1
|
Xin M, Peng H, Zhang L. Exploring the prognosis value, immune correlation, and drug responsiveness prediction of homeobox C6 (HOXC6) in lung adenocarcinoma. Discov Oncol 2024; 15:393. [PMID: 39215852 PMCID: PMC11365874 DOI: 10.1007/s12672-024-01273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUNDS Homeobox C6 (HOXC6) is a gene that encodes for a transcription factor involved in various cellular processes, including development and differentiation, and regulates cancer progression. However, the carcinogenesis and effect of HOXC6 in lung adenocarcinoma (LUAD) still need further investigation. METHODS The differential HOXC6 expression levels at the mRNA and protein level were explored in multiple public datasets, including The Cancer Genome Atlas (TCGA) and Human Protein Atlas (HPA) dataset. Gene Expression Omnibus (GSE31210), International Cancer Genome Consortium (ICGC) datasets and the LUAD sample from Affiliated Hospital of Guangxi Medical University. We also investigated the relation between HOXC6 expression and clinicopathologic indexes. Furthermore, the correlation of immune infiltration, drug responsiveness and HOXC6 were explored. RESULTS The upregulated HOXC6 expressions at mRNA and protein levels were found in LUAD tissues compared to the normal lung tissues. Besides, the relatively shorter overall survival time, worse T and N stages, and lower immune scores were found in the high-expression HOXC6 subgroup. Notably, T cells regulatory (Tregs), Macrophages M0, and Plasma cells had the higher infiltration levels in the high-HOXC6 expression subgroup, while NK cells activated, Monocytes, Dendritic cells resting, and Mast cells resting had the lower infiltration levels. In drug sensitivity analysis, we revealed that LUAD patients with high-HOXC6 expression may be more susceptible to Camptothecin, Cytarabine, Docetaxel, Elesclomol, Rapamycin, Sorafinib, Temsirolimus, and Vorinostat. CONCLUSIONS Taken together, there is a great potential for HOXC6 to become a prognosis biomarker and contribute to develop treatment strategies for LUAD patients. Further mechanism exploration and drug development for HOXC6 are needed.
Collapse
Affiliation(s)
- Mei Xin
- Department of Health Management, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Huajian Peng
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Linbo Zhang
- Department of Health Management, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China.
| |
Collapse
|
2
|
Chen A, Wang K, Qi L, Hu W, Zhou B. Development of a novel prognostic signature for colorectal cancer based on angiogenesis-related genes. Heliyon 2024; 10:e33662. [PMID: 39040272 PMCID: PMC11261139 DOI: 10.1016/j.heliyon.2024.e33662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Background Colorectal cancer (CRC) is the third most common malignant tumor worldwide. Angiogenesis is closely related to tumor metastasis, which is the main cause of cancer death. Although several angiogenesis signatures have been proposed in some cancer types, no angiogenic signature has been developed to predict the prognosis and efficacy of antiangiogenic bevacizumab in CRC patients. Methods We developed a novel CRC angiogenic signature by refining seven publicly available angiogenic gene sets using least absolute shrinkage and selection operator (LASSO). Immune and stromal cells within the tumor microenvironment were compared between the high- and low-risk groups in more than 1000 CRC samples classified by calculating the risk score based on the customized angiogenic signature. The correlation of this new gene set with the efficacy of bevacizumab was also compared. Results A new prognostic-associated angiogenesis signature gene set was constructed that can divide CRC patients into two high- and low-risk groups. The high-risk angiogenic group was significantly associated with extracellular matrix organization, epithelial-mesenchymal transition (EMT), and myogenesis. In addition, the high-risk group had higher infiltration of stromal and immune cells and was more resistant to bevacizumab than the low-risk group. Conclusion Briefly, we constructed a novel angiogenic signature that can predict the prognosis of CRC patients and the efficacy of bevacizumab in treating CRC. Our results provide new insights into the relationships among angiogenesis, metastasis, and medication for CRC.
Collapse
Affiliation(s)
- Aiqin Chen
- Department of Nursing, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Kailai Wang
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lina Qi
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wangxiong Hu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Biting Zhou
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
3
|
Shugao H, Yinhang W, Jing Z, Zhanbo Q, Miao D. Action of m6A-related gene signatures on the prognosis and immune microenvironment of colonic adenocarcinoma. Heliyon 2024; 10:e31441. [PMID: 38845921 PMCID: PMC11153101 DOI: 10.1016/j.heliyon.2024.e31441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024] Open
Abstract
N6-methyladenosine (m6A) modification in human tumor cells exerts considerable influence on crucial processes like tumorigenesis, invasion, metastasis, and immune response. This study aims to comprehensively analyze the impact of m6A-related genes on the prognosis and immune microenvironment (IME) of colonic adenocarcinoma (COAD). Public data sources, predictive algorithms identified m6A-related genes and differential gene expression in COAD. Subtype analysis and assessment of immune cell infiltration patterns were performed using consensus clustering and the CIBERSORT algorithm. The Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis determined gene signatures. Independent prognostic factors were identified using univariate and multivariate Cox proportional hazards models. The findings indicate that 206 prognostic m6A-related DEGs contribute to the m6A regulatory network along with 8 m6A enzymes. Based on the expression levels of these genes, 438 COAD samples from The Cancer Genome Atlas (TCGA) were classified into 3 distinct subtypes, showing marked differences in survival prognosis, clinical characteristics, and immune cell infiltration profiles. Subtype 3 and 2 displayed reduced levels of infiltrating regulatory T cells and M0 macrophages, respectively. A six-gene signature, encompassing KLC3, SLC6A15, AQP7 JMJD7, HOXC6, and CLDN9, was identified and incorporated into a prognostic model. Validation across TCGA and GSE39582 datasets exhibited robust predictive specificity and sensitivity in determining the survival status of COAD patients. Additionally, independent prognostic factors were recognized, and a nomogram model was developed as a prognostic predictor for COAD. In conclusion, the six target genes governed by m6A mechanisms offer substantial potential in predicting COAD outcomes and provide insights into the unique IME profiles associated with various COAD subtypes.
