1
|
Zou D, Liao J, Xiao M, Liu L, Xu M. Melatonin alleviates hyperoxia-induced lung injury through elevating MSC exosomal miR-18a-5p expression to repress PUM2 signaling. FASEB J 2024; 38:e70012. [PMID: 39183539 DOI: 10.1096/fj.202400374r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Mesenchymal stem cells (MSC)-derived exosomes (Exo) are a possible option for hyperoxia-induced lung injury (HLI). We wanted to see if melatonin (MT)-pretreated MSC-derived exosomes (MT-Exo) were more effective against HLI, and we also tried to figure out the underlying mechanism. HLI models were established by hyperoxia exposure. HE staining was adopted to analyze lung pathological changes. MTT and flow cytometry were used to determine cell viability and apoptosis, respectively. The mitochondrial membrane potential (MMP) was analyzed using the JC-1 probe. LDH, ROS, SOD, and GSH-Px levels were examined by the corresponding kits. The interactions between miR-18a-5p, PUM2, and DUB3 were analyzed by molecular interaction experiments. MT-Exo could effectively inhibit hyperoxia-induced oxidative stress, inflammatory injury, and apoptosis in lung epithelial cells, while these effects of MT-Exo were weakened by miR-18a-5p knockdown in MSCs. miR-18a-5p reduced PUM2 expression in MLE-12 cells by directly targeting PUM2. In addition, PUM2 inactivated the Nrf2/HO-1 signaling pathway by promoting DUB3 mRNA decay post-transcriptionally. As expected, PUM2 overexpression or DUB3 knockdown abolished the protective effect of MT-Exo on hyperoxia-induced lung epithelial cell injury. MT-Exo carrying miR-18a-5p reduced hyperoxia-mediated lung injury in mice through activating Nrf2/HO-1 pathway. MT reduced PUM2 expression and subsequently activated the DUB3/Nrf2/HO-1 signal axis by increasing miR-18a-5p expression in MSC-derived exosomes to alleviate HLI.
Collapse
Affiliation(s)
- Dongmei Zou
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Jinwen Liao
- The Department of Pediatric, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Min Xiao
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Liang Liu
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Mingguo Xu
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
- The Department of Pediatric, The Third People's Hospital of Longgang District Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Chen S, Zhang L, Song Y, Xie K, Wang Y, Liang Y. A Comprehensive Analysis of NRP1 in Malignancies Provide Therapeutic Implication for Treating Cancer Patients Infected with SARS-CoV-2. Biochem Genet 2024; 62:2399-2417. [PMID: 37938510 DOI: 10.1007/s10528-023-10518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/05/2023] [Indexed: 11/09/2023]
Abstract
COVID-19 (Coronavirus disease 2019) is caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), which can lead to pneumonia, cytokine storms, and lymphopenia. Patients with cancer are more susceptible to SARS-CoV-2 infection and severe COVID-19 due to immunosuppression. Recent studies have indicated that NRP1 (Neuropilin 1) may act as a novel mediator of SARS-CoV-2 entry into the host cell. As no systematic review has been performed investigating the characteristics of NRP1 in pan-carcinoma, we comprehensively analyzed NRP1 in patients with pan-cancer. Using a bioinformatics approach, we aimed to systematically examine NRP1 expression profiles in both pan-carcinoma and healthy tissues. We found that lung and genitourinary cancers have a relatively higher NRP-1 expression than other cancer patients, suggesting that these patients may be more susceptible to SARS-CoV-2. Our analysis further revealed that NRP1 expression was downregulated in Vero E6 cells, whole blood, lung organoids, testis tissue, and alveolospheres infected with SARS-CoV-2. Notably, NRP1 was associated with immune cell infiltration, immune checkpoint genes, and immune-related genes in most patients with cancer. These findings suggest that, in patients with specific types of cancer, especially lung and genitourinary, high expression of NRP1 contributes to greater susceptibility to SARS-CoV-2 infection and an increased risk of damage due to cytokine storms. Overall, NRP1 appears to play a critical role in regulating immunological properties and metabolism in many tumor types. Specific inhibitors of the NRP1 antigen (pegaptanib, EG00229, or MNRP1685A) combined with other anti-SARS-CoV-2 strategies may aid in treating patients with lung and genitourinary cancers following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shuzhao Chen
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Limei Zhang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yiling Song
- Department of Clinical Laboratory, SunYat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Kunying Xie
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yun Wang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Yang Liang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Wang H, Shui X, Zhang Z, He M, Tai S, Lin Y. Construction of m7G RNA modification-related prognostic model and prediction of immune therapy response in hepatocellular carcinoma. Transl Cancer Res 2024; 13:2799-2811. [PMID: 38988942 PMCID: PMC11231774 DOI: 10.21037/tcr-24-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/28/2024] [Indexed: 07/12/2024]
Abstract
