMID: 38394851 DOI: 10.1016/j.biopha.2024.116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Gastric cancer (GC) is a malignant tumor that originates from the epithelium of the gastric mucosa. The latest global cancer statistics show that GC ranks fifth in incidence and fourth in mortality among all cancers, posing a serious threat to public health. While early-stage GC is primarily treated through surgery, chemotherapy is the frontline option for advanced cases. Currently, commonly used chemotherapy regimens include FOLFOX (oxaliplatin + leucovorin + 5-fluorouracil) and XELOX (oxaliplatin + capecitabine). However, with the widespread use of chemotherapy, an increasing number of cases of drug resistance have emerged. This article primarily explores the potential mechanisms of chemotherapy resistance in GC patients from five perspectives: cell death, tumor microenvironment, non-coding RNA, epigenetics, and epithelial-mesenchymal transition. Additionally, it proposes feasibility strategies to overcome drug resistance from four angles: cancer stem cells, tumor microenvironment, natural products, and combined therapy. The hope is that this article will provide guidance for researchers in the field and bring hope to more GC patients.
Collapse
Affiliation(s)
- Jiahua Liu
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qihang Yuan
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Guo
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hewen Guan
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Zhijun Hong
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Dong Shang
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
12
|
Liu X, Yan Q, Liu X, Wei W, Zou L, Zhao F, Zeng S, Yi L, Ding H, Zhao M, Chen J, Fan S. PKM2 induces mitophagy through the AMPK-mTOR pathway promoting CSFV proliferation. J Virol 2024; 98:e0175123. [PMID: 38319105 PMCID: PMC10949426 DOI: 10.1128/jvi.01751-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/14/2023] [Indexed: 02/07/2024] Open
Abstract
Viruses exploit the host cell's energy metabolism system to support their replication. Mitochondria, known as the powerhouse of the cell, play a critical role in regulating cell survival and virus replication. Our prior research indicated that the classical swine fever virus (CSFV) alters mitochondrial dynamics and triggers glycolytic metabolic reprogramming. However, the role and mechanism of PKM2, a key regulatory enzyme of glycolytic metabolism, in CSFV replication remain unclear. In this study, we discovered that CSFV enhances PKM2 expression and utilizes PKM2 to inhibit pyruvate production. Using an affinity purification coupled mass spectrometry system, we successfully identified PKM as a novel interaction partner of the CSFV non-structural protein NS4A. Furthermore, we validated the interaction between PKM2 and both CSFV NS4A and NS5A through co-immunoprecipitation and confocal analysis. PKM2 was found to promote the expression of both NS4A and NS5A. Moreover, we observed that PKM2 induces mitophagy by activating the AMPK-mTOR signaling pathway, thereby facilitating CSFV proliferation. In summary, our data reveal a novel mechanism whereby PKM2, a metabolic enzyme, promotes CSFV proliferation by inducing mitophagy. These findings offer a new avenue for developing antiviral strategies. IMPORTANCE Viruses rely on the host cell's material-energy metabolic system for replication, inducing host metabolic disorders and subsequent immunosuppression-a major contributor to persistent viral infections. Classical swine fever virus (CSFV) is no exception. Classical swine fever is a severe acute infectious disease caused by CSFV, resulting in significant economic losses to the global pig industry. While the role of the metabolic enzyme PKM2 (pyruvate dehydrogenase) in the glycolytic pathway of tumor cells has been extensively studied, its involvement in viral infection remains relatively unknown. Our data unveil a new mechanism by which the metabolic enzyme PKM2 mediates CSFV infection, offering novel avenues for the development of antiviral strategies.
Collapse
Affiliation(s)
- Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Xueyi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Wenkang Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| |
Collapse
|
13
|
Wang C, Chen Q, Chen S, Fan L, Gan Z, Zhao M, Shi L, Bin P, Yang G, Zhou X, Ren W. Serine synthesis sustains macrophage IL-1β production via NAD +-dependent protein acetylation. Mol Cell 2024; 84:744-759.e6. [PMID: 38266638 DOI: 10.1016/j.molcel.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/10/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
Serine metabolism is involved in the fate decisions of immune cells; however, whether and how de novo serine synthesis shapes innate immune cell function remain unknown. Here, we first demonstrated that inflammatory macrophages have high expression of phosphoglycerate dehydrogenase (PHGDH, the rate-limiting enzyme of de novo serine synthesis) via nuclear factor κB signaling. Notably, the pharmacological inhibition or genetic modulation of PHGDH limits macrophage interleukin (IL)-1β production through NAD+ accumulation and subsequent NAD+-dependent SIRT1 and SIRT3 expression and activity. Mechanistically, PHGDH not only sustains IL-1β expression through H3K9/27 acetylation-mediated transcriptional activation of Toll-like receptor 4 but also supports IL-1β maturation via NLRP3-K21/22/24/ASC-K21/22/24 acetylation-mediated activation of the NLRP3 inflammasome. Moreover, mice with myeloid-specific depletion of Phgdh show alleviated inflammatory responses in lipopolysaccharide-induced systemic inflammation. This study reveals a network by which a metabolic enzyme, involved in de novo serine synthesis, mediates post-translational modifications and epigenetic regulation to orchestrate IL-1β production, providing a potential inflammatory disease target.
Collapse
Affiliation(s)
- Chuanlong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingyi Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Siyuan Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lijuan Fan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhending Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Muyang Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lexuan Shi
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Peng Bin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Xihong Zhou
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Wenkai Ren
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
14
|
Wang D, Liu X, Li M, Ning J. HIF-1α regulates the cell viability in radioiodine-resistant papillary thyroid carcinoma cells induced by hypoxia through PKM2/NF-κB signaling pathway. Mol Carcinog 2024; 63:238-252. [PMID: 37861358 DOI: 10.1002/mc.23648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/05/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023]
Abstract
The curative treatment options for papillary thyroid cancer (PTC) encompass surgical intervention, radioactive iodine administration, and chemotherapy. However, the challenges of radioiodine (RAI) resistance, metastasis, and chemotherapy resistance remain inadequately addressed. The objective of this study was to investigate the protective role of hypoxia-inducible factor-1α (HIF-1α) in 131 I-resistant cells and a xenograft model under hypoxic conditions, as well as to explore potential mechanisms. The effects of HIF-1α on 131 I-resistant BCPAP and TPC-1 cells, as well as the xenograft model, were assessed in this study. Cell viability, migration, invasion, and apoptosis rates were measured using Cell Counting Kit-8, wound-healing, Transwell, and flow cytometry assays. Additionally, the expressions of Ki67, matrix metalloproteinase-9 (MMP-9), and pyruvate kinase M2 (PKM2) were examined using immunofluorescence or immunohistochemistry assays. Sodium iodide symporter and PKM2/NF-κBp65 relative protein levels were detected by western blot analysis. The findings of our study indicate that siHIF-1α effectively inhibits cell proliferation, cell migration, and invasion in 131 I-resistant cells under hypoxic conditions. Additionally, the treatment of siHIF-1α leads to alterations in the relative protein levels of Ki67, MMP-9, PKM2, and PKM2/NF-κBp65, both in vivo and in vitro. Notably, the effects of siHIF-1α are modified when DASA-58, an activator of PKM2, is administered. These results collectively demonstrate that siHIF-1α reduces cell viability in PTC cells and rat models, while also mediating the nuclear factor-κB (NF-κB)/PKM2 signaling pathway. Our findings provide a new rationale for further academic and clinical research on RAI-resistant PTC.