Collapse
Affiliation(s)
- Han Shugao
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wu Yinhang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
| | - Qu Zhanbo
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
| | - Da Miao
- Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, China
| |
Collapse
|
4
|
Li X, Deng Y, Li Z, Zhao H. A novel angiogenesis-associated risk score predicts prognosis and characterizes the tumor microenvironment in colon cancer. Transl Cancer Res 2024; 13:2094-2107. [PMID: 38881939 PMCID: PMC11170505 DOI: 10.21037/tcr-23-2048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/24/2024] [Indexed: 06/18/2024]
Abstract
Background Angiogenesis of the tumor microenvironment (TME) can promote the proliferation and metastases of colon cancer (CC). However, there is a lack of bioinformatics analysis to comprehensively clarify the molecular characteristics, immune interaction characteristics and predictive values of angiogenesis characteristics in CC patients. This study aimed to perform a comprehensive elucidation of the correlation between angiogenesis and CC for the purpose of improving the clinical management of CC. Methods Angiogenesis-associated genes (AAGs) were evaluated in the population of CC patients from the Cancer Genome Atlas database and Gene Expression Omnibus dataset. The expression, prognostic role, and immune cell infiltration of AAGs were assessed first. And then we established the AAGs score to further explore the prognosis and treatment response of angiogenesis characteristics in individual patient. Results Totally, we identified two different molecular subtypes of angiogenesis, and there was a significant difference in the background of genome, expression profiles, prognosis, and characteristics of TME between two subtypes. And the AAGs score was independently associated with over survival in CC patients, the prognostic value was significant and confirmed in the entire cohort. And we also constructed a nomogram based on the risk score and clinical parameters to maximize the predictive ability of the risk score. Additionally, the AAGs score was significantly correlated with the tumor mutation burden score, cancer stem cell score and drug sensitivity. Conclusions Our study elucidated the role of angiogenesis characteristics in CC and the AAGs score could help clinicians plan for individual management with chemotherapy agents and promote the development of immunotherapy in CC. Prospective studies need to be conducted to further confirm our findings.
Collapse
Affiliation(s)
- Xin Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiqiao Deng
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiyu Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Chen J, Wang Z, Zhu Q, Ren S, Xu Y, Wang G, Zhou L. Comprehensive analysis and experimental verification of the mechanism of action of T cell-mediated tumor-killing related genes in Colon adenocarcinoma. Transl Oncol 2024; 43:101918. [PMID: 38412662 PMCID: PMC10907202 DOI: 10.1016/j.tranon.2024.101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a prevalent malignancy of the digestive tract. A new prognostic scoring model for colon adenocarcinoma (COAD) is developed in this study based on the genes involved in tumor cell-mediated killing of T cells (GSTTKs), accurately stratifying COAD patients, thus improving the current status of personalized treatment. METHOD The GEO and TCGA databases served as the sources of the data for the COAD cohort. This study identified GSTTKs-related genes in COAD through single-factor Cox analysis. These genes were used to categorize COAD patients into several subtypes via unsupervised clustering analysis. The biological pathways and tumor microenvironments of different subgroups were compared. We performed intersection analysis between different subtypes to obtain intersection genes. Single-factor Cox regression analysis and Lasso-Cox analysis were conducted to establish clinical prognostic models. Two methods are used to assess the accuracy of model predictions: ROC and Kaplan-Meier analysis. Next, the prediction model was further validated in the validation cohort. Differential immune cell infiltration between various risk categories was identified via single sample gene set enrichment analysis (ssGSEA). The COAD model's gene expression was validated via single-cell data analysis and experiments. RESULT We established two distinct GSTTKs-related subtypes. Biological processes and immune cell tumor invasion differed significantly between various subtypes. Clinical prognostic models were created using five GSTTKs-related genes. The model's risk score independently served as a prognostic factor. COAD patients were classified as low- or high-risk depending on their risk scores. Patients in the low-risk category recorded a greater chance of surviving. The outcomes from the validation cohort match those from the training set. Risk scores and several tumor-infiltrating immune cells were strongly correlated, according to ssGSEA. Single-cell data illustrated that the model's genes were linked to several immune cells. The experimental results demonstrated a significant increase in the expression of HOXC6 in colon cancer tissue. CONCLUSION Our research findings established a new gene signature for COAD. This gene signature helps to accurately stratify the risk of COAD patients and improve the current status of individualized care.