Background RNA plays an important role in tumorigenesis. Changes in RNA may cause changes in the biological function. The N7-methylguanosine (m7G) methylation modification performs an integral function in tumor progression as the most widely existed RNA modification. Hepatocellular carcinoma (HCC) is among the greatest threats to human health worldwide. Low detection rates remain the main cause of advanced disease progression. Therefore, finding significant biomarkers for prognosis prediction and immune therapy response in HCC is valuable and urgently needed. Methods RNA expression and clinical data were acquired from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. Different subtypes screening was finished by consensus cluster. Different expression was performed by R software. The results were validated by western blot (WB) methods. Genes with HCC prognostic potential were identified utilizing least absolute shrinkage and selection operator (LASSO) analyses. A prognosis model was established with the help of the risk score that we calculated. Related genes screening and protein-protein interactions (PPI) network construction were performed using the GeneMANIA database. Functional annotation was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) databases. In addition, gene set enrichment analysis (GSEA) of key genes and immune infiltration status were both done by R software. Finally, the immune infiltration was performed by cibersort method and single sample GSEA (ssGSEA) method. The response of immune therapy was validated by Tumor Immune Dysfunction and Exclusion database (TIDE) and the immune therapy cohort in GEO database. Results We found that two different subtypes related with m7G RNA modification and four genes associated with m7G RNA modification were differentially expressed in the TCGA-Liver Hepatocellular Carcinoma (TCGA-LIHC) database. Additionally, to examine the value of these four genes in the HCC patients' prognoses according to the LASSO, we selected three genes, including WDR4, AGO2, and NCBP2, as prognostic related genes. Premised on the expression of these three genes, a risk score model and nomogram were constructed to provide a prediction of the HCC patients' prognoses. We performed functional annotation and created a PPI network based on the three genes (WDR4, NCBP2, and AGO2). Using R software, we performed the GSEA and immune regulation analyses. Finally, we predicted the relationship between the gene expression and the response of immune therapy. Conclusions Our study suggests that high expression of m7G RNA modification subtype is related with poor prognosis and immune response. WDR4, AGO2, and NCBP2 are key regulators of m7G RNA modification which can be clinically promising biomarkers that can be used to treat HCC. In addition, our risk score model was shown to have a strong link to OS in patients with HCC.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xian Shui
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zheng Zhang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meng He
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng Tai
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yujia Lin
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Meng X, Na R, Peng X, Li H, Ouyang W, Zhou W, You X, Li Y, Pu X, Zhang K, Xia J, Wang J, Tang H, Zhuang G, Peng Z. Musashi-2 potentiates colorectal cancer immune infiltration by regulating the post-translational modifications of HMGB1 to promote DCs maturation and migration. Cell Commun Signal 2024; 22:117. [PMID: 38347600 PMCID: PMC10863188 DOI: 10.1186/s12964-024-01495-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
Post-translational modifications (PTMs) of the non-histone protein high-mobility group protein B1 (HMGB1) are involved in modulating inflammation and immune responses. Recent studies have implicated that the RNA-binding protein (RBP) Musashi-2 (MSI2) regulates multiple critical biological metabolic and immunoregulatory functions. However, the precise role of MSI2 in regulating PTMs and tumor immunity in colorectal cancer (CRC) remains unclear. Here, we present data indicating that MSI2 potentiates CRC immunopathology in colitis-associated colon cancer (CAC) mouse models, cell lines and clinical specimens, specifically via HMGB1-mediated dendritic cell (DC) maturation and migration, further contributes to the infiltration of CD4+ and CD8+ T cells and inflammatory responses. Under stress conditions, MSI2 can exacerbate the production, nucleocytoplasmic transport and extracellular release of damage-associated molecular patterns (DAMPs)-HMGB1 in CRC cells. Mechanistically, MSI2 mainly enhances the disulfide HMGB1 production and protein translation via direct binding to nucleotides 1403-1409 in the HMGB1 3' UTR, and interacts with the cytoplasmic acetyltransferase P300 to upregulate its expression, further promoting the acetylation of K29 residue in HMGB1, thus leading to K29-HMGB1 nucleocytoplasmic translocation and extracellular release. Furthermore, blocking HMGB1 activity with glycyrrhizic acid (Gly) attenuates MSI2-mediated immunopathology and immune infiltration in CRC in vitro and in vivo. Collectively, this study suggests that MSI2 may improve the prognosis of CRC patients by reprogramming the tumor immune microenvironment (TIME) through HMGB1-mediated PTMs, which might be a novel therapeutic option for CRC immunotherapy.