Collapse
Affiliation(s)
- Dong Wang
- Thyroid Surgery Ward, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xiaoqian Liu
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Meijing Li
- Second Department of Hepatobiliary Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jinyao Ning
- Thyroid Surgery Ward, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
15
|
He S, Liang Y, Tan Y, Liu Q, Liu T, Lu X, Zheng S. Positioning determines function: Wandering PKM2 performs different roles in tumor cells. Cell Biol Int 2024; 48:20-30. [PMID: 37975488 DOI: 10.1002/cbin.12103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/01/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Short for pyruvate kinase M2 subtype, PKM2 can be said of all-round player that is notoriously known for its metabolic involvement in glycolysis. Holding a dural role as a metabolic or non-metabolic (kinase) enzyme, PKM2 has drawn extensive attention over its biological roles implicated in tumor cells, including proliferation, migration, invasion, metabolism, and so on. wandering PKM2 can be transboundary both intracellularly and extracellularly. Specifically, PKM2 can be nuclear, cytoplasmic, mitochondrial, exosomal, or even circulate within the body. Importantly, PKM2 can function as an RNA-binding protein (RBP) to self-support its metabolic function. Despite extensive investigations or reviews available surrounding the biological roles of PKM2 from different angles in tumor cells, little has been described regarding some novel role of PKM2 that has been recently found, including, for example, acting as RNA-binding protein, protection of Golgi apparatus, and remodeling of microenvironment, and so forth. Given these findings, in this review, we summarize the recent advancements made in PKM2 research, mainly from non-metabolic respects. By the way, PKM1, another paralog of PKM2, seems to have been overlooked or under-investigated since its discovery. Some recent discoveries made about PKM1 are also preliminarily mentioned and discussed.
Collapse
Affiliation(s)
- Shuo He
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi, China
| | - Yan Liang
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi, China
| | - Yiyi Tan
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| |
Collapse
|
16
|
You T, Tang H, Wu W, Gao J, Li X, Li N, Xu X, Xing J, Ge H, Xiao Y, Guo J, Wu B, Li X, Zhou L, Zhao L, Bai C, Han Q, Sun Z, Zhao RC. POSTN Secretion by Extracellular Matrix Cancer-Associated Fibroblasts (eCAFs) Correlates with Poor ICB Response via Macrophage Chemotaxis Activation of Akt Signaling Pathway in Gastric Cancer. Aging Dis 2023; 14:2177-2192. [PMID: 37199594 PMCID: PMC10676785 DOI: 10.14336/ad.2023.0503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment, but its clinical benefit is limited in advanced gastric cancer (GC). Cancer-associated fibroblasts (CAFs) have been reported to be associated with ICB resistance, but the underlying mechanism has not been fully elucidated. Our previous single-cell RNA-seq analysis of GC revealed that POSTN+FAP+ extracellular matrix CAFs (eCAFs) communicate with macrophages. Here, we evaluated the correlation between eCAFs and ICB response in TCGA-STAD and real-world cohorts. Immune infiltration analysis and correlation analysis were performed to assess the relationship between eCAFs and macrophages. We first confirmed a negative correlation between the abundance of eCAFs and the overall response rate (ORR) to anti-PD-1 treatment in TCGA-STAD and real-world GC cohorts. Overexpression of POSTN in CAFs enhanced macrophage chemotaxis, while POSTN interference showed the opposite effect in vitro and in vivo. Furthermore, the cell density of POSTN+ CAFs was positively correlated with the infiltration level of CD163+ macrophages in GC patient tissues. The results demonstrated that POSTN secreted by CAFs enhances macrophage chemotaxis by activating the Akt signaling pathway in macrophages. Additionally, we found that POSTN+FAP+ eCAFs may exist in multiple solid tumors and are associated with ICB resistance. eCAFs promote macrophage chemotaxis through the secretion of POSTN, thereby leading to ICB resistance. High expression of POSTN is likely to predict a poor response to ICB. POSTN downregulation may be considered as a candidate therapeutic strategy to improve ICB efficacy.
Collapse
Affiliation(s)
- Tingting You
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hui Tang
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wenjing Wu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Jingxi Gao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Xuechun Li
- Department of Stomatology Center, Xiangya Hospital, Central South University, Changsha, China.
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China.
| | - Ningning Li
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiuxiu Xu
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jiazhang Xing
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hui Ge
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yi Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Bin Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiaoyi Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Liangrui Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Lin Zhao
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Qin Han
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Zhao Sun
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
17
|
Li Q, Chen Y, Liu H, Tian Y, Yin G, Xie Q. Targeting glycolytic pathway in fibroblast-like synoviocytes for rheumatoid arthritis therapy: challenges and opportunities. Inflamm Res 2023; 72:2155-2167. [PMID: 37940690 DOI: 10.1007/s00011-023-01807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by hyperplastic synovium, pannus formation, immune cell infiltration, and potential articular cartilage damage. Notably, fibroblast-like synoviocytes (FLS), especially rheumatoid arthritis fibroblast-like synoviocytes (RAFLS), exhibit specific overexpression of glycolytic enzymes, resulting in heightened glycolysis. This elevated glycolysis serves to generate ATP and plays a pivotal role in immune regulation, angiogenesis, and adaptation to hypoxia. Key glycolytic enzymes, such as hexokinase 2 (HK2), phosphofructose-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), and pyruvate kinase M2 (PKM2), significantly contribute to the pathogenic behavior of RAFLS. This increased glycolysis activity is regulated by various signaling pathways. MATERIALS AND METHODS A comprehensive literature search was conducted to retrieve relevant studies published from January 1, 2010, to the present, focusing on RAFLS glycolysis, RA pathogenesis, glycolytic regulation pathways, and small-molecule drugs targeting glycolysis. CONCLUSION This review provides a thorough exploration of the pathological and physiological characteristics of three crucial glycolytic enzymes in RA. It delves into their putative regulatory mechanisms, shedding light on their significance in RAFLS. Furthermore, the review offers an up-to-date overview of emerging small-molecule candidate drugs designed to target these glycolytic enzymes and the upstream signaling pathways that regulate them. By enhancing our understanding of the pathogenic mechanisms of RA and highlighting the pivotal role of glycolytic enzymes, this study contributes to the development of innovative anti-rheumatic therapies.