Collapse
Affiliation(s)
- Jing Chen
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China
| | - Zhengfang Wang
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China
| | - Qin Zhu
- Department of Trauma Hand Surgery, Dalian Third People's Hospital, Dalian 116000, China
| | - Shiqi Ren
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yanhua Xu
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China
| | - Guangzhou Wang
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China.
| | - Lin Zhou
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
6
|
Man Y, Xin D, Ji Y, Liu Y, Kou L, Jiang L. Identification and validation of a novel six-gene signature based on mucinous adenocarcinoma-related gene molecular typing in colorectal cancer. Discov Oncol 2024; 15:63. [PMID: 38443703 PMCID: PMC10914658 DOI: 10.1007/s12672-024-00916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Colorectal mucinous adenocarcinoma (MAC) is a particular pathological type that has yet to be thoroughly studied. This study aims to investigate the characteristics of colorectal MAC-related genes in colorectal cancer (CRC), explore the role of MAC-related genes in accurately classifying CRC, and further construct a prognostic signature. METHODS CRC samples were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). MAC-related differentially expressed genes (DEGs) were analyzed in TCGA samples. Based on colorectal MAC-related genes, TCGA CRC samples were molecularly typed by the non-negative matrix factorization (NMF). According to the molecular subtype characteristics, the RiskScore signature was constructed through univariate Cox, the least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses. Clinical significance in CRC of the RiskScore signature was analyzed. A nomogram was further built based on the RiskScore signature. RESULTS From the colorectal MAC-related genes, three distinct molecular subtypes were identified. A RiskScore signature composed of six CRC subtype-related genes (CALB1, MMP1, HOXC6, ZIC2, SFTA2, and HYAL1) was constructed. Patients with high-RiskScores had the worse prognoses. RiskScores led to differences in gene mutation characteristics, antitumor drug sensitivity, and tumor microenvironment of CRC. A nomogram based on the signature was developed to predict the one-, three-, and five-year survival of CRC patients. CONCLUSION MAC-related genes were able to classify CRC. A RiskScore signature based on the colorectal MAC-related molecular subtype was constructed, which had important clinical significance for guiding the accurate stratification of CRC patients.
Collapse
Affiliation(s)
- Yuxin Man
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Dao Xin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Ji
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Liu
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lingna Kou
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lingxi Jiang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Weng M, Lai Y, Ge X, Gu W, Zhang X, Li L, Sun M. HOXC6: A promising biomarker linked to an immunoevasive microenvironment in colorectal cancer based on TCGA analysis and cohort validation. Heliyon 2024; 10:e23500. [PMID: 38192826 PMCID: PMC10772581 DOI: 10.1016/j.heliyon.2023.e23500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/22/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
HOXC6 plays an essential part of the carcinogenesis of solid tumors, but its functional relevance within the immune contexture in patients with colorectal cancer (CRC) is still uncertain. We intended to investigate the predictive value of HOXC6 expression for survival outcomes and its correlation with immune contexture in CRC patients by utilizing the Cancer Genome Atlas database (n = 619). Validation was performed in cohorts from Zhongshan Hospital (n = 200) and Shanghai Cancer Center (n = 300). Immunohistochemical (IHC) staining was utilized to compare the levels of immunocytes infiltrating the tumor between the groups with high and low expression of HOXC6. Elevated levels of HOXC6 expression in CRC tissues were linked to malignant progression and poor prognosis. HOXC6 as a risk factor for survival of CRC patients was confirmed. Receiver operating characteristic analysis confirmed its diagnostic value, and a reliable prognostic nomogram was constructed. KEGG analysis and GSEA showed that HOXC6 participated in immune regulation, and its expression was tightly linked to the abundance of infiltrating immunocytes. HOXC6 was upregulated in patients diagnosed with CRC within the two cohorts, and high HOXC6 levels were correlated with a worse prognosis. The high-HOXC6 expression group showed increased infiltration of Treg cells, CD68+ macrophages, CD66b+ neutrophils, and CD8+ T-cells and elevated levels of PD-L1 and PD-1, but decreased levels of granzyme B and perforin. These findings suggest that HOXC6 abundance in patients with CRC determines a poor prognosis, promotes an immunoevasive environment, and directs CD8+ T-cell dysfunction. HOXC6 is expected to become a prospective biomarker for the outcome of CRC.
Collapse
Affiliation(s)
- Meilin Weng
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, 200032, China
| | - Yuling Lai
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, 200032, China
| | - Xiaodong Ge
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, 200032, China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Faculty of medicine, Ibaraki, Tsukuba, Japan
| | - Xixue Zhang
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, No 221, West Yan'an Road, Shanghai 200040, China
| | - Lihong Li
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Minli Sun
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
8
|
Li P, Huang D, Gu X. Exploring the dual role of circRNA and PI3K/AKT pathway in tumors of the digestive system. Biomed Pharmacother 2023; 168:115694. [PMID: 37832407 DOI: 10.1016/j.biopha.2023.115694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023] Open
Abstract
The interactions among circRNAs, the PI3K/AKT pathway, and their downstream effectors are intricately linked to their functional roles in tumorigenesis. Furthermore, the circRNAs/PI3K/AKT axis has been significantly implicated in the context of digestive system tumors. This axis is frequently abnormally activated in digestive cancers, including gastric cancer, colorectal cancer, pancreatic cancer, and others. Moreover, the overactivation of the circRNAs/PI3K/AKT axis promotes tumor cell proliferation, suppresses apoptosis, enhances invasive and metastatic capabilities, and contributes to drug resistance. In this regard, gaining crucial insights into the complex interaction between circRNAs and the PI3K/AKT pathway holds great potential for elucidating disease mechanisms, identifying diagnostic biomarkers, and designing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Penghui Li
- Department of General Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| |
Collapse
|
9
|
Gao J, Feng Y, Yang Y, Shi Y, Liu J, Lin H, Zhang L. Identification of Key DNA methylation sites related to differentially expressed genes in Lung squamous cell carcinoma. Comput Biol Med 2023; 167:107615. [PMID: 37918267 DOI: 10.1016/j.compbiomed.2023.107615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/24/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Changes in DNA methylation level at some CpG locus are closely associated with the occurrence of lung squamous cell carcinoma (LUSC). However, its specific regulatory mechanism is still unclear. Therefore, it is necessary to systematically identify and analyze those key CpG sites whose DNA methylation levels are closely related to the differential expression of up- and down-regulated genes in LUSC. Due to the dispersion of DNA methylation sites in different regions of genome, to study the correlation between gene expression level and DNA methylation, we divided gene into 6 non-overlapping functional regions and proposed a two-step correlation analysis method to identify differential DNA methylation sites and matched differential expression genes. As a results, we obtained 39 key CpG sites scattered in 27 genes. Through comparative analysis of LUSC-normal sample pairs, we found that these sites and genes can accurately cluster LUSC samples and normal samples. Finally, we used these sites and genes to distinguish LUSC from normal samples. The results suggest that they can be used as effective biomarkers for identifying LUSC. In addition, the proposed two-step correlation analysis method can also be extended to the identification of biomarkers of other cancers and diseases.