Collapse
Affiliation(s)
- Xiaole Meng
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Clinical Research Center for Cancer Therapy; Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Risi Na
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiao Peng
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hui Li
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wanxin Ouyang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenting Zhou
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xuting You
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yuhuan Li
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Pu
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ke Zhang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Junjie Xia
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jie Wang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Huamei Tang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Guohong Zhuang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Zhihai Peng
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
5
|
Meng X, Peng X, Ouyang W, Li H, Na R, Zhou W, You X, Li Y, Pu X, Zhang K, Xia J, Wang J, Zhuang G, Tang H, Peng Z. Musashi-2 Deficiency Triggers Colorectal Cancer Ferroptosis by Downregulating the MAPK Signaling Cascade to Inhibit HSPB1 Phosphorylation. Biol Proced Online 2023; 25:32. [PMID: 38041016 PMCID: PMC10691036 DOI: 10.1186/s12575-023-00222-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Musashi-2 (MSI2) is a critical RNA-binding protein (RBP) whose ectopic expression drives the pathogenesis of various cancers. Accumulating evidence suggests that inducing ferroptosis of tumor cells can inhibit their malignant biological behavior as a promising therapeutic approach. However, it is unclear whether MSI2 regulates cell death in colorectal cancer (CRC), especially the underlying mechanisms and biological effects in CRC ferroptosis remain elusive. METHODS Experimental methods including qRT‒PCR, immunofluorescence, flow cytometry, western blot, co-immunoprecipitation, CCK-8, colony formation assay, in vitro cell transwell migration and invasion assays, in vivo xenograft tumor experiments, liver and lung CRC metastasis models, CAC mice models, transmission electron microscopy, immunohistochemistry, histopathology, 4D label-free proteomics sequencing, bioinformatic and database analysis were used in this study. RESULTS Here, we investigated that MSI2 was upregulated in CRC and positively correlated with ferroptosis inhibitor molecules. MSI2 deficiency suppressed CRC malignancy by inhibiting cell proliferation, viability, migration and invasion in vitro and in vivo; and MSI2 deficiency triggered CRC ferroptosis by changing the intracellular redox state (ROS levels and lipid peroxidation), erastin induced cell mortality and viability, iron homeostasis (intracellular total irons and ferrous irons), reduced glutathione (GSH) levels and mitochondrial injury. Mechanistically, through 4D-lable free proteomics analysis on SW620 stable cell lines, we demonstrated that MSI2 directly interacted with p-ERK and MSI2 knockdown downregulated the p-ERK/p38/MAPK axis signaling pathway, which further repressed MAPKAPK2 and HPSB1 phosphorylation, leading to decreased expression of PCNA and Ki67 and increased expression of ACSL4 in cancer cells. Furthermore, HSPB1 could rescue the phenotypes of MSI2 deficiency on CRC ferroptosis in vitro and in vivo. CONCLUSIONS This study indicates that MSI2 deficiency suppresses the growth and survival of CRC cells and promotes ferroptosis by inactivating the MAPK signaling pathway to inhibit HSPB1 phosphorylation, which leads to downregulation of PCNA and Ki67 and upregulation of ACSL4 in cancer cells and subsequently induces redox imbalance, iron accumulation and mitochondrial shrinkage, ultimately triggering ferroptosis. Therefore, targeted inhibition of MSI2/MAPK/HSPB1 axis to promote ferroptosis might be a potential treatment strategy for CRC.
Collapse
Affiliation(s)
- Xiaole Meng
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao Peng
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wanxin Ouyang
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hui Li
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Risi Na
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wenting Zhou
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xuting You
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhuan Li
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Pu
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ke Zhang
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Junjie Xia
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Jie Wang
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guohong Zhuang
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China.
| | - Huamei Tang
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China.
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Zhihai Peng
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China.