Collapse
Affiliation(s)
- Qianwei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunru Tian
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Wu Q, He X, Liu J, Ou C, Li Y, Fu X. Integrative evaluation and experimental validation of the immune-modulating potential of dysregulated extracellular matrix genes in high-grade serous ovarian cancer prognosis. Cancer Cell Int 2023; 23:223. [PMID: 37777759 PMCID: PMC10543838 DOI: 10.1186/s12935-023-03061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) is a challenging malignancy characterized by complex interactions between tumor cells and the surrounding microenvironment. Understanding the immune landscape of HGSOC, particularly the role of the extracellular matrix (ECM), is crucial for improving prognosis and guiding therapeutic interventions. METHODS AND RESULTS Using univariate Cox regression analysis, we identified 71 ECM genes associated with prognosis in seven HGSOC populations. The ECMscore signature, consisting of 14 genes, was validated using Cox proportional hazards regression with a lasso penalty. Cox regression analyses demonstrated that ECMscore is an excellent indicator for prognostic classification in prevalent malignancies, including HGSOC. Moreover, patients with higher ECMscores exhibited more active stromal and carcinogenic activation pathways, including apical surface signaling, Notch signaling, apical junctions, Wnt signaling, epithelial-mesenchymal transition, TGF-beta signaling, and angiogenesis. In contrast, patients with relatively low ECMscores showed more active immune-related pathways, such as interferon alpha response, interferon-gamma response, and inflammatory response. The relationship between the ECMscore and genomic anomalies was further examined. Additionally, the correlation between ECMscore and immune microenvironment components and signals in HGSOC was examined in greater detail. Moreover, the expression of MGP, COL8A2, and PAPPA and its correlation with FAP were validated using qRT-PCR on samples from HGSOC. The utility of ECMscore in predicting the prospective clinical success of immunotherapy and its potential in guiding the selection of chemotherapeutic agents were also explored. Similar results were obtained from pan-cancer research. CONCLUSION The comprehensive evaluation of the ECM may help identify immune activation and assist patients in HGSOC and even pan-cancer in receiving proper therapy.
Collapse
Affiliation(s)
- Qihui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China
| | - Xiaoyun He
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Chunlin Ou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China.
- Department of Pathology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China.
| | - Yimin Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, Ruijin Er Road, Huangpu District, Shanghai, 200025, China.
| | - Xiaodan Fu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China.
- Department of Pathology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
19
|
Wu W, Hu A, Xu H, Su J. LincRNA-EPS Alleviates Inflammation in TMJ Osteoarthritis by Binding to SRSF3. J Dent Res 2023; 102:1141-1151. [PMID: 37464762 DOI: 10.1177/00220345231180464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a common inflammatory disease that can cause pain, cartilage degradation, and subchondral bone loss. However, the key regulatory factors and new targets for the treatment of TMJOA have yet to be determined. Long noncoding RNAs (lncRNAs) have shown remarkable potential in regulating tissue homeostasis and disease development. The long intergenic RNA-erythroid prosurvival (lincRNA-EPS) is reported to be an effective inhibitor of inflammation, but its role in TMJOA is unexplored. Here, we found that lincRNA-EPS is downregulated and negatively correlated with inflammatory factors in the condyles of TMJOA mice. LincRNA-EPS knockout aggravated inflammation and tissue destruction after TMJOA modeling. The in vitro studies confirmed that loss of lincRNA-EPS facilitated inflammatory factor expression in condylar chondrocytes, while recovered expression of lincRNA-EPS showed anti-inflammatory effects. Mechanistically, RNA sequencing revealed that the inflammatory response pathway nuclear factor-kappa B (NF-κB) was mostly affected by lincRNA-EPS deficiency. Moreover, lincRNA-EPS was proved to effectively bind to serine/arginine-rich splicing factor 3 (SRSF3) and inhibit its function in pyruvate kinase isoform M2 (PKM2) formation, thus restraining the PKM2/NF-κB pathway and the expression of inflammatory factors. In addition, local injection of the lincRNA-EPS overexpression lentivirus significantly alleviated inflammation, cartilage degradation, and subchondral bone loss in TMJOA mice. Overall, lincRNA-EPS regulated the inflammatory process of condylar chondrocytes by binding to SRSF3 and showed translational application potential in the treatment of TMJOA.
Collapse
Affiliation(s)
- W Wu
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - A Hu
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - H Xu
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - J Su
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
20
|
Huang J, Wang X, Wen J, Zhao X, Wu C, Wang L, Cao X, Dong H, Xu X, Huang F, Zhu W, Wang M. Gastric cancer cell-originated small extracellular vesicle induces metabolic reprogramming of BM-MSCs through ERK-PPARγ-CPT1A signaling to potentiate lymphatic metastasis. Cancer Cell Int 2023; 23:87. [PMID: 37158903 PMCID: PMC10169337 DOI: 10.1186/s12935-023-02935-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023] Open
Abstract
Tumor microenvironment and metabolic reprogramming are critical for tumor metastasis. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are widely involved in the formation of tumor microenvironment and present oncogenic phenotypes to facilitate lymph node metastasis (LNM) in response to small extracellular vesicles (sEV) released by gastric cancer (GC) cells. However, whether metabolic reprograming mediates transformation of BM-MSCs remains elusive. Herein, we revealed that the capacity of LNM-GC-sEV educating BM-MSCs was positively correlated with the LNM capacity of GC cells themselves. Fatty acid oxidation (FAO) metabolic reprogramming was indispensable for this process. Mechanistically, CD44 was identified as a critical cargo for LNM-GC-sEV enhancing FAO via ERK/PPARγ/CPT1A signaling. ATP was shown to activate STAT3 and NF-κB signaling to induce IL-8 and STC1 secretion by BM-MSCs, thereby in turn facilitating GC cells metastasis and increasing CD44 levels in GC cells and sEV to form a persistent positive feedback loop between GC cells and BM-MSCs. The critical molecules were abnormally expressed in GC tissues, sera and stroma, and correlated with the prognosis and LNM of GC patients. Together, our findings uncover the role of metabolic reprogramming mediated BM-MSCs education by LNM-GC-sEV, which presents a novel insight into the mechanism underlying LNM and provides candidate targets for GC detection and therapy.
Collapse
Affiliation(s)
- Jiaying Huang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Xiang Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Jing Wen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Xinxin Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Chen Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Lin Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Haibo Dong
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Jiangsu University, 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Xuejing Xu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Jiangsu University, 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Feng Huang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu Province, China
- Department of Clinical Laboratory, Maternal and Child, Health Care Hospital of Kunshan, Suzhou, Jiangsu Province, China
| | - Wei Zhu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Mei Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China.
| |
Collapse
|
21
|
Wright K, Ly T, Kriet M, Czirok A, Thomas SM. Cancer-Associated Fibroblasts: Master Tumor Microenvironment Modifiers. Cancers (Basel) 2023; 15:cancers15061899. [PMID: 36980785 PMCID: PMC10047485 DOI: 10.3390/cancers15061899] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Cancer cells rely on the tumor microenvironment (TME), a composite of non-malignant cells, and extracellular matrix (ECM), for survival, growth, and metastasis. The ECM contributes to the biomechanical properties of the surrounding tissue, in addition to providing signals for tissue development. Cancer-associated fibroblasts (CAFs) are stromal cells in the TME that are integral to cancer progression. Subtypes of CAFs across a variety of cancers have been revealed, and each play a different role in cancer progression or suppression. CAFs secrete signaling molecules and remodel the surrounding ECM by depositing its constituents as well as degrading enzymes. In cancer, a remodeled ECM can lead to tumor-promoting effects. Not only does the remodeled ECM promote growth and allow for easier metastasis, but it can also modulate the immune system. A better understanding of how CAFs remodel the ECM will likely yield novel therapeutic targets. In this review, we summarize the key factors secreted by CAFs that facilitate tumor progression, ECM remodeling, and immune suppression.