Collapse
Affiliation(s)
- Jie Gao
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Yongxian Feng
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Yan Yang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Yuetong Shi
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Junjie Liu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Hao Lin
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Lirong Zhang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
10
|
Zhu Q, Rao B, Chen Y, Jia P, Wang X, Zhang B, Wang L, Zhao W, Hu C, Tang M, Yu K, Chen W, Pan L, Xu Y, Luo H, Wang K, Li B, Shi H. In silico development and in vitro validation of a novel five-gene signature for prognostic prediction in colon cancer. Am J Cancer Res 2023; 13:45-65. [PMID: 36777511 PMCID: PMC9906087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/24/2022] [Indexed: 02/14/2023] Open
Abstract
Colon cancer is one of the most common cancers in digestive system, and its prognosis remains unsatisfactory. Therefore, this study aimed to identify gene signatures that could effectively predict the prognosis of colon cancer patients by examining the data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. LASSO-Cox regression analysis generated a five-gene signature (DCBLD2, RAB11FIP1, CTLA4, HOXC6 and KRT6A) that was associated with patient survival in the TCGA cohort. The prognostic value of this gene signature was further validated in two independent GEO datasets. GO enrichment revealed that the function of this gene signature was mainly associated with extracellular matrix organization, collagen-containing extracellular matrix, and extracellular matrix structural constituent. Moreover, a nomogram was established to facilitate the clinical application of this signature. The relationships among the gene signature, mutational landscape and immune infiltration cells were also investigated. Importantly, this gene signature also reliably predicted the overall survival in IMvigor210 anti-PD-L1 cohort. In addition to the bioinformatics study, we also conducted a series of in vitro experiments to demonstrate the effect of the signature genes on the proliferation, migration, and invasion of colon cancer cells. Collectively, our data demonstrated that this five-gene signature might serve as a promising prognostic biomarker and shed light on the development of personalized treatment in colon cancer patients.
Collapse
Affiliation(s)
- Qiankun Zhu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijing 100038, The People’s Republic of China,Key Laboratory of Cancer FSMP for State Market RegulationBeijing 100038, The People’s Republic of China,Ninth School of Clinical Medicine, Peking UniversityBeijing 100038, The People’s Republic of China
| | - Benqiang Rao
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijing 100038, The People’s Republic of China,Key Laboratory of Cancer FSMP for State Market RegulationBeijing 100038, The People’s Republic of China,Ninth School of Clinical Medicine, Peking UniversityBeijing 100038, The People’s Republic of China
| | - Yongbing Chen
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijing 100038, The People’s Republic of China,Key Laboratory of Cancer FSMP for State Market RegulationBeijing 100038, The People’s Republic of China,Ninth School of Clinical Medicine, Peking UniversityBeijing 100038, The People’s Republic of China
| | - Pingping Jia
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijing 100038, The People’s Republic of China,Key Laboratory of Cancer FSMP for State Market RegulationBeijing 100038, The People’s Republic of China,Ninth School of Clinical Medicine, Peking UniversityBeijing 100038, The People’s Republic of China
| | - Xin Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijing 100038, The People’s Republic of China,Key Laboratory of Cancer FSMP for State Market RegulationBeijing 100038, The People’s Republic of China,Ninth School of Clinical Medicine, Peking UniversityBeijing 100038, The People’s Republic of China
| | - Bingdong Zhang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijing 100038, The People’s Republic of China,Key Laboratory of Cancer FSMP for State Market RegulationBeijing 100038, The People’s Republic of China,Ninth School of Clinical Medicine, Peking UniversityBeijing 100038, The People’s Republic of China
| | - Lin Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijing 100038, The People’s Republic of China,Key Laboratory of Cancer FSMP for State Market RegulationBeijing 100038, The People’s Republic of China,Ninth School of Clinical Medicine, Peking UniversityBeijing 100038, The People’s Republic of China
| | - Wanni Zhao
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijing 100038, The People’s Republic of China,Key Laboratory of Cancer FSMP for State Market RegulationBeijing 100038, The People’s Republic of China,Ninth School of Clinical Medicine, Peking UniversityBeijing 100038, The People’s Republic of China
| | - Chunlei Hu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijing 100038, The People’s Republic of China,Key Laboratory of Cancer FSMP for State Market RegulationBeijing 100038, The People’s Republic of China,Ninth School of Clinical Medicine, Peking UniversityBeijing 100038, The People’s Republic of China
| | - Meng Tang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijing 100038, The People’s Republic of China,Key Laboratory of Cancer FSMP for State Market RegulationBeijing 100038, The People’s Republic of China,Ninth School of Clinical Medicine, Peking UniversityBeijing 100038, The People’s Republic of China
| | - Kaiying Yu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Ninth School of Clinical Medicine, Peking UniversityBeijing 100038, The People’s Republic of China
| | - Wei Chen
- Ninth School of Clinical Medicine, Peking UniversityBeijing 100038, The People’s Republic of China,Department of Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China
| | - Lei Pan
- Ninth School of Clinical Medicine, Peking UniversityBeijing 100038, The People’s Republic of China,Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China
| | - Yu Xu
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical UniversityKunming 650032, Yunnan, The People’s Republic of China
| | - Huayou Luo
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical UniversityKunming 650032, Yunnan, The People’s Republic of China
| | - Kunhua Wang