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
Luo L, Wu A, Shu X, Liu L, Feng Z, Zeng Q, Wang Z, Hu T, Cao Y, Tu Y, Li Z. Hub gene identification and molecular subtype construction for Helicobacter pylori in gastric cancer via machine learning methods and NMF algorithm. Aging (Albany NY) 2023; 15:11782-11810. [PMID: 37768204 PMCID: PMC10683617 DOI: 10.18632/aging.205053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/19/2023] [Indexed: 09/29/2023]
Abstract
Helicobacter pylori (HP) is a gram-negative and spiral-shaped bacterium colonizing the human stomach and has been recognized as the risk factor of gastritis, peptic ulcer disease, and gastric cancer (GC). Moreover, it was recently identified as a class I carcinogen, which affects the occurrence and progression of GC via inducing various oncogenic pathways. Therefore, identifying the HP-related key genes is crucial for understanding the oncogenic mechanisms and improving the outcomes of GC patients. We retrieved the list of HP-related gene sets from the Molecular Signatures Database. Based on the HP-related genes, unsupervised non-negative matrix factorization (NMF) clustering method was conducted to stratify TCGA-STAD, GSE15459, GSE84433 samples into two clusters with distinct clinical outcomes and immune infiltration characterization. Subsequently, two machine learning (ML) strategies, including support vector machine-recursive feature elimination (SVM-RFE) and random forest (RF), were employed to determine twelve hub HP-related genes. Beyond that, receiver operating characteristic and Kaplan-Meier curves further confirmed the diagnostic value and prognostic significance of hub genes. Finally, expression of HP-related hub genes was tested by qRT-PCR array and immunohistochemical images. Additionally, functional pathway enrichment analysis indicated that these hub genes were implicated in the genesis and progression of GC by activating or inhibiting the classical cancer-associated pathways, such as epithelial-mesenchymal transition, cell cycle, apoptosis, RAS/MAPK, etc. In the present study, we constructed a novel HP-related tumor classification in different datasets, and screened out twelve hub genes via performing the ML algorithms, which may contribute to the molecular diagnosis and personalized therapy of GC.
Collapse
Affiliation(s)
- Lianghua Luo
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ahao Wu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xufeng Shu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li Liu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zongfeng Feng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingwen Zeng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhonghao Wang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Tengcheng Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yi Cao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yi Tu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhengrong Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Pordel S, Khorrami M, Saadatpour F, Rezaee D, Cho WC, Jahani S, Aghaei-Zarch SM, Hashemi E, Najafi S. The role of microRNA-185 in the pathogenesis of human diseases: A focus on cancer. Pathol Res Pract 2023; 249:154729. [PMID: 37639952 DOI: 10.1016/j.prp.2023.154729] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/29/2023] [Indexed: 08/31/2023]
Abstract
MicroRNAs (miRNAs) are a widely-studied class of non-coding RNAs characterized by their short length (18-25 nucleotides). The precise functions of miRNAs are not well-elucidated; however, an increasing number of studies suggest their involvement in various physiologic processes and deregulation in pathologic conditions. miRNA-185 (miR-185) is among the mostly-studied miRNAs in human diseases, which is found to play putative roles in conditions like metabolic disorders, asthma, frailty, schizophrenia, and hepatitis. Notably, many cancer studies report the downregulation of miR-185 in cell lines, tumor tissues, and plasma specimens of patients, while it demonstrates a suppressing role on the malignant properties of cancer cells in vitro and in vivo. Accordingly, miR-185 can be considered a tumor suppressor miRNA in human malignancies, while a few studies also report inconsistent findings. Being suggested as a prognostic/diagnostic biomarker, mi-185 is also found to offer clinical potentials, particularly for early diagnosis and prediction of the prognosis of cancer patients. In this review, we have outlined the studies that have evaluated the functions and clinical significance of miR-185 in different human diseases with a particular focus on cancer.
Collapse
Affiliation(s)
- Safoora Pordel
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology and Allergy, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | | | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Unraveling the function of epithelial-mesenchymal transition (EMT) in colorectal cancer: Metastasis, therapy response, and revisiting molecular pathways. Biomed Pharmacother 2023; 160:114395. [PMID: 36804124 DOI: 10.1016/j.biopha.2023.114395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Colorectal cancer (CRC) is a dangerous form of cancer that affects the gastrointestinal tract. It is a major global health concern, and the aggressive behavior of tumor cells makes it difficult to treat, leading to poor survival rates for patients. One major challenge in treating CRC is the metastasis, or spread, of the cancer, which is a major cause of death. In order to improve the prognosis for patients with CRC, it is necessary to focus on ways to inhibit the cancer's ability to invade and spread. Epithelial-mesenchymal transition (EMT) is a process that is linked to the spread of cancer cells, also known as metastasis. The process transforms epithelial cells into mesenchymal ones, increasing their mobility and ability to invade other tissues. This has been shown to be a key mechanism in the progression of colorectal cancer (CRC), a particularly aggressive form of gastrointestinal cancer. The activation of EMT leads to increases in the spread of CRC cells, and during this process, levels of the protein E-cadherin decrease while levels of N-cadherin and vimentin increase. EMT also contributes to the development of resistance to chemotherapy and radiation therapy in CRC. Non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a role in regulating EMT in CRC, often through their ability to "sponge" microRNAs. Anti-cancer agents have been shown to suppress EMT and reduce the progression and spread of CRC cells. These findings suggest that targeting EMT or related mechanisms may be a promising approach for treating CRC patients in the clinic.