Collapse
Affiliation(s)
- Kellen Wright
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Thuc Ly
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Matthew Kriet
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andras Czirok
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
22
|
Villegas-Pineda JC, Ramírez-de-Arellano A, Bueno-Urquiza LJ, Lizarazo-Taborda MDR, Pereira-Suárez AL. Cancer-associated fibroblasts in gynecological malignancies: are they really allies of the enemy? Front Oncol 2023; 13:1106757. [PMID: 37168385 PMCID: PMC10164963 DOI: 10.3389/fonc.2023.1106757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Molecular and cellular components of the tumor microenvironment are essential for cancer progression. The cellular element comprises cancer cells and heterogeneous populations of non-cancer cells that satisfy tumor needs. Immune, vascular, and mesenchymal cells provide the necessary factors to feed the tumor mass, promote its development, and favor the spread of cancer cells from the primary site to adjacent and distant anatomical sites. Cancer-associated fibroblasts (CAFs) are mesenchymal cells that promote carcinogenesis and progression of various malignant neoplasms. CAFs act through the secretion of metalloproteinases, growth factors, cytokines, mitochondrial DNA, and non-coding RNAs, among other molecules. Over the last few years, the evidence on the leading role of CAFs in gynecological cancers has notably increased, placing them as the cornerstone of neoplastic processes. In this review, the recently reported findings regarding the promoting role that CAFs play in gynecological cancers, their potential use as therapeutic targets, and the new evidence suggesting that they could act as tumor suppressors are analyzed and discussed.
Collapse
Affiliation(s)
- Julio César Villegas-Pineda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Lesly Jazmín Bueno-Urquiza
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Ana Laura Pereira-Suárez
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- *Correspondence: Ana Laura Pereira-Suárez,
| |
Collapse
|
23
|
Fang Z, Meng Q, Xu J, Wang W, Zhang B, Liu J, Liang C, Hua J, Zhao Y, Yu X, Shi S. Signaling pathways in cancer-associated fibroblasts: recent advances and future perspectives. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 43:3-41. [PMID: 36424360 PMCID: PMC9859735 DOI: 10.1002/cac2.12392] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/20/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022]
Abstract
As a critical component of the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) play important roles in cancer initiation and progression. Well-known signaling pathways, including the transforming growth factor-β (TGF-β), Hedgehog (Hh), Notch, Wnt, Hippo, nuclear factor kappa-B (NF-κB), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/AKT pathways, as well as transcription factors, including hypoxia-inducible factor (HIF), heat shock transcription factor 1 (HSF1), P53, Snail, and Twist, constitute complex regulatory networks in the TME to modulate the formation, activation, heterogeneity, metabolic characteristics and malignant phenotype of CAFs. Activated CAFs remodel the TME and influence the malignant biological processes of cancer cells by altering the transcriptional and secretory characteristics, and this modulation partially depends on the regulation of signaling cascades. The results of preclinical and clinical trials indicated that therapies targeting signaling pathways in CAFs demonstrated promising efficacy but were also accompanied by some failures (e.g., NCT01130142 and NCT01064622). Hence, a comprehensive understanding of the signaling cascades in CAFs might help us better understand the roles of CAFs and the TME in cancer progression and may facilitate the development of more efficient and safer stroma-targeted cancer therapies. Here, we review recent advances in studies of signaling pathways in CAFs and briefly discuss some future perspectives on CAF research.
Collapse
Affiliation(s)
- Zengli Fang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Qingcai Meng
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jin Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Wei Wang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Bo Zhang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jiang Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Chen Liang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jie Hua
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Yingjun Zhao
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Si Shi
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| |
Collapse
|
24
|
Naito Y, Yoshioka Y, Ochiya T. Intercellular crosstalk between cancer cells and cancer-associated fibroblasts via extracellular vesicles. Cancer Cell Int 2022; 22:367. [PMID: 36424598 PMCID: PMC9686122 DOI: 10.1186/s12935-022-02784-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Intercellular communication plays an important role in cancer initiation and progression through direct contact and indirect interactions, such as via secretory molecules. Cancer-associated fibroblasts (CAFs) are one of the principal components of such communication with cancer cells, modulating cancer metastasis and tumour mechanics and influencing angiogenesis, the immune system, and therapeutic resistance. Over the past few years, there has been a significant increase in research on extracellular vesicles (EVs) as regulatory agents in intercellular communication. EVs enable the transfer of functional molecules, including proteins, mRNAs and microRNAs (miRNAs), to recipient cells. Cancer cells utilize EVs to dictate the specific characteristics of CAFs within the tumour microenvironment, thereby promoting cancer progression. In response to such "education" by cancer cells, CAFs contribute to cancer progression via EVs. In this review, we summarize experimental data indicating the pivotal roles of EVs in intercellular communication between cancer cells and CAFs.
Collapse
Affiliation(s)
- Yutaka Naito
- grid.410821.e0000 0001 2173 8328Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-Ku, Tokyo, 113-8602 Japan
| | - Yusuke Yoshioka
- grid.410793.80000 0001 0663 3325Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023 Japan
| | - Takahiro Ochiya
- grid.410793.80000 0001 0663 3325Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023 Japan
| |
Collapse
|
25
|
Ahmadi M, Mahmoodi M, Shoaran M, Nazari-Khanamiri F, Rezaie J. Harnessing Normal and Engineered Mesenchymal Stem Cells Derived Exosomes for Cancer Therapy: Opportunity and Challenges. Int J Mol Sci 2022; 23:ijms232213974. [PMID: 36430452 PMCID: PMC9699149 DOI: 10.3390/ijms232213974] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
There remains a vital necessity for new therapeutic approaches to combat metastatic cancers, which cause globally over 8 million deaths per year. Mesenchymal stem cells (MSCs) display aptitude as new therapeutic choices for cancer treatment. Exosomes, the most important mediator of MSCs, regulate tumor progression. The potential of harnessing exosomes from MSCs (MSCs-Exo) in cancer therapy is now being documented. MSCs-Exo can promote tumor progression by affecting tumor growth, metastasis, immunity, angiogenesis, and drug resistance. However, contradictory evidence has suggested that MSCs-Exo suppress tumors through several mechanisms. Therefore, the exact association between MSCs-Exo and tumors remains controversial. Accordingly, the applications of MSCs-Exo as novel drug delivery systems and standalone therapeutics are being extensively explored. In addition, engineering MSCs-Exo for targeting tumor cells has opened a new avenue for improving the efficiency of antitumor therapy. However, effective implementation in the clinical trials will need the establishment of standards for MSCs-Exo isolation and characterization as well as loading and engineering methods. The studies outlined in this review highlight the pivotal roles of MSCs-Exo in tumor progression and the promising potential of MSCs-Exo as therapeutic drug delivery vehicles for cancer treatment.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5665665811, Iran
| | - Monireh Mahmoodi
- Department of Biology, Faculty of Science, Arak University, Arak 3815688349, Iran
| | - Maryam Shoaran
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz 5665665811, Iran
| | - Fereshteh Nazari-Khanamiri
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
- Correspondence: ; Tel.: +98-9148548503; Fax: +98-4432222010
| |
Collapse
|
26
|
Lorenzana-Carrillo MA, Gopal K, Byrne NJ, Tejay S, Saleme B, Das SK, Zhang Y, Haromy A, Eaton F, Mendiola Pla M, Bowles DE, Dyck JR, Ussher JR, Michelakis ED, Sutendra G. TRIM35-mediated degradation of nuclear PKM2 destabilizes GATA4/6 and induces P53 in cardiomyocytes to promote heart failure. Sci Transl Med 2022; 14:eabm3565. [DOI: 10.1126/scitranslmed.abm3565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pyruvate kinase M2 (PKM2) is a glycolytic enzyme that translocates to the nucleus to regulate transcription factors in different tissues or pathologic states. Although studied extensively in cancer, its biological role in the heart remains unresolved. PKM1 is more abundant than the PKM2 isoform in cardiomyocytes, and thus, we speculated that PKM2 is not genetically redundant to PKM1 and may be critical in regulating cardiomyocyte-specific transcription factors important for cardiac survival. Here, we showed that nuclear PKM2 (
S37
P-PKM2) in cardiomyocytes interacts with prosurvival and proapoptotic transcription factors, including GATA4, GATA6, and P53. Cardiomyocyte-specific PKM2-deficient mice (
Pkm2
Mut Cre
+
) developed age-dependent dilated cardiac dysfunction and had decreased amounts of GATA4 and GATA6 (GATA4/6) but increased amounts of P53 compared to Control Cre
+
hearts. Nuclear PKM2 prevented caspase-1–dependent cleavage and degradation of GATA4/6 while also providing a molecular platform for MDM2-mediated reduction of P53. In a preclinical heart failure mouse model, nuclear PKM2 and GATA4/6 were decreased, whereas P53 was increased in cardiomyocytes. Loss of nuclear PKM2 was ubiquitination dependent and associated with the induction of the E3 ubiquitin ligase TRIM35. In mice, cardiomyocyte-specific TRIM35 overexpression resulted in decreased
S37
P-PKM2 and GATA4/6 along with increased P53 in cardiomyocytes compared to littermate controls and similar cardiac dysfunction to
Pkm2
Mut Cre
+
mice. In patients with dilated left ventricles, increase in TRIM35 was associated with decreased
S37
P-PKM2 and GATA4/6 and increased P53. This study supports a previously unrecognized role for PKM2 as a molecular platform that mediates cell signaling events essential for cardiac survival.