- Yunnan UniversityKunming 650091, Yunnan, The People’s Republic of China
| | - Bo Li
- Department of General Surgery, The Affiliated Hospital of Yunnan UniversityKunming 650091, Yunnan, The People’s Republic of China
| | - Hanping Shi
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, The People’s Republic of China,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijing 100038, The People’s Republic of China,Key Laboratory of Cancer FSMP for State Market RegulationBeijing 100038, The People’s Republic of China,Ninth School of Clinical Medicine, Peking UniversityBeijing 100038, The People’s Republic of China
| |
Collapse
|
11
|
Xin C, Lai Y, Ji L, Wang Y, Li S, Hao L, Zhang W, Meng R, Xu J, Hong Y, Lou Z. A novel 9-gene signature for the prediction of postoperative recurrence in stage II/III colorectal cancer. Front Genet 2023; 13:1097234. [PMID: 36704343 PMCID: PMC9871489 DOI: 10.3389/fgene.2022.1097234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Individualized recurrence risk prediction in patients with stage II/III colorectal cancer (CRC) is crucial for making postoperative treatment decisions. However, there is still a lack of effective approaches for identifying patients with stage II and III CRC at a high risk of recurrence. In this study, we aimed to establish a credible gene model for improving the risk assessment of patients with stage II/III CRC. Methods: Recurrence-free survival (RFS)-related genes were screened using Univariate Cox regression analysis in GSE17538, GSE39582, and GSE161158 cohorts. Common prognostic genes were identified by Venn diagram and subsequently subjected to least absolute shrinkage and selection operator (LASSO) regression analysis and multivariate Cox regression analysis for signature construction. Kaplan-Meier (K-M), calibration, and receiver operating characteristic (ROC) curves were used to assess the predictive accuracy and superiority of our risk model. Single-sample gene set enrichment analysis (ssGSEA) was employed to investigate the relationship between the infiltrative abundances of immune cells and risk scores. Genes significantly associated with the risk scores were identified to explore the biological implications of the 9-gene signature. Results: Survival analysis identified 347 RFS-related genes. Using these genes, a 9-gene signature was constructed, which was composed of MRPL41, FGD3, RBM38, SPINK1, DKK1, GAL3ST4, INHBB, CTB-113P19.1, and FAM214B. K-M curves verified the survival differences between the low- and high-risk groups classified by the 9-gene signature. The area under the curve (AUC) values of this signature were close to or no less than the previously reported prognostic signatures and clinical factors, suggesting that this model could provide improved RFS prediction. The ssGSEA algorithm estimated that eight immune cells, including regulatory T cells, were aberrantly infiltrated in the high-risk group. Furthermore, the signature was associated with multiple oncogenic pathways, including cell adhesion and angiogenesis. Conclusion: A novel RFS prediction model for patients with stage II/III CRC was constructed using multicohort validation. The proposed signature may help clinicians better manage patients with stage II/III CRC.
Collapse
Affiliation(s)
- Cheng Xin
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Yi Lai
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | - Ye Wang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Shihao Li
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Liqiang Hao
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Ronggui Meng
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Jun Xu
- Department of Gastrointestinal Surgery, Changhai Hospital, Shanghai, China,*Correspondence: Jun Xu, ; Yonggang Hong, ; Zheng Lou,
| | - Yonggang Hong
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China,*Correspondence: Jun Xu, ; Yonggang Hong, ; Zheng Lou,
| | - Zheng Lou
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China,*Correspondence: Jun Xu, ; Yonggang Hong, ; Zheng Lou,
| |
Collapse
|
12
|
Dynamic Co-Evolution of Cancer Cells and Cancer-Associated Fibroblasts: Role in Right- and Left-Sided Colon Cancer Progression and Its Clinical Relevance. BIOLOGY 2022; 11:biology11071014. [PMID: 36101394 PMCID: PMC9312176 DOI: 10.3390/biology11071014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary The versatile crosstalk between cancer cells and cancer-associated fibroblasts (CAFs) of the tumour microenvironment (TME) drives colorectal carcinogenesis and heterogeneity. Colorectal cancer (CRC) can be classified by the anatomical sites from which the cancer arises, either from the right or left colon. Although the cancer cell–CAF interaction is being widely studied, its role in the progression of cancer in the right and left colon and cancer heterogeneity are still yet to be elucidated. Further insight into the complex interaction between different cellular components in the cancer niche, their evolutionary process and their influence on cancer progression would propel the discovery of effective targeted CRC therapy. Abstract Cancer is a result of a dynamic evolutionary process. It is composed of cancer cells and the tumour microenvironment (TME). One of the major cellular constituents of TME, cancer-associated fibroblasts (CAFs) are known to interact with cancer cells and promote colorectal carcinogenesis. The accumulation of these activated fibroblasts is linked to poor diagnosis in colorectal cancer (CRC) patients and recurrence of the disease. However, the interplay between cancer cells and CAFs is yet to be described, especially in relation to the sidedness of colorectal carcinogenesis. CRC, which is the third most commonly diagnosed cancer globally, can be classified according to the anatomical region from which they originate: left-sided (LCRC) and right-sided CRC (RCR). Both cancers differ in many aspects, including in histology, evolution, and molecular signatures. Despite occurring at lower frequency, RCRC is often associated with worse diagnosis compared to LCRC. The differences in molecular profiles between RCRC and LCRC also influence the mode of treatment that can be used to specifically target these cancer entities. A better understanding of the cancer cell–CAF interplay and its association with RCRC and LRCR progression will provide better insight into potential translational aspects of targeted treatment for CRC.