Collapse
|
9
|
Tang Y, Hu S, Li T, Qiu X. Tumor cells-derived exosomal circVCP promoted the progression of colorectal cancer by regulating macrophage M1/M2 polarization. Gene 2023; 870:147413. [PMID: 37028610 DOI: 10.1016/j.gene.2023.147413] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/25/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is among the most frequent tumors of the digestive tract and the second leading cause of cancer death worldwide. Tumor-associated macrophages (TAMs) are one of the most critical immune cells in the tumor microenvironment, which closely interact with tumor cells to promote tumor incidence and progression. However, the precise mechanism of action between CRC cells and TAMs polarization is still being investigated. METHODS Transmission electronic microscopy (TEM), NanoSight and western blotting were used to characterize exosomes (Exo) isolated from the culture medium of CRC cells. The cellular uptake and internalization of Exo were detected by confocal laser scanning microscopy. M1/ M2 phenotype markers expression were examined by ELISA and flow cytometry. Cell migration, invasion and proliferation were determined by transwell and CCK-8 assay, respectively. A xenograft tumor model was established to explore the role of circVCP in vivo. The target genes of circVCP or miR-9-5p were predicted by StarBase2.0. The target association among miR-9-5p and circVCP or NRP1 was confirmed using the luciferase assay and RNA-pull down assay. RESULTS circVCP was highly accumulated in exosomes derived from plasma of CRC patients and CRC cells. Additionally, exosomal circVCP derived from CRC cells promoted cell proliferation, migration and invasion by regulating the miR-9-5p/NRP1 axis, and induced macrophage M2 polarization and inhibited macrophage M1 polarization. CONCLUSIONS Over-expressed exosomal circVCP promoted the progression of CRC by regulating macrophage M1/M2 polarization through miR-9-5p/NRP1 axis. CircVCP may be a diagnostic biomarker and potential target for CRC therapy.
Collapse
|
10
|
Zhang P, Chen L, Zhou F, He Z, Wang G, Luo Y. NRP1 promotes prostate cancer progression via modulating EGFR-dependent AKT pathway activation. Cell Death Dis 2023; 14:159. [PMID: 36841806 PMCID: PMC9958327 DOI: 10.1038/s41419-023-05696-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
Prostate cancer (PCa) is the most common malignant tumor with a high global incidence in males. The mechanism underlying PCa progression is still not clear. This study observed that NRP1 was highly expressed in PCa and associated with poor prognosis in PCa patients. Functionally, NRP1 depletion attenuated the proliferation and migration ability of PCa cells in vitro and in vivo, while NRP1 overexpression promoted PCa cell proliferation and migration. Moreover, it was observed that NRP1 depletion induced G1 phase arrest in PCa cells. Mechanistically, HIF1α is bound to the specific promoter region of NRP1, thereby regulating its transcriptional activation. Subsequently, NRP1 interacted with EGFR, leading to EGFR phosphorylation. This study also provided evidence that the b1/b2 domain of NRP1 was responsible for the interaction with the extracellular domain of EGFR. Moreover, EGFR mediated NRP1-induced activation of the AKT signaling pathway, which promoted the malignant progression of PCa. In addition, the administration of NRP1 inhibitor EG01377 significantly inactivated the EGFR/AKT signaling axis, thereby suppressing PCa progression. In conclusion, the findings from this study highlighted the molecular mechanism underlying NRP1 expression in PCa and provide a potential predictor and therapeutic target for clinical prognosis and treatment of PCa.
