1
|
Fang H, Yang W, Han Q, Zhao R, Zheng W, Lu Z, Wu S, Zhu Q, Li J, Guan G, Wen J. Utidelone plus pembrolizumab as the fourth-line combination treatment in non-small cell lung cancer with EGFR mutation: a case report. Anticancer Drugs 2024:00001813-990000000-00331. [PMID: 39423045 DOI: 10.1097/cad.0000000000001661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Utidelone is an ebomycin derivative chemotherapeutic drug, which can promote tubulin polymerization and stabilize microtubule structure, so as to induce apoptosis. The drug is an innovative drug independently developed by China with independent intellectual property rights. Phase II clinical trials for advanced breast cancer are being approved by National Medical Products Administration for the treatment of advanced breast cancer. However, there is no report on the application in non-small cell lung cancer (NSCLC) patients with the epidermal growth factor receptor (EGFR) mutation. This case is a patient with EGFR mutant stage IV NSCLC who has progressed after third-line targeted therapy. The fourth line was treated with utidelone combined with pabolizumab. The patient had progressed after targeted therapy with oxitinib, ametinib, and vometinib. Due to the patient's physical reasons, the traditional platinum drugs were not suitable, so the patient was treated with utidelone combined with pabolizumab. The curative effect was evaluated as SD after two cycles and progesterone receptor after four cycles. At present, it is still in the maintenance of reduction of utidelone combined with pabolizumab, and the tumor continues to shrink. Although peripheral neurotoxicity occurred during treatment, it improved after symptomatic treatment. The treatment of EGFR mutant stage IV NSCLC with utidelone combined with pabolizumab has good effect and mild adverse reactions.
Collapse
Affiliation(s)
- Henghu Fang
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Qiao G, Liu Z, Ding H, Lu H, Lin F, Shi Y, Zheng L, Wang M, Chen Y, Deng Z, Yu L, Zhang Y, Yuan Y, Lin H, Ma L, Zhang J. Utidelone-based therapy in advanced or metastatic solid tumors after failure of standard therapies: a prospective, multicenter, single-arm trial. Am J Cancer Res 2024; 14:4514-4522. [PMID: 39417192 PMCID: PMC11477828 DOI: 10.62347/oles9793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Treatment options are limited for tumors after failure of standard therapies. Utidelone (UTD1), a novel microtubule stabilizer, given via 5 days intermittent infusion, has demonstrated high activity in heavily pretreated metastatic breast cancer, while its efficacy in other cancers was unclear. Peripheral neuropathy is a common and severe adverse event (AE) of UTD1. We performed a prospective, multicenter, single-arm trial (ChiCTR2300074299) to evaluate the efficacy and safety of UTD1 with a changed administration mode in patients with advanced or metastatic solid tumors after failure of standard therapies. UTD1 (150 mg/m2, alone or in combination with other anticancer agents) was administrated via 120 h continuous intravenous infusion every 21 days until disease progression or intolerable toxicity. A total of 50 patients were enrolled and analyzed, including 20 breast cancer patients, 11 gynecological cancer patients, 8 gastrointestinal cancer patients, 6 lung cancer patients, and 5 patients with other solid tumors. The overall median progression-free survival (PFS) was 4 months, the overall objective response rate and disease control rate were 20% and 66%, respectively, and the median overall survival was not reached. Most of the AEs were grade 1 or 2 and were manageable and reversible, the rate of grade ≥3 AEs including peripheral neuropathy was 4%. This study demonstrated a promising anti-tumor activity of UTD1 in patients with advanced or metastatic solid tumors after failure of the standard therapies. Moreover, 120 h continuous intravenous infusion was a more tolerable administration mode than 5 days intermittent infusion, and worthy of further study.