Collapse
|
13
|
Wang H, Li Z, Ou S, Song Y, Luo K, Guan Z, Zhao L, Huang R, Yu S. Tumor Microenvironment Heterogeneity-Based Score System Predicts Clinical Prognosis and Response to Immune Checkpoint Blockade in Multiple Colorectal Cancer Cohorts. Front Mol Biosci 2022; 9:884839. [PMID: 35836930 PMCID: PMC9274205 DOI: 10.3389/fmolb.2022.884839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Despite immune checkpoint blockade (ICB) therapy contributed to significant advances in cancer therapy, only a small percentage of patients with colorectal cancer (CRC) respond to it. Identification of these patients will facilitate ICB application in CRC. In this study, we integrated multiple CRC cohorts (2,078 samples) to construct tumor microenvironment (TME) subtypes using TME indices calculated by CIBERSORT and ESTIMATE algorithms. Furthermore, a surrogate quantitative indicator, a tumor microenvironment immune gene (TMEIG) score system, was established using the key immune genes between TME clusters 1 and 2. The subsequent analysis demonstrated that TME subtypes and the TMEIG score system correlated with clinical outcomes of patients in multiple CRC cohorts and exhibited distinct immune statuses. Furthermore, Tumor Immune Dysfunction and Exclusion (TIDE) analysis indicated that patients with low TMEIG scores were more likely to benefit from ICB therapy. A study on two ICB cohorts (GSE78220 and IMvigor210) also validated that patients with low TMEIG scores exhibited higher ICB response rates and better prognoses after ICB treatment. The biomarker evaluation module on the TIDE website revealed that the TMEIG score was a robust predictive biomarker. Moreover, differential expression analysis, immunohistochemistry, qPCR experiments, and gene set prioritization module on the TIDE website demonstrated that the five genes that constitute the TMEIG score system (SERPINE1, FABP4, SCG2, CALB2, and HOXC6) were closely associated with tumorigenesis, immune cells, and ICB response indices. Finally, TMEIG scores could accurately predict the prognosis and ICB response of patients with CRC. SERPINE1, FABP4, SCG2, CALB2, and HOXC6 might be potential targets related to ICB treatment. Furthermore, our study provided new insights into precision ICB therapy in CRC.
Collapse
Affiliation(s)
- Hufei Wang
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhi Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Suwen Ou
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanni Song
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kangjia Luo
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zilong Guan
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lei Zhao, ; Rui Huang, ; Shan Yu,
| | - Rui Huang
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lei Zhao, ; Rui Huang, ; Shan Yu,
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lei Zhao, ; Rui Huang, ; Shan Yu,
| |
Collapse
|
14
|
Wu J, Tang D. The Effect and Related Mechanism of Action of Astragalus Compatible with Curcumin against Colon Cancer Metastasis in Mice. Gastroenterol Res Pract 2022; 2022:9578307. [PMID: 35721822 PMCID: PMC9205740 DOI: 10.1155/2022/9578307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Colon cancer (CC) is the third most common tumor worldwide. Colon carcinogenesis is strongly linked to inflammation. The initiation and progression of colon cancer may be influenced by epigenetic processes. Cancer metastasis is a multistep process involving several genes and their products. During tumor metastasis, cancer cells first enhance their proliferative capacity by lowering autophagy and apoptosis, and then, their capacity is stimulated by boosting tumors' ability to take nutrients from the outside via angiogenesis. Traditional treatment focuses on eliminating tumor cells by triggering cell death or activating the immune system, which often results in side effects or chemoresistance recurrence. On the contrary, Chinese medicine theory considers the patient's entire inner system and aids in tumor shrinkage while also taking into account the mouse' general health. Because many Chinese herbal medicines (CHM) are consumed as food, using edible CHMs as a diet resource therapy for colon cancer treatment is a viable option. Two traditional Chinese herbs, Astragalus membranaceus and Curcuma zedoaria, are commonly utilized jointly in colon cancer preventive therapy. As a result, the anticancer effect of astragalus and curcumin (AC) on colon cancer suppression in an 18-week AOM-DSS colon cancer mouse model is investigated in this research. These findings may offer a scientific foundation for investigating colon cancer diagnostic biomarkers and therapeutic application of AC in colon cancer treatment. These studies also highlighted the potential effect and mechanism of AC in the treatment of colon cancer, as well as providing insight into how to effectively use it.