Collapse
Affiliation(s)
- Peng Zhang
- grid.413247.70000 0004 1808 0969Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang Chen
- grid.413247.70000 0004 1808 0969Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fenfang Zhou
- grid.413247.70000 0004 1808 0969Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiwen He
- grid.413247.70000 0004 1808 0969Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China. .,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China. .,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Medical Research Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
11
|
Goswami B, Ahuja D, Pastré D, Ray PS. p53 and HuR combinatorially control the biphasic dynamics of microRNA-125b in response to genotoxic stress. Commun Biol 2023; 6:110. [PMID: 36707647 PMCID: PMC9883498 DOI: 10.1038/s42003-023-04507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 01/19/2023] [Indexed: 01/29/2023] Open
Abstract
Post-transcriptional regulation of p53, by the microRNA miR-125b and the RNA-binding protein HuR, controls p53 expression under genotoxic stress. p53 mRNA translation is repressed by miR-125b, tightly regulating its basal level of expression. The repression is relieved upon DNA damage by a decrease in miR-125b level, contributing to pulsatile expression of p53. The pulse of p53, as also of HuR, in response to UV irradiation coincides with a time-dependent biphasic change in miR-125b level. We show that the cause for the decrease in miR-125b level immediately post DNA-damage is enhanced exosomal export mediated by HuR. The subsequent increase in miR-125b level is due to p53-mediated transcriptional upregulation and enhanced processing, demonstrating miR-125b as a transcriptional and processing target of p53. p53 activates the transcription of primary miR-125b RNA from a cryptic promoter in response to UV irradiation. Together, these regulatory processes constitute reciprocal feedback loops that determine the biphasic change in miR-125b level, ultimately contributing to the fine-tuned temporal regulation of p53 expression in response to genotoxic stress.
Collapse
Affiliation(s)
- Binita Goswami
- grid.417960.d0000 0004 0614 7855Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, 741246 West Bengal India
| | - Deepika Ahuja
- grid.417960.d0000 0004 0614 7855Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, 741246 West Bengal India
| | - David Pastré
- grid.460789.40000 0004 4910 6535SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Partho Sarothi Ray
- grid.417960.d0000 0004 0614 7855Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, 741246 West Bengal India
| |
Collapse
|
12
|
Zhang L, Qian Y. An epithelial-mesenchymal transition-related prognostic model for colorectal cancer based on weighted gene co-expression network analysis. J Int Med Res 2022; 50:3000605221140683. [PMID: 36510452 DOI: 10.1177/03000605221140683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To identify susceptibility modules and genes for colorectal cancer (CRC) using weighted gene co-expression network analysis (WGCNA). METHODS Four microarray datasets were downloaded from the Gene Expression Omnibus database. We divided the tumor samples into three subgroups based on consensus clustering of gene expression, and analyzed the correlations between the subgroups and clinical features. The genetic features of the subgroups were investigated by gene set enrichment analysis (GSEA). A gene expression network was constructed using WGCNA, and a protein-protein interaction (PPI) network was used to identify the key genes. Gene modules were annotated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. RESULTS We divided the cancer cases into three subgroups based on consensus clustering (subgroups I, II, III). The green module identified by WGCNA was correlated with clinical characteristics. Ten key genes were identified according to their degree of connectivity in the protein-protein interaction network: FYN, SEMA3A, AP2M1, L1CAM, NRP1, TLN1, VWF, ITGB3, ILK, and ACTN1. CONCLUSION We identified 10 hub genes as candidate biomarkers for CRC. These key genes may provide a theoretical basis for targeted therapy against CRC.
Collapse
Affiliation(s)
- Lina Zhang
- Department of General Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang, China
| | - Yucheng Qian
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
13
|
Lv Y, Xu L. Tamoxifen Regulates Epithelial–Mesenchymal Transition in Endometrial Cancer <i>via</i> the CANP10/NRP1 Signaling Pathway. Biol Pharm Bull 2022; 45:1818-1824. [DOI: 10.1248/bpb.b22-00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
| | - Lei Xu
- Yantai Yuhuangding Hospital
| |
Collapse
|
14
|
Li H, Meng X, You X, Zhou W, Ouyang W, Pu X, Zhao R, Tang H. Increased expression of the RNA-binding protein Musashi-2 is associated with immune infiltration and predicts better outcomes in ccRCC patients. Front Oncol 2022; 12:949705. [PMID: 36338702 PMCID: PMC9634258 DOI: 10.3389/fonc.2022.949705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/05/2022] [Indexed: 08/26/2023] Open
Abstract