Collapse
Affiliation(s)
- Maria Areli Lorenzana-Carrillo
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Keshav Gopal
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | - Nikole J. Byrne
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Saymon Tejay
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Subhash K. Das
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Yongneng Zhang
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Alois Haromy
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Farah Eaton
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | | | - Dawn E. Bowles
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Jason R. B. Dyck
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - John R. Ussher
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | - Evangelos D. Michelakis
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Gopinath Sutendra
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
27
|
Sun H, Wang X, Wang X, Xu M, Sheng W. The role of cancer-associated fibroblasts in tumorigenesis of gastric cancer. Cell Death Dis 2022; 13:874. [PMID: 36244987 PMCID: PMC9573863 DOI: 10.1038/s41419-022-05320-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022]
Abstract
Despite advances in anticancer therapy, the prognosis of gastric cancer (GC) remains unsatisfactory. Research in recent years has shown that the malignant behavior of cancer is not only attributable to tumor cells but is partly mediated by the activity of the cancer stroma and controlled by various molecular networks in the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are one of the most abundant mesenchymal cell components of the stroma and extensively participate in the malignant development of GC malignancy. CAFs modulate the biological properties of tumor cells in multiple ways, including the secretion of various bioactive molecules that have effects through paracrine and autocrine signaling, the release of exosomes, and direct interactions, thereby affecting GC initiation and development. However, there is marked heterogeneity in the cellular origins, phenotypes, and functions of CAFs in the TME of GC. Furthermore, variations in factors, such as proteins, microRNAs, and lncRNAs, affect interactions between CAFs and GC cells, although, the potential molecular mechanisms are still poorly understood. In this review, we aim to describe the current knowledge of the cellular features and heterogeneity of CAFs and discuss how these factors are regulated in CAFs, with a focus on how they affect GC biology. This review provides mechanistic insight that could inform therapeutic strategies and improve the prognosis of GC patients.
Collapse
Affiliation(s)
- Hui Sun
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Pathology, Fudan University, 200032 Shanghai, China
| | - Xu Wang
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Pathology, Fudan University, 200032 Shanghai, China
| | - Xin Wang
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Pathology, Fudan University, 200032 Shanghai, China
| | - Midie Xu
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| | - Weiqi Sheng
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| |
Collapse
|
28
|
Zou R, Jiang Q, Jin T, Chen M, Yao L, Ding H. Pan-cancer analyses and molecular subtypes based on the cancer-associated fibroblast landscape and tumor microenvironment infiltration characterization reveal clinical outcome and immunotherapy response in epithelial ovarian cancer. Front Immunol 2022; 13:956224. [PMID: 36032075 PMCID: PMC9402225 DOI: 10.3389/fimmu.2022.956224] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are essential components of the tumor microenvironment (TME). These cells play a supportive role throughout cancer progression. Their ability to modulate the immune system has also been noted. However, there has been limited investigation of CAFs in the TME of epithelial ovarian cancer (EOC). Methods We comprehensively evaluated the CAF landscape and its association with gene alterations, clinical features, prognostic value, and immune cell infiltration at the pan-cancer level using multi-omic data from The Cancer Genome Atlas (TCGA). The CAF contents were characterized by CAF scores based on the expression levels of seven CAF markers using the R package “GSVA.” Next, we identified the molecular subtypes defined by CAF markers and constructed a CAF riskscore system using principal component analysis in the EOC cohort. The correlation between CAF riskscore and TME cell infiltration was investigated. The ability of the CAF riskscore to predict prognosis and immunotherapy response was also examined. Results CAF components were involved in multiple immune-related processes, including transforming growth factor (TGF)-β signaling, IL2-STAT signaling, inflammatory responses, and Interleukin (IL) 2-signal transducer and activator of transcription (STAT) signaling. Considering the positive correlation between CAF scores and macrophages, neutrophils, and mast cells, CAFs may exert immunosuppressive effects in both pan-cancer and ovarian cancer cohorts, which may explain accelerated tumor progression and poor outcomes. Notably, two distinct CAF molecular subtypes were defined in the EOC cohort. Low CAF riskscores were characterized by favorable overall survival (OS) and higher efficacy of immunotherapy. Furthermore, 24 key genes were identified in CAF subtypes. These genes were significantly upregulated in EOC and showed a strong correlation with CAF markers. Conclusions Identifying CAF subtypes provides insights into EOC heterogeneity. The CAF riskscore system can predict prognosis and select patients who may benefit from immunotherapy. The mechanism of interactions between key genes, CAF markers, and associated cancer-promoting effects needs to be further elucidated.
Collapse
Affiliation(s)
- Ruoyao Zou
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Qidi Jiang
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Tianqiang Jin
- Department of General Surgery, ShengJing Hospital of China Medical University, Shenyang, China
| | - Mo Chen
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Liangqing Yao
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- *Correspondence: Hongda Ding, ; Liangqing Yao,
| | - Hongda Ding
- Department of General Surgery, ShengJing Hospital of China Medical University, Shenyang, China
- *Correspondence: Hongda Ding, ; Liangqing Yao,
| |
Collapse
|
29
|
Chang Q, Yin D, Li H, Du X, Wang Z, Liu Y, Zhang J. HDAC6-specific inhibitor alleviates hashimoto's thyroiditis through inhibition of Th17 cell differentiation. Mol Immunol 2022; 149:39-47. [PMID: 35717700 DOI: 10.1016/j.molimm.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/26/2022] [Accepted: 05/14/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Hashimoto's thyroiditis (HT) is one of the commonest autoimmune disorders. This study was performed to investigate the potential effect of histone deacetylase 6-specific inhibitor (HDAC6i) on Th17 cell differentiation in animal model and the underlying mechanism. METHODS Experimental autoimmune thyroiditis (EAT) mouse model was established by subcutaneously immunization of porcine thyroglobulin (pTg) and adjuvant, and the HDACi Tubastatin A (TSA) or HDAC6i (ACY-1215) was intraperitoneally injected into mice in the following. The histological examination and immune analysis in EAT mice were carried out. Next, the CD4+ T cells were isolated from peripheral blood mononuclear cells (PBMCs) of EAT mice followed by Th17 cell differentiation assay. The associated factor levels, and the protein interaction between HDAC6 and PKM2 were examined. Subsequently, the effect of STAT3 activation on Th17 cell differentiation was explored. RESULTS ACY-1215 or TSA treatment reduced lymphocytic infiltration and alleviated thyroid tissue injury in EAT mice. Correspondingly, either ACY-1215 or TSA treatment reduced the levels of anti-thyroglobulin (Tg), anti-thyroid peroxidase (TPO), IL-17A, and IFN-γ in the serum, decreased Th17 cell differentiation, but enhanced TGF-β level and promoted Treg cell differentiation. In vitro, after induction of Th17 cell differentiation from CD4+ T cells, HDAC6 activity and Th17 cell differentiation were significantly decreased when treated with ACY-1215 or TSA. HDAC6 could interact with PKM2, and HDAC6 overexpression promoted the phosphorylation of STAT3 and PKM2 nuclear translocation. Furthermore, the STAT3 activator treatment reversed the effects of ACY-1215 or TSA treatment. CONCLUSION HDAC6i suppresses Th17 cell differentiation and attenuates HT via PKM2/STAT3 axis.
Collapse
Affiliation(s)
- Qungang Chang
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Discipline Laboratory of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Detao Yin
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Discipline Laboratory of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongqiang Li
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Du
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zipeng Wang
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yihao Liu
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jieming Zhang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
30
|
Li R, Zhou J, Wu X, Li H, Pu Y, Liu N, Han Z, Zhou L, Wang Y, Zhu H, Yang L, Li Q, Ji Q. Jianpi Jiedu Recipe inhibits colorectal cancer liver metastasis via regulating ITGBL1-rich extracellular vesicles mediated activation of cancer-associated fibroblasts. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154082. [PMID: 35381565 DOI: 10.1016/j.phymed.2022.154082] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/05/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) contribute greatly to the formation of pre-metastatic niche and tumor metastasis. Our previous study has revealed that tumor-derived ITGBL1 (integrin beta- like 1)-rich EVs activate fibroblasts through the NF-κB signaling to promote colorectal cancer (CRC) metastasis. Targeting ITGBL1-loaded EVs may be a new and effective therapy for treating CRC metastasis. Simultaneously, our preliminary clinical trial has demonstrated that Jianpi Jiedu Recipe (JPJDR) was an ideal alternative traditional Chinese medicine for the prevention and treatment of CRC metastasis. However, the underlying mechanism of JPJDR in the prevention of CRC metastasis is not clear. In this study, we will investigate the regulatory effect of JPJDR on ITGBL1 levels in CRC-derived EVs, and to detect how JPJDR regulate ITGBL1-rich EVs mediated activation of fibroblasts to inhibit CRC metastasis. METHODS EVs derived from CRC cells with/without JPJDR treatment were obtained by ultracentrifugation, following by characterization with electron microscopy, LM10 nanoparticle characterization system and western blot. The migration and growth of CRC cells were tested by transwell assay, wound healing assay and colony formation assay. The effect of JPJDR on the fibroblasts-activation associated inflammatory factors including IL-6, IL-8 and α-SMA was detected by real-time PCR. The levels of IL-6, IL-8 and α-SMA in the cell culture supernatant were detected by ELISA. The protein expressions of TNFAIP3, ITGBL1, p-NF-κB, IκBα and β-actin were detected by western blot. Liver metastasis model in mice was established by injecting MC38 single cell suspension into the spleen of mice to observe the effect of JPJDR on CRC liver metastasis. Immunohistochemistry were applied to detect the expression of ITGBL1 and TNFAIP3 in the liver metastatic tissues. Tissue immunofluorescence detection was performed to observe the regulatory effect of JPJDR on the ITGBL1-NF-κB signaling pathway. Cancer-associated fibroblasts (CAFs) in the liver metastatic tissues were sorted and characterized by platelet-derived growth factor receptor β (PDGFRβ) with flow cytometry, following by the detection of inflammatory factors including IL-6, IL-8 and α-SMA using real-time PCR. RESULTS JPJDR reduced the ITGBL1 levels in CRC cells-derived EVs. JPJDR inhibited the migration and growth of CRC cells via regulating ITGBL1-rich EVs mediated fibroblasts activity. Mechanically, JPJDR decreased fibroblasts activation by regulating ITGBL1-rich EVs mediated TNFAIP3-NF-κB signaling. Further in vivo experiments demonstrated that JPJDR reduced CRC liver metastasis by regulating ITGBL1-rich EVs secretion from CRC and blocked the fibroblasts activation by regulating ITGBL1-TNFAIP3- NF-κB signaling. CONCLUSION Our research demonstrated that JPJDR preventd CRC liver metastasis via down-regulating CRC-derived ITGBL1-loaded EVs mediated activation of CAFs, providing the experimental evidence for the clinical application of JPJDR in the prevention and treatment of CRC metastasis. More importantly, our study confirmed the great benefits of therapeutic targeting the EVs-mediated metastasis and warranted future clinical validation.
Collapse
Affiliation(s)
- Ruixiao Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinnan Wu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haoze Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunzhou Pu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningning Liu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhifen Han
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihong Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huirong Zhu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Yang
- Department of Oncology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qi Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qing Ji
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
31
|
Krysa SJ, Allen LAH. Metabolic Reprogramming Mediates Delayed Apoptosis of Human Neutrophils Infected With Francisella tularensis. Front Immunol 2022; 13:836754. [PMID: 35693822 PMCID: PMC9174434 DOI: 10.3389/fimmu.2022.836754] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/28/2022] [Indexed: 01/15/2023] Open
Abstract
Neutrophils (polymorphonuclear leukocytes, PMNs) have a distinctively short lifespan, and tight regulation of cell survival and death is imperative for their normal function. We demonstrated previously that Francisella tularensis extends human neutrophil lifespan, which elicits an impaired immune response characterized by neutrophil dysfunction. Herein, we extended these studies, including our transcriptional profiling data, and employed Seahorse extracellular flux analysis, gas chromatography-mass spectrometry metabolite analysis, flow cytometry and several other biochemical approaches to demonstrate that the delayed apoptosis observed in F. tularensis-infected neutrophils is mediated, in part, by metabolic reprogramming. Specifically, we show that F. tularensis-infected neutrophils exhibited a unique metabolic signature characterized by increased glycolysis, glycolytic flux and glucose uptake, downregulation of the pentose phosphate pathway, and complex glycogen dynamics. Glucose uptake and glycolysis were essential for cell longevity, although glucose-6-phosphate translocation into the endoplasmic reticulum was not, and we identify depletion of glycogen as a potential trigger of apoptosis onset. In keeping with this, we also demonstrate that ablation of apoptosis with the pan-caspase inhibitor Q-VD-OPh was sufficient to profoundly increase glycolysis and glycogen stores in the absence of infection. Taken together, our data significantly advance understanding of neutrophil immunometabolism and its capacity to regulate cell lifespan.
Collapse
Affiliation(s)
- Samantha J. Krysa
- Inflammation Program, University of Iowa, Iowa City, IA, United States,Molecular Medicine Program, University of Iowa, Iowa City, IA, United States,Iowa City VA Health Care System, Iowa City, IA, United States
| | - Lee-Ann H. Allen
- Inflammation Program, University of Iowa, Iowa City, IA, United States,Molecular Medicine Program, University of Iowa, Iowa City, IA, United States,Iowa City VA Health Care System, Iowa City, IA, United States,Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States,Harry S. Truman Memorial VA Hospital, Columbia, MO, United States,Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, United States,*Correspondence: Lee-Ann H. Allen,
| |
Collapse
|
32
|
Chen Z, Jiang W, Li Z, Zong Y, Deng G. Immune-and Metabolism-Associated Molecular Classification of Ovarian Cancer. Front Oncol 2022; 12:877369. [PMID: 35646692 PMCID: PMC9133421 DOI: 10.3389/fonc.2022.877369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/19/2022] [Indexed: 01/25/2023] Open
Abstract
Ovarian cancer (OV) is a complex gynecological disease, and its molecular characteristics are not clear. In this study, the molecular characteristics of OV subtypes based on metabolic genes were explored through the comprehensive analysis of genomic data. A set of transcriptome data of 2752 known metabolic genes was used as a seed for performing non negative matrix factorization (NMF) clustering. Three subtypes of OV (C1, C2 and C3) were found in analysis. The proportion of various immune cells in C1 was higher than that in C2 and C3 subtypes. The expression level of immune checkpoint genes TNFRSF9 in C1 was higher than that of other subtypes. The activation scores of cell cycle, RTK-RAS, Wnt and angiogenesis pathway and ESTIMATE immune scores in C1 group were higher than those in C2 and C3 groups. In the validation set, grade was significantly correlated with OV subtype C1. Functional analysis showed that the extracellular matrix related items in C1 subtype were significantly different from other subtypes. Drug sensitivity analysis showed that C2 subtype was more sensitive to immunotherapy. Survival analysis of differential genes showed that the expression of PXDN and CXCL11 was significantly correlated with survival. The results of tissue microarray immunohistochemistry showed that the expression of PXDN was significantly correlated with tumor size and pathological grade. Based on the genomics of metabolic genes, a new OV typing method was developed, which improved our understanding of the molecular characteristics of human OV.
Collapse
Affiliation(s)
- Zhenyue Chen
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiyi Jiang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Zong
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gaopi Deng
- Department Obstetrics and Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
33
|
Zhang M, Li X, Wu W, Gao J, Han Q, Sun Z, Zhao RC. Regorafenib induces the apoptosis of gastrointestinal cancer-associated fibroblasts by inhibiting AKT phosphorylation. Stem Cells Dev 2022; 31:383-394. [PMID: 35502476 DOI: 10.1089/scd.2022.0088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a key component of tumor microenvironment and are essential for tumorigenesis and development. Regorafenib is a multikinase inhibitor that targets CAFs and suppresses tumor growth. Here, we investigated the effects of regorafenib on gastrointestinal CAFs and the underlying molecular mechanisms. First, we established two in vivo tumor models, the cancer cell line HCT116 with or without mesenchymal stem cells (MSCs) and treated them with regorafenib. We found that the application of regorafenib potently impaired tumor growth, an effect that was more pronounced in tumors with a high stromal ratio, thus demonstrating that regorafenib can inhibit CAFs proliferation and induce CAFs apoptosis in vivo. Moreover, we showed that regorafenib affected macrophage infiltration by reducing the proportion of CAFs in tumors. Afterward, we induced MSCs into CAFs with exosomes to establish an in vitro model. Then, we used MTS and flow cytometry to detect the effects of regorafenib on the proliferation and apoptosis of CAFs, and Western blot to determine the expression level of apoptosis-related proteins. We found that regorafenib inhibited the proliferation of CAFs and induced the apoptosis of CAFs in vitro. Furthermore, Western blot results showed that regorafenib down-regulated the expression of B-cell lymphoma-2 (Bcl-2) and concurrently up-regulated the expression of Bcl-2-associated X (Bax), and regorafenib inhibited the phosphorylation pathway of AKT in CAFs. In conclusion, our results provide a model in which regorafenib induces CAFs apoptosis by inhibiting the phosphorylation of AKT, and regorafenib affects macrophage infiltration by reducing the proportion of CAFs in tumor tissues.
Collapse
Affiliation(s)
- Mingjia Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China;
| | - Xuechun Li
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China;
| | - Wenjing Wu
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China;
| | - Jingxi Gao
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China;
| | - Qin Han
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, Beijing, China;
| | - Zhao Sun
- Peking Union Medical College Hospital, 34732, Department of oncology, Dongcheng-qu, Beijing, China;
| | - Robert Chunhua Zhao
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China.,Shanghai University, 34747, School of Life Sciences, Shanghai, Shanghai, China;
| |
Collapse
|
34
|
Shimauchi T, Boucherat O, Yokokawa T, Grobs Y, Wu W, Orcholski M, Martineau S, Omura J, Tremblay E, Shimauchi K, Nadeau V, Breuils-Bonnet S, Paulin R, Potus F, Provencher S, Bonnet S. PARP1-PKM2 Axis Mediates Right Ventricular Failure Associated With Pulmonary Arterial Hypertension. JACC Basic Transl Sci 2022; 7:384-403. [PMID: 35540097 PMCID: PMC9079853 DOI: 10.1016/j.jacbts.2022.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022]
Abstract
The authors show that increased poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) and pyruvate kinase muscle isozyme 2 (PKM2) expression is a common feature of a decompensated right ventricle in patients with pulmonary arterial hypertension and animal models. The authors find in vitro that overactivated PARP1 promotes cardiomyocyte dysfunction by favoring PKM2 expression and nuclear function, glycolytic gene expression, activation of nuclear factor κB-dependent proinflammatory factors. Pharmacologic and genetic inhibition of PARP1 or enforced tetramerization of PKM2 attenuates maladaptive remodeling improving right ventricular (RV) function in multiple rodent models. Taken together, these data implicate the PARP1/PKM2 axis as a critical driver of maladaptive RV remodeling and a new promising target to directly sustain RV function in patients with pulmonary arterial hypertension.
Collapse
Key Words
- CM, cardiomyocyte
- CO, cardiac output
- ET, endothelin
- NF-κB, nuclear factor κB
- PAB, pulmonary artery banding
- PAH, pulmonary arterial hypertension
- PARP1
- PARP1, poly(adenosine diphosphate–ribose) polymerase 1
- PKM2
- PKM2, pyruvate kinase muscle isozyme 2
- RV, right ventricular
- STAT3, signal transducer activator of transcription 3
- WT, wild-type
- cKO, conditional knockout
- pulmonary hypertension
- right ventricle
Collapse
Affiliation(s)
- Tsukasa Shimauchi
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada.,Department of Medicine, Université Laval, Québec, Québec, Canada
| | - Tetsuro Yokokawa
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Yann Grobs
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - WenHui Wu
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Mark Orcholski
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Sandra Martineau
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Junichi Omura
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Eve Tremblay
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Kana Shimauchi
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Valérie Nadeau
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Roxane Paulin
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada.,Department of Medicine, Université Laval, Québec, Québec, Canada
| | - François Potus
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada.,Department of Medicine, Université Laval, Québec, Québec, Canada
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada.,Department of Medicine, Université Laval, Québec, Québec, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada.,Department of Medicine, Université Laval, Québec, Québec, Canada
| |
Collapse
|
35
|
Tang H, Zhou X, Zhao X, Luo X, Luo T, Chen Y, Liang W, Jiang E, Liu K, Shao Z, Shang Z. HSP90/IKK‐rich small extracellular vesicles activate pro‐angiogenic melanoma‐associated fibroblasts via NF‐κB/CXCL1 axis. Cancer Sci 2022; 113:1168-1181. [PMID: 35043517 PMCID: PMC8990732 DOI: 10.1111/cas.15271] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
Hypoxia is a main feature of most solid tumors, but how melanoma cells under hypoxic conditions exploit tumor microenvironment (TME) to facilitate tumor progression remains poorly understood. In this study, we found that hypoxic melanoma‐derived small extracellular vesicles (sEVs) could improve the proangiogenic capability of cancer‐associated fibroblasts (CAFs). This improvement was due to the activation of the IKK/IκB/NF‐κB signaling pathway and upregulation of CXCL1 expression and secretion in CAFs. By proteomic analysis, we verified that hypoxia could promote enrichment of chaperone HSP90 and client protein phosphorylated IKKα/β (p‐IKKα/β) in melanoma‐derived sEVs. Delivery of the HSP90/p‐IKKα/β complex by sEVs could activate the IKK/IκB/NF‐κB/CXCL1 axis in CAFs and promote angiogenesis in vitro and in vivo. Taken together, these findings deepen the understanding of hypoxic response in melanoma progression and provide potential targets for melanoma treatment.
Collapse
Affiliation(s)
- Hokeung Tang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory for Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Xiaocheng Zhou
- Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology Wuhan University Wuhan China
| | - Xiaoping Zhao
- Center of Stomatology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xinyue Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory for Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Tingting Luo
- Shenzhen PKU‐HKUST Medical Center (Peking University Shenzhen Hospital) Shenzhen China
| | - Yang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory for Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Weilian Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory for Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Erhui Jiang
- Department of Oral and Maxillofacial‐Head and Neck Oncology School and Hospital of Stomatology Wuhan University Wuhan China
| | - Ke Liu
- Department of Oral and Maxillofacial‐Head and Neck Oncology School and Hospital of Stomatology Wuhan University Wuhan China
| | - Zhe Shao
- Department of Oral and Maxillofacial‐Head and Neck Oncology School and Hospital of Stomatology Wuhan University Wuhan China
| | - Zhengjun Shang
- Department of Oral and Maxillofacial‐Head and Neck Oncology School and Hospital of Stomatology Wuhan University Wuhan China
| |
Collapse
|
36
|
Zhang F, Guo J, Zhang Z, Qian Y, Wang G, Duan M, Zhao H, Yang Z, Jiang X. Mesenchymal stem cell-derived exosome: A tumor regulator and carrier for targeted tumor therapy. Cancer Lett 2021; 526:29-40. [PMID: 34800567 DOI: 10.1016/j.canlet.2021.11.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that have the ability to differentiate into multiple cell types. Several studies have shown that exosomes secreted by MSCs (MSCs-Exo) play an important role in tumor growth, angiogenesis, invasion, and drug resistance. However, contradictory results have suggested that MSCs-Exo can also suppress tumors through specific mechanisms, such as regulating immune responses and intercellular signaling. Consequently, the relationship between MSCs-Exo and tumors remains controversial. However, it is undeniable that exosomes, as natural vesicles, can be excellent drug carriers and show promise for application in targeted tumor therapy. Here, we review the current knowledge regarding the involvement of MSCs-Exo in tumor progression and their potential as drug delivery systems in targeted therapy. We argue that MSCs-Exo can be used as safe carriers of antitumor drugs.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jinshuai Guo
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhenghou Zhang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yiping Qian
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Guang Wang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Meiqi Duan
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Haiying Zhao
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhi Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Xiaofeng Jiang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
37
|
Peng Y, Yang H, Li S. The role of glycometabolic plasticity in cancer. Pathol Res Pract 2021; 226:153595. [PMID: 34481210 DOI: 10.1016/j.prp.2021.153595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022]
Abstract
Dysregulated glycometabolism represented by the Warburg effect is well recognized as a hallmark of cancer that can be driven by oncogenes (e.g., c-Myc, K-ras, and BRAF) and contribute to cellular malignant transformation. The Warburg effect reveals the different glycometabolic patterns of cancer cells, but this unique glycometabolic pattern has the characteristic of plasticity rather than changeless which can vary with different internal or external stimuli during evolution. Glycometabolic plasticity enables cancer cells to modulate glycometabolism to support progression, metastasis, treatment resistance and recurrence. In this review, we report the characteristics of glycometabolic plasticity during different stages of cancer evolution, providing insight into the molecular mechanisms of glycometabolic plasticity in cancer. In addition, we discussed the challenges and future research directions of glycometabolism research in cancer.
Collapse
Affiliation(s)
- Yuyang Peng
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Yang
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Song Li
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
38
|
Helicobacter pylori-Induced Inflammation: Possible Factors Modulating the Risk of Gastric Cancer. Pathogens 2021; 10:pathogens10091099. [PMID: 34578132 PMCID: PMC8467880 DOI: 10.3390/pathogens10091099] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation and long-term tissue injury are related to many malignancies, including gastric cancer (GC). Helicobacter pylori (H. pylori), classified as a class I carcinogen, induces chronic superficial gastritis followed by gastric carcinogenesis. Despite a high prevalence of H. pylori infection, only about 1–3% of people infected with this bacterium develop GC worldwide. Furthermore, the development of chronic gastritis in some, but not all, H. pylori-infected subjects remains unexplained. These conflicting findings indicate that clinical outcomes of aggressive inflammation (atrophic gastritis) to gastric carcinogenesis are influenced by several other factors (in addition to H. pylori infection), such as gut microbiota, co-existence of intestinal helminths, dietary habits, and host genetic factors. This review has five goals: (1) to assess our current understanding of the process of H. pylori-triggered inflammation and gastric precursor lesions; (2) to present a hypothesis on risk modulation by the gut microbiota and infestation with intestinal helminths; (3) to identify the dietary behavior of the people at risk of GC; (4) to check the inflammation-related genetic polymorphisms and role of exosomes together with other factors as initiators of precancerous lesions and gastric carcinoma; and (5) finally, to conclude and suggest a new direction for future research.
Collapse
|