Collapse
Affiliation(s)
- Jiafei Wu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046 Jiangsu, China
| | - Decai Tang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046 Jiangsu, China
| |
Collapse
|
15
|
Bai S, Chen L, Yan Y, Li R, Zhou Y, Wang X, Kang H, Feng Z, Li G, Zhou S, Drokow EK, Ren J. Exploration of Different Hypoxia Patterns and Construction of a Hypoxia-Related Gene Prognostic Index in Colorectal Cancer. Front Immunol 2022; 13:853352. [PMID: 35711425 PMCID: PMC9196334 DOI: 10.3389/fimmu.2022.853352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Immune checkpoint inhibitor (ICI) therapy has been proven to be a highly efficacious treatment for colorectal adenocarcinoma (COAD). However, it is still unclear how to identify those who might benefit the most from ICI therapy. Hypoxia facilitates the progression of the tumor from different aspects, including proliferation, metabolism, angiogenesis, and migration, and improves resistance to ICI. Therefore, it is essential to conduct a comprehensive understanding of the influences of hypoxia in COAD and identify a biomarker for predicting the benefit of ICI. Methods An unsupervised consensus clustering algorithm was used to identify distinct hypoxia-related patterns for COAD patients from TCGA and the GEO cohorts. The ssGSEA algorithm was then used to explore the different biological processes, KEGG pathways, and immune characteristics among distinct hypoxia-related clusters. Some hypoxia-related hub genes were then selected by weighted gene coexpression network analysis (WGCNA). Subsequently, univariate Cox regression analysis, multivariate Cox regression analysis, and least absolute shrinkage and selection operator (LASSO) regression were utilized to construct a hypoxia-related gene prognostic index (HRGPI). Finally, validation was also conducted for HRGPI in prognostic value, distinguishing hypoxia-related characteristics and benefits of ICI. Results We identified four hypoxia-related clusters and found that different hypoxia response patterns induced different prognoses significantly. Again, we found different hypoxia response patterns presented distinct characteristics of biological processes, signaling pathways, and immune features. Severe hypoxia conditions promoted activation of some cancer-related signaling pathways, including Wnt, Notch, ECM-related pathways, and remodeled the tumor microenvironment of COAD, tending to present as an immune-excluded phenotype. Subsequently, we selected nine genes (ANO1, HOXC6, SLC2A4, VIP, CD1A, STC2, OLFM2, ATP6V1B1, HMCN2) to construct our HRGPI, which has shown an excellent prognostic value. Finally, we found that HRGPI has an advantage in distinguishing immune and molecular characteristics of hypoxia response patterns, and it could also be an excellent predictive indicator for clinical response to ICI therapy. Conclusion Different hypoxia response patterns activate different signaling pathways, presenting distinct biological processes and immune features. HRGPI is an independent prognostic factor for COAD patients, and it could also be used as an excellent predictive indicator for clinical response to ICI therapy.
Collapse
Affiliation(s)
- Shuheng Bai
- Department of Radiotherapy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Medicine, Xian Jiaotong University, Xi’an, China
| | - Ling Chen
- Department of Chemotherapy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanli Yan
- Department of Radiotherapy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rong Li
- Department of Radiotherapy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yun Zhou
- School of Medicine, Xian Jiaotong University, Xi’an, China
| | - Xuan Wang
- Department of Radiotherapy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haojing Kang
- Department of Radiotherapy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhaode Feng
- Department of Radiotherapy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Guangzu Li
- Department of Radiotherapy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuling Zhou
- School of Medicine, Xian Jiaotong University, Xi’an, China
| | - Emmanuel Kwateng Drokow
- Department of Radiation Oncology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Xi’an, China
| | - Juan Ren
- Department of Radiotherapy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Juan Ren, ;
| |
Collapse
|
16
|
Huang H, Huo Z, Jiao J, Ji W, Huang J, Bian Z, Xu B, Shao J, Sun J. HOXC6 impacts epithelial-mesenchymal transition and the immune microenvironment through gene transcription in gliomas. Cancer Cell Int 2022; 22:170. [PMID: 35488304 PMCID: PMC9052479 DOI: 10.1186/s12935-022-02589-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gliomas are the most common primary malignant tumours of the central nervous system (CNS). To improve the prognosis of glioma, it is necessary to identify molecular markers that may be useful for glioma therapy. HOXC6, an important transcription factor, is involved in multiple cancers. However, the role of HOXC6 in gliomas is not clear. METHODS Bioinformatic and IHC analyses of collected samples (n = 299) were performed to detect HOXC6 expression and the correlation between HOXC6 expression and clinicopathological features of gliomas. We collected clinical information from 177 to 299 patient samples and estimated the prognostic value of HOXC6. Moreover, cell proliferation assays were performed. We performed Gene Ontology (GO) analysis and gene set enrichment analysis (GSEA) based on ChIP-seq and public datasets to explore the biological characteristics of HOXC6 in gliomas. RNA-seq was conducted to verify the relationship between HOXC6 expression levels and epithelial-mesenchymal transition (EMT) biomarkers. Furthermore, the tumour purity, stromal and immune scores were evaluated. The relationship between HOXC6 expression and infiltrating immune cell populations and immune checkpoint proteins was also researched. RESULTS HOXC6 was overexpressed and related to the clinicopathological features of gliomas. In addition, knockdown of HOXC6 inhibited the proliferation of glioma cells. Furthermore, increased HOXC6 expression was associated with clinical progression. The biological role of HOXC6 in gliomas was primarily associated with EMT and the immune microenvironment in gliomas. High HOXC6 expression was related to high infiltration by immune cells, a low tumour purity score, a high stromal score, a high immune score and the expression of a variety of immune checkpoint genes, including PD-L1, B7-H3 and CLTA-4. CONCLUSIONS These results indicated that HOXC6 might be a key factor in promoting tumorigenesis and glioma progression by regulating the EMT signalling pathway and might represent a novel immune therapeutic target in gliomas.