RNA-binding proteins (RBPs) mainly contribute to abnormalities in posttranscriptional gene regulation. The RBP Musashi-2, an evolutionarily conserved protein, has been characterized as an oncoprotein in various tumors. However, the prognostic value and potential roles of Musashi-2 in clear cell renal cell carcinoma (ccRCC) have not yet been elucidated. In this study, we found that Musashi-2 was mainly expressed in the normal distal tubular cells and collecting duct cells of the kidneys, while its expression was significantly decreased in ccRCC. And higher expression levels of Musashi-2 indicated better overall survival (OS) in ccRCC. Furthermore, immunohistochemistry demonstrated that PD-L1 expression was negatively correlated with Musashi-2 expression, and Musashi-2 was found to be remarkably correlated with multiple immune cells and immune inhibitors, including CD8+ T cells, CD4+ T cells, regulatory T (Treg) cells, PDCD1, CTLA4, Foxp3, and LAG3. Functional enrichment analysis revealed that Musashi-2 might be involved in ccRCC metabolic reprogramming and immune infiltration and further predicted the therapeutic sensitivity of ccRCC. Taken together, Musashi-2 is a prognostic biomarker for ccRCC patients that may provide novel insights into individualized treatment strategies and guide effective immunotherapy.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Xiaole Meng
- Department of Pathology, Xiang’an Hospital of Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Xuting You
- Department of Pathology, Xiang’an Hospital of Xiamen University, Xiamen, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Wenting Zhou
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Wanxin Ouyang
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Pu
- Department of Pathology, Xiang’an Hospital of Xiamen University, Xiamen, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Runan Zhao
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Huamei Tang
- Department of Pathology, Xiang’an Hospital of Xiamen University, Xiamen, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
15
|
Zhang X, Han Y, Hu X, Wang H, Tian Z, Zhang Y, Wang X. Competing endogenous RNA networks related to prognosis in chronic lymphocytic leukemia: comprehensive analyses and construction of a novel risk score model. Biomark Res 2022; 10:75. [PMID: 36271413 PMCID: PMC9585723 DOI: 10.1186/s40364-022-00423-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is a heterogeneous B-cell malignancy that lacks specific biomarkers and drug targets. Competing endogenous RNAs (ceRNAs) play vital roles in oncogenesis and tumor progression by sponging microRNAs (miRNAs). Nevertheless, the regulatory mechanisms of survival-related ceRNA networks in CLL remain to be uncovered. METHODS We included 865 de novo CLL patients to investigate RNA expression profiles and Illumina sequencing was performed on four CLL patients, two CLL cell lines and six healthy donors in our center. According to univariate Cox regression, LASSO regression as well as multivariate Cox regression analyses, we established a novel risk score model in CLL patients. Immune signatures were compared between the low- and high-risk groups with CIBERSORT and ESTIMATE program. Afterwards, we analyzed the relationship between differentially expressed miRNAs (DEmiRNAs) and IGHV mutational status, p53 mutation status and del17p. Based on the survival analyses and differentially expressed RNAs with targeting relationships, the lncRNA/circRNA-miRNA-mRNA ceRNA networks were constructed. In addition, the circRNA circ_0002078/miR-185-3p/TCF7L1 axis was verified and their interrelations were delineated by dual-luciferase reporter gene assay. RESULTS Totally, 57 differentially expressed mRNAs (DEmRNAs) and 335 DEmiRNAs were identified between CLL patient specimens and normal B cells. A novel risk score model consisting of HTN3, IL3RA and NCK1 was established and validated. The concordance indexes of the model were 0.825, 0.719 and 0.773 in the training, test and total sets, respectively. The high-risk group was related to del(13q14) as well as shorter overall survival (OS). Moreover, we identified DEmiRNAs that related to cytogenetic abnormality of CLL patients, which revealed that miR-324-3p was associated with IGHV mutation, p53 mutation and del17p. The survival-related lncRNA/circRNA-miRNA-mRNA ceRNA networks were constructed to further facilitate the development of potential predictive biomarkers. Besides, the expression of circ_0002078 and TCF7L1 were significantly elevated and miR-185-3p was obviously decreased in CLL patients. Circ_0002078 regulated TCF7L1 expression by competing with TCF7L1 for miR-185-3p. CONCLUSIONS The comprehensive analyses of RNA expression profiles provide pioneering insights into the molecular mechanisms of CLL. The novel risk score model and survival-related ceRNA networks promote the development of prognostic biomarkers and potential therapeutic vulnerabilities for CLL.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Yang Han
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Hua Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Zheng Tian
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
16
|
Huang Y, Wang Y, Xu D, Xiao L, Qin W, Liu B, Yuan X. Characterization of the SARS-CoV-2 co-receptor NRP1 expression profiles in healthy people and cancer patients: Implication for susceptibility to COVID-19 disease and potential therapeutic strategy. Front Genet 2022; 13:995736. [PMID: 36338984 PMCID: PMC9627153 DOI: 10.3389/fgene.2022.995736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/10/2022] [Indexed: 08/03/2023] Open
Abstract
Neuropilin-1 (NRP1) is a transmembrane protein involved in many physiological and pathological processes, and it functions as a co-receptor to facilitate the entry of SARS-CoV-2 into host cells. Therefore, it is critical to predict the susceptibility to SARS-CoV-2 and prognosis after infection among healthy people and cancer patients based on expression of NRP1. In the current study, we analyzed the conservation and isoform of NRP1 using public databases. NRP1 expression landscape in healthy people, COVID-19 patients, and cancer patients at both bulk and single-cell RNA-seq level was also depicted. We also analyzed the relationship between tissue-specific NRP1 expression and overall survival (OS), as well as tumor immune environment at a pan-cancer level, providing a comprehensive insight into the relationship between the vulnerability to SARS-CoV-2 infection and tumorigenesis. In conclusion, we identified NRP1 as a potential biomarker in predicting susceptibility to SARS-CoV-2 infection among healthy people and cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Wan Qin
- *Correspondence: Wan Qin, ; Bo Liu, ; Xianglin Yuan,
| | - Bo Liu
- *Correspondence: Wan Qin, ; Bo Liu, ; Xianglin Yuan,
| | - Xianglin Yuan
- *Correspondence: Wan Qin, ; Bo Liu, ; Xianglin Yuan,
| |
Collapse
|
17
|
Cheng Z, Wang J, Xu Y, Jiang T, Xue Z, Li S, Zhao Y, Song H, Song J. N7-methylguanosine-related lncRNAs: Distinction between hot and cold tumors and construction of predictive models in colon adenocarcinoma. Front Oncol 2022; 12:951452. [PMID: 36185235 PMCID: PMC9520617 DOI: 10.3389/fonc.2022.951452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Colon adenocarcinoma (COAD) is a prevalent malignant tumor that severely threatens human health across the globe. Immunotherapy is an essential need for patients with COAD. N7-methylguanosine (m7G) has been associated with human diseases, and non-coding RNAs (lncRNAs) regulate various tumor-related biological processes. Nonetheless, the m7G-related lncRNAs involved in COAD regulation are limited. This study aims to construct the clustering features and prognostic model of m7G-related lncRNAs in COAD. First, The Cancer Genome Atlas (TCGA) database was used to identify m7G-related differentially expressed lncRNAs (DELs), based on which COAD cases could be classified into two subtypes. Subsequently, univariate Cox analysis was used to identify 9 prognostic m7G-related lncRNAs. Further, Five candidates were screened by LASSO-Cox regression to develop new models. The patients were divided into high-risk and low-risk groups based on the median risk score. Consequently, the Kaplan-Meier survival curve demonstrated a statistically significant overall survival (OS) between the high- and low-risk groups (P<0.001). Multivariate Cox regression analysis revealed that risk score is an independent prognostic factor in COAD patients (P<0.001). This confirms the clinical applicability of the model. Additionally, we performed Gene Set Enrichment Analysis (GSEA), which uncovered the biological and functional differences between risk subgroups, i.e., enrichment of immune-related diseases in the high-risk group and enrichment of metabolic-related pathways in the low-risk group. In a drug sensitivity analysis, high-risk group were more sensitive to some chemotherapeutics and targeted drugs than low-risk group. Eventually, the stability of the model was confirmed by qRT-PCR. Our study unraveled the features of different immune states of COAD and established a prognostic model, including five m7G-related lncRNAs for COAD patients. These results will bolster clinical treatment and survival prediction of COAD.
Collapse
Affiliation(s)
- Zhichao Cheng
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaqi Wang
- Department of General Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhenyu Xue
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuai Li
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Zhao
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hu Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Jun Song, ; Hu Song,
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Jun Song, ; Hu Song,
| |
Collapse
|
18
|
Chen S, Wang Y, Li D, Wang H, Zhao X, Yang J, Chen L, Guo M, Zhao J, Chen C, Zhou Y, Liang G, Xu L. Mechanisms Controlling MicroRNA Expression in Tumor. Cells 2022; 11:cells11182852. [PMID: 36139427 PMCID: PMC9496884 DOI: 10.3390/cells11182852] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are widely present in many organisms and regulate the expression of genes in various biological processes such as cell differentiation, metabolism, and development. Numerous studies have shown that miRNAs are abnormally expressed in tumor tissues and are closely associated with tumorigenesis. MiRNA-based cancer gene therapy has consistently shown promising anti-tumor effects and is recognized as a new field in cancer treatment. So far, some clinical trials involving the treatment of malignancies have been carried out; however, studies of miRNA-based cancer gene therapy are still proceeding slowly. Therefore, furthering our understanding of the regulatory mechanisms of miRNA can bring substantial benefits to the development of miRNA-based gene therapy or other combination therapies and the clinical outcome of patients with cancer. Recent studies have revealed that the aberrant expression of miRNA in tumors is associated with promoter sequence mutation, epigenetic alteration, aberrant RNA modification, etc., showing the complexity of aberrant expression mechanisms of miRNA in tumors. In this paper, we systematically summarized the regulation mechanisms of miRNA expression in tumors, with