Collapse
Affiliation(s)
- Guanglei Qiao
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Zimei Liu
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Honghua Ding
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Hongmin Lu
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Feng Lin
- Department of Oncology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yang Shi
- Department of Oncology, Shanghai Ninth People’s Hospital Huangpu Branch, Shanghai Jiao Tong UniversityShanghai, China
| | - Leizhen Zheng
- Department of Oncology, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Mei Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Ying Chen
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Zhoufeng Deng
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Liping Yu
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yan Zhang
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Ying Yuan
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Hongjian Lin
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Lijun Ma
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Jianjun Zhang
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
3
|
Seo SY, Joo SH, Lee SO, Yoon G, Cho SS, Choi YH, Park JW, Shim JH. Activation of p38 and JNK by ROS Contributes to Deoxybouvardin-Mediated Intrinsic Apoptosis in Oxaliplatin-Sensitive and -Resistant Colorectal Cancer Cells. Antioxidants (Basel) 2024; 13:866. [PMID: 39061934 PMCID: PMC11273932 DOI: 10.3390/antiox13070866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) remains a global health burden, accounting for almost a million deaths annually. Deoxybouvardin (DB), a non-ribosomal peptide originally isolated from Bouvardia ternifolia, has been reported to possess antitumor activity; however, the detailed mechanisms underlying this anticancer activity have not been elucidated. We investigated the anticancer activity of the cyclic hexapeptide, DB, in human CRC HCT116 cells. Cell viability, evaluated by MTT assay, revealed that DB suppressed the growth of both oxaliplatin (Ox)-resistant HCT116 cells (HCT116-OxR) and Ox-sensitive cells in a concentration- and time-dependent manner. Increased reactive oxygen species (ROS) generation was observed in DB-treated CRC cells, and it induced cell cycle arrest at the G2/M phase by regulating p21, p27, cyclin B1, and cdc2 levels. In addition, Western blot analysis revealed that DB activated the phosphorylation of JNK and p38 MAPK in CRC. Furthermore, mitochondrial membrane potential (MMP) was dysregulated by DB, resulting in cytochrome c release and activation of caspases. Taken together, DB exhibited anticancer activity against both Ox-sensitive and Ox-resistant CRC cells by targeting JNK and p38 MAPK, increasing cellular ROS levels, and disrupting MMP. Thus, DB is a potential therapeutic agent for the treatment of Ox-resistant CRC.
Collapse
Affiliation(s)
- Si Yeong Seo
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea; (S.Y.S.); (S.-O.L.); (S.-S.C.)
| | - Sang Hoon Joo
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea;
| | - Seung-On Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea; (S.Y.S.); (S.-O.L.); (S.-S.C.)
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea;
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea; (S.Y.S.); (S.-O.L.); (S.-S.C.)
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea;
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea;
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea; (S.Y.S.); (S.-O.L.); (S.-S.C.)
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea;
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea; (S.Y.S.); (S.-O.L.); (S.-S.C.)
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea;
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| |
Collapse
|
4
|
Lee WS, Shin JS, Jang SY, Chung KS, Kim SD, Cho CW, Hong HD, Rhee YK, Lee KT. Anti-Metastatic Effects of Standardized Polysaccharide Fraction from Diospyros kaki Leaves via GSK3β/β-Catenin and JNK Inactivation in Human Colon Cancer Cells. Polymers (Basel) 2024; 16:1275. [PMID: 38732748 PMCID: PMC11085380 DOI: 10.3390/polym16091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
A polysaccharide fraction from Diospyros kaki (PLE0) leaves was previously reported to possess immunostimulatory, anti-osteoporotic, and TGF-β1-induced epithelial-mesenchymal transition inhibitory activities. Although a few beneficial effects against colon cancer metastasis have been reported, we aimed to investigate the anti-metastatic activity of PLE0 and its underlying molecular mechanisms in HT-29 and HCT-116 human colon cancer cells. We conducted a wound-healing assay, invasion assay, qRT-PCR analysis, western blot analysis, gelatin zymography, luciferase assay, and small interfering RNA gene silencing in colon cancer cells. PLE0 concentration-dependently inhibited metastasis by suppressing cell migration and invasion. The suppression of N-cadherin and vimentin expression as well as upregulation of E-cadherin through the reduction of p-GSK3β and β-catenin levels resulted in the outcome of this effect. PLE0 also suppressed the expression and enzymatic activity of matrix metalloproteinases (MMP)-2 and MMP-9, while simultaneously increasing the protein and mRNA levels of the tissue inhibitor of metalloproteinases (TIMP-1). Furthermore, signaling data disclosed that PLE0 suppressed the transcriptional activity and phosphorylation of p65 (a subunit of NF-κB), as well as the phosphorylation of c-Jun and c-Fos (subunits of AP-1) pathway. PLE0 markedly suppressed JNK phosphorylation, and JNK knockdown significantly restored PLE0-regulated MMP-2/-9 and TIMP-1 expression. Collectively, our data indicate that PLE0 exerts an anti-metastatic effect in human colon cancer cells by inhibiting epithelial-mesenchymal transition and MMP-2/9 via downregulation of GSK3β/β-catenin and JNK signaling.
Collapse
Affiliation(s)
- Woo-Seok Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (W.-S.L.); (J.-S.S.); (S.-Y.J.); (K.-S.C.)
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (W.-S.L.); (J.-S.S.); (S.-Y.J.); (K.-S.C.)
- Department of Orthopaedic Surgery, College of Medicine, Hallym University, Hwaseong-si 18450, Republic of Korea
| | - Seo-Yun Jang
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (W.-S.L.); (J.-S.S.); (S.-Y.J.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (W.-S.L.); (J.-S.S.); (S.-Y.J.); (K.-S.C.)
| | - Soo-Dong Kim
- Department of Urology, College of Medicine, Dong-A University, Busan 49315, Republic of Korea;
| | - Chang-Won Cho
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (C.-W.C.); (H.-D.H.); (Y.K.R.)
| | - Hee-Do Hong
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (C.-W.C.); (H.-D.H.); (Y.K.R.)
| | - Young Kyoung Rhee
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (C.-W.C.); (H.-D.H.); (Y.K.R.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (W.-S.L.); (J.-S.S.); (S.-Y.J.); (K.-S.C.)
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Wu Y, Li CS, Meng RY, Jin H, Chai OH, Kim SM. Regulation of Hippo-YAP/CTGF signaling by combining an HDAC inhibitor and 5-fluorouracil in gastric cancer cells. Toxicol Appl Pharmacol 2024; 482:116786. [PMID: 38086440 DOI: 10.1016/j.taap.2023.116786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
Histone deacetylase (HDAC) inhibitors diminish carcinogenesis, metastasis, and cancer cell proliferation by inducing death in cancer cells. Tissue regeneration and organ development are highly dependent on the Hippo signaling pathway. Targeting the dysregulated hippo pathway is an excellent approach for cancer treatment. According to the results of this study, the combination of panobinostat, a histone deacetylase inhibitor, and 5-fluorouracil (5-FU), a chemotherapy drug, can act synergistically to induce apoptosis in gastric cancer cells. The combination of panobinostat and 5-FU was more effective in inhibiting cell viability than either treatment alone by elevating the protein levels of cleaved PARP and cleaved caspase-9. By specifically targeting E-cadherin, vimentin, and MMP-9, the combination of panobinostat and 5-FU significantly inhibited cell migration. Additionally, panobinostat significantly increased the anticancer effects of 5-FU by activating Hippo signaling (Mst 1 and 2, Sav1, and Mob1) and inhibiting the Akt signaling pathway. As a consequence, there was a decrease in the amount of Yap protein. The combination therapy of panobinostat with 5-FU dramatically slowed the spread of gastric cancer in a xenograft animal model by deactivating the Akt pathway and supporting the Hippo pathway. Since combination treatment exhibits much higher anti-tumor potential than 5-FU alone, panobinostat effectively potentiates the anti-tumor efficacy of 5-FU. As a result, it is believed that panobinostat and 5-FU combination therapy will be useful as supplemental chemotherapy in the future.
Collapse
Affiliation(s)
- Yanling Wu
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Cong Shan Li
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Ruo Yu Meng
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea; Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong 250021, China
| | - Hua Jin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Ok Hee Chai
- Department of Anatomy, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Soo Mi Kim
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea.
| |
Collapse
|
6
|
Zhang S, Wang J, Zhang H. Integrated bioinformatics and network pharmacology to explore the therapeutic target and molecular mechanisms of Taxus chinensis against non-small cell lung cancer. Medicine (Baltimore) 2023; 102:e35826. [PMID: 37933017 PMCID: PMC10627628 DOI: 10.1097/md.0000000000035826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
Taxus chinensis (TC) has tremendous therapeutic potential in alleviating non-small cell lung cancer (NSCLC), but the mechanism of action of TC remains unclear. Integrated bioinformatics and network pharmacology were employed in this study to explore the potential targets and molecular mechanism of TC against NSCLC. Data obtained from public databases were combined with appropriate bioinformatics tools to identify the common targets for TC and NSCLC. Common targets were uploaded to the Metascape database for gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathway analyses. A protein-protein interaction network was established, and topological analysis was performed to obtain hub genes. The expression of the hub genes in NSCLC tissues and their consequent effects on the prognosis of patients with NSCLC were confirmed using the Human Protein Atlas database and appropriate bioinformatics tools. Molecular docking was used to verify the binding affinity between the active ingredients and hub targets. We found 401 common targets that were significantly enriched in the cancer, MAPK signaling, and PI3K/Akt signaling pathways. Proto-oncogene tyrosine-protein kinase Src (SRC), mitogen-activated protein kinase 1, phosphoinositide-3-kinase, regulatory subunit 1 (PIK3R1), AKT serine/threonine kinase 1 (AKT1), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and lymphocyte-specific protein tyrosine kinase were identified as the hub genes. Immunohistochemical results confirmed that the expression of SRC, mitogen-activated protein kinase 1, PIK3R1, AKT1, and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha was upregulated in the NSCLC tissues, while survival analysis revealed the expression of SRC, AKT1, PIK3R1, and lymphocyte-specific protein tyrosine kinase was closely related to the prognosis of patients with NSCLC. Molecular docking results confirmed all bioactive ingredients present in TC strongly bound to hub targets. We concluded that TC exhibits an anti-NSCLC role through multi-target combination and multi-pathway cooperation.
Collapse
Affiliation(s)
- Shujuan Zhang
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jun Wang
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hailong Zhang
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
7
|
Villegas C, González-Chavarría I, Burgos V, Iturra-Beiza H, Ulrich H, Paz C. Epothilones as Natural Compounds for Novel Anticancer Drugs Development. Int J Mol Sci 2023; 24:6063. [PMID: 37047035 PMCID: PMC10093981 DOI: 10.3390/ijms24076063] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 04/14/2023] Open
Abstract
Epothilone is a natural 16-membered macrolide cytotoxic compound produced by the metabolism of the cellulose-degrading myxobacterium Sorangium cellulosum. This review summarizes results in the study of epothilones against cancer with preclinical results and clinical studies from 2010-2022. Epothilone have mechanisms of action similar to paclitaxel by inducing tubulin polymerization and apoptosis with low susceptibility to tumor resistance mechanisms. It is active against refractory tumors, being superior to paclitaxel in many respects. Since the discovery of epothilones, several derivatives have been synthesized, and most of them have failed in Phases II and III in clinical trials; however, ixabepilone and utidelone are currently used in clinical practice. There is robust evidence that triple-negative breast cancer (TNBC) treatment improves using ixabepilone plus capecitabine or utidelone in combination with capecitabine. In recent years innovative synthetic strategies resulted in the synthesis of new epothilone derivatives with improved activity against refractory tumors with better activities when compared to ixabepilone or taxol. These compounds together with specific delivery mechanisms could be developed in anti-cancer drugs.
Collapse
Affiliation(s)
- Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4800000, Chile
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Temuco 4780000, Chile
| | - Héctor Iturra-Beiza
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4800000, Chile
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
8
|
Lu C, Li G, Deng D, Li R, Li X, Feng X, Wu T, Shao X, Chen W. Efficacy of electroacupuncture in the treatment of peripheral neuropathy caused by Utidelone: Study protocol for a randomized controlled trial. Front Neurol 2023; 14:1065635. [PMID: 36846114 PMCID: PMC9946987 DOI: 10.3389/fneur.2023.1065635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Utidelone (UTD1) is a new chemotherapeutic drug for recurrent or metastatic breast cancer. However, it usually leads to severe peripheral neuropathy (PN) and causes numbness of the hands and feet and significant pain in patients' life. Electroacupuncture (EA) is considered beneficial in improving PN and relieving numbness of the hands and feet. This trial aims to evaluate the therapeutic effect of EA on PN caused by UTD1 in patients with advanced breast cancer. Methods and analysis This study is a prospective randomized controlled trial. A total of 70 patients with PN caused by UTD1 will be randomly assigned to the EA treatment group and the control group in a ratio of 1:1. The patients in the EA treatment group will receive 2 Hz EA three times a week for 4 weeks. The patients in the control group will take mecobalamin (MeCbl) tablets orally, one tablet each, three times a day for 4 weeks. The main outcome measures will be the evaluation scale of peripheral neurotoxicity of chemotherapeutic drugs according to the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-CIPN 20-item (EORTC QLQ-CIPN20) and the peripheral neurotoxicity assessment rating according to NCI CTCAE version 5.0. Secondary outcomes will be the quality of life scale according to the European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire (EORTC QLQ-C30). The results will be evaluated at baseline, post-treatment phase, and follow-up. All major analyses will be based on the intention-to-treat principle. Ethics and dissemination This protocol was approved by the Medical Ethics Committee of Zhejiang Cancer Hospital on 26 July 2022. The license number is IRB-2022-425. This study will provide clinical efficacy data on EA in the treatment of PN caused by UTD1 and will help to prove whether EA is an effective and safe therapy. The study results will be shared with healthcare professionals through the publication of manuscripts and conference reports. Trial registration number ChiCTR2200062741.
Collapse
Affiliation(s)
- Chao Lu
- Department of Traditional Chinese Medicine, Zhejiang Cancer Hospital, Hangzhou, China
| | - Guangliang Li
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Dehou Deng
- Department of Traditional Chinese Medicine, Zhejiang Cancer Hospital, Hangzhou, China
| | - Rongrong Li
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, China
| | - Xiaoyu Li
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, China,The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xukang Feng
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Taoping Wu
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiying Shao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Weiji Chen
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, China,*Correspondence: Weiji Chen ✉
| |
Collapse
|
9
|
Lu J, Zhu D, Zhang X, Wang J, Cao H, Li L. The crucial role of LncRNA MIR210HG involved in the regulation of human cancer and other disease. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:137-150. [PMID: 36088513 DOI: 10.1007/s12094-022-02943-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have evoked considerable interest in recent years due to their critical functions in the regulation of disease processes. Abnormal expression of lncRNAs is found in multiple diseases, and lncRNAs have been exploited for diverse medical applications. The lncRNA MIR210HG is a recently discovered lncRNA that is widely dysregulated in human disease. MIR210HG was described to have biological functions with potential roles in disease development, including cell proliferation, invasion, migration, and energy metabolism. And MIR210HG dysregulation was confirmed to have promising clinical values in disease diagnosis, treatment, and prognosis. In this review, we systematically summarize the expression profiles, roles, underlying mechanisms, and clinical applications of MIR210HG in human disease.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
10
|
Chen B, Xi Y, Zhao J, Hong Y, Tian S, Zhai X, Chen Q, Ren X, Fan L, Xie X, Jiang C. m5C regulator-mediated modification patterns and tumor microenvironment infiltration characterization in colorectal cancer: One step closer to precision medicine. Front Immunol 2022; 13:1049435. [PMID: 36532062 PMCID: PMC9751490 DOI: 10.3389/fimmu.2022.1049435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
Background The RNA modification 5-methylcytosine (m5C) is one of the most prevalent post-transcriptional modifications, with increasing evidence demonstrating its extensive involvement in the tumorigenesis and progression of various cancers. Colorectal cancer (CRC) is the third most common cancer and second leading cause of cancer-related deaths worldwide. However, the role of m5C modulators in shaping tumor microenvironment (TME) heterogeneity and regulating immune cell infiltration in CRC requires further clarification. Results The transcriptomic sequencing data of 18 m5C regulators and clinical data of patients with CRC were obtained from The Cancer Genome Atlas (TCGA) and systematically evaluated. We found that 16 m5C regulators were differentially expressed between CRC and normal tissues. Unsupervised cluster analysis was then performed and revealed two distinct m5C modification patterns that yielded different clinical prognoses and biological functions in CRC. We demonstrated that the m5C score constructed from eight m5C-related genes showed excellent prognostic performance, with a subsequent independent analysis confirming its predictive ability in the CRC cohort. Then we developed a nomogram containing five clinical risk factors and the m5C risk score and found that the m5C score exhibited high prognostic prediction accuracy and favorable clinical applicability. Moreover, the CRC patients with low m5C score were characterized by "hot" TME exhibiting increased immune cell infiltration and higher immune checkpoint expression. These characteristics were highlighted as potential identifiers of suitable candidates for anticancer immunotherapy. Although the high m5C score represented the non-inflammatory phenotype, the CRC patients in this group exhibited high level of sensitivity to molecular-targeted therapy. Conclusion Our comprehensive analysis indicated that the novel m5C clusters and scoring system accurately reflected the distinct prognostic signature, clinicopathological characteristics, immunological phenotypes, and stratifying therapeutic opportunities of CRC. Our findings, therefore, offer valuable insights into factors that may be targeted in the development of precision medicine-based therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Baoxiang Chen
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University), Wuhan, China,Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University), Wuhan, China
| | - Yiqing Xi
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianhong Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yuntian Hong
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University), Wuhan, China,Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University), Wuhan, China
| | - Shunhua Tian
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University), Wuhan, China,Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University), Wuhan, China
| | - Xiang Zhai
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University), Wuhan, China,Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University), Wuhan, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, CAS Center for Influenza Research and Early Warning, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xianghai Ren
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University), Wuhan, China,Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University), Wuhan, China,*Correspondence: Congqing Jiang, ; Xiaoyu Xie, ; Lifang Fan, ; Xianghai Ren,
| | - Lifang Fan
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Congqing Jiang, ; Xiaoyu Xie, ; Lifang Fan, ; Xianghai Ren,
| | - Xiaoyu Xie
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University), Wuhan, China,Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University), Wuhan, China,*Correspondence: Congqing Jiang, ; Xiaoyu Xie, ; Lifang Fan, ; Xianghai Ren,
| | - Congqing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University), Wuhan, China,Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University), Wuhan, China,*Correspondence: Congqing Jiang, ; Xiaoyu Xie, ; Lifang Fan, ; Xianghai Ren,
| |
Collapse
|
11
|
A highly branched α-D-glucan facilitates antitumor immunity by reducing cancer cell CXCL5 expression. Int J Biol Macromol 2022; 209:166-179. [PMID: 35390399 DOI: 10.1016/j.ijbiomac.2022.03.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
Tumor immunotherapy has emerged as a major pillar of anticancer therapeutic strategies. Natural polysaccharides, known for their strong immunomodulatory activities with relatively low cost and toxicity, are becoming promising prospects for cancer immunotherapy. In this study, we investigated the antitumor mechanism of JNY2PW, a highly branched α-D-glucan previously purified from the traditional marine Chinese medicine Arca inflata. JNY2PW was shown to enhance the sensitivity of tumor cells to co-culture macrophage supernatants by decreasing cancer cell CXCL5 expression. Furthermore, JNY2PW exerted antitumor effects without obvious toxic side effects in tumor-bearing mice by triggering the Akt/mTOR and ERK/GSK3β/β-catenin pathways and attenuating expression of CXCL5 in cancer cells. Remarkably, JNY2PW reduced tumor proliferation and dampened CXCL5 expression in tumor cells overexpressing CXCL5 both in vitro and in vivo. Additionally, JNY2PW blocked epithelial-mesenchymal transition (EMT) in both CXCL5-overexpressing and wild type tumor cells. Our data therefore uncovered a previously unrecognized antitumor mechanism for JNY2PW, suggesting that JNY2PW is a promising adjuvant as an immunomodulator for cancer immunotherapy.
Collapse
|