Collapse
Affiliation(s)
- Hui Huang
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Zhengyuan Huo
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Jin Huang
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Zheng Bian
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Bin Xu
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China.
| | - Jun Sun
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China.
| |
Collapse
|
17
|
Morgan R, Hunter K, Pandha HS. Downstream of the HOX genes: explaining conflicting tumour suppressor and oncogenic functions in cancer. Int J Cancer 2022; 150:1919-1932. [PMID: 35080776 PMCID: PMC9304284 DOI: 10.1002/ijc.33949] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/24/2021] [Accepted: 01/07/2022] [Indexed: 11/07/2022]
Abstract
The HOX genes are a highly conserved group of transcription factors that have key roles in early development, but which are also highly expressed in most cancers. Many studies have found strong associative relationships between the expression of individual HOX genes in tumours and clinical parameters including survival. For the majority of HOX genes, high tumour expression levels seem to be associated with a worse outcome for patients, and in some cases this has been shown to result from the activation of pro-oncogenic genes and pathways. However, there are also many studies that indicate a tumour suppressor role for some HOX genes, sometimes with conclusions that contradict earlier work. In this review, we have attempted to clarify the role of HOX genes in cancer by focusing on their downstream targets as identified in studies that provide experimental evidence for their activation or repression. On this basis, the majority of HOX genes would appear to have a pro-oncogenic function, with the notable exception of HOXD10, which acts exclusively as a tumour suppressor. HOX proteins regulate a wide range of target genes involved in metastasis, cell death, proliferation, and angiogenesis, and activate key cell signalling pathways. Furthermore, for some functionally related targets, this regulation is achieved by a relatively small subgroup of HOX genes.
Collapse
Affiliation(s)
- Richard Morgan
- School of Biomedical SciencesUniversity of West LondonLondonUK
| | - Keith Hunter
- Unit of Oral and Maxillofacial Pathology, School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - Hardev S. Pandha
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| |
Collapse
|
18
|
Qi L, Ye C, Zhang D, Bai R, Zheng S, Hu W, Yuan Y. The Effects of Differentially-Expressed Homeobox Family Genes on the Prognosis and HOXC6 on Immune Microenvironment Orchestration in Colorectal Cancer. Front Immunol 2021; 12:781221. [PMID: 34950145 PMCID: PMC8688249 DOI: 10.3389/fimmu.2021.781221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023] Open
Abstract
Background The homeobox (HOX) gene family encodes highly conserved transcription factors, that play important roles in the morphogenesis and embryonic development of vertebrates. Mammals have four similar HOX gene clusters, HOXA, HOXB, HOXC, and HOXD, which are located on chromosomes 7, 17,12 and 2 and consist of 38 genes. Some of these genes were found to be significantly related to a variety of tumors; however, it remains unknown whether abnormal expression of the HOX gene family affects prognosis and the tumor microenvironment (TME) reshaping in colorectal cancer (CRC). Therefore, we conducted this systematic exploration to provide additional information for the above questions. Methods RNA sequencing data from The Cancer Genome Atlas (TCGA) and mRNA expression data from Gene Expression Omnibus (GEO) combined with online tumor analysis databases (UALCAN, TIMER, PrognoScan) were utilized to explore the relationship among abnormal expression of HOX family genes, prognosis and the tumor immune microenvironment in CRC. Results 1. Differential expression and prognosis analysis: 24 genes were significantly differentially expressed in CRC compared to adjacent normal tissues, and seven upregulated genes were significantly associated with poor survival. Among these seven genes, univariate and multivariate Cox regression analysis revealed that only high expression of HOXC6 significantly contributed to poor prognosis; 2. The influence of overexpressed HOXC6 on the pathway and TME: High HOXC6 expression was significantly related to the cytokine pathway and expression of T cell attraction chemokines, the infiltration ratio of immune cells, expression of immune checkpoint markers, tumor mutation burden (TMB) scores and microsatellite instability-high (MSI-H) scores; 3. Stratified analysis based on stages: In stage IV, HOXC6 overexpression had no significant impact on TMB, MSI-H, infiltration ratio of immune cells and response prediction of immune checkpoint blockers (ICBs), which contributed to significantly poor overall survival (OS). Conclusion Seven differentially expressed HOX family genes had significantly worse prognoses. Among them, overexpressed HOXC6 contributed the most to poor OS. High expression of HOXC6 was significantly associated with high immunogenicity in nonmetastatic CRC. Further research on HOXC6 is therefore worthwhile to provide potential alternatives in CRC immunotherapy.
Collapse
Affiliation(s)
- Lina Qi
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Chenyang Ye
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Ding Zhang
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Rui Bai
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Shu Zheng
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Wangxiong Hu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Kong C, Fu T. Value of methylation markers in colorectal cancer (Review). Oncol Rep 2021; 46:177. [PMID: 34212989 DOI: 10.3892/or.2021.8128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/18/2021] [Indexed: 11/05/2022] Open
Abstract
Colorectal cancer (CRC) is a multifactorial and multistage process that occurs due to both genetic and epigenetic variations in normal epithelial cells. Analysis of the CRC epigenome has revealed that almost all CRC types have a large number of abnormally methylated genes. Hypermethylation of cell‑free DNA from CRC in the blood or stool is considered as a potential non‑invasive cancer biomarker, and various methylation markers have shown high sensitivity and specificity. The aim of the present review was to examine potential methylation markers in CRC that have been used or are expected to be used in the clinical setting, focusing on their screening, predictive, prognostic and therapeutic roles in CRC.
Collapse
Affiliation(s)
- Can Kong
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tao Fu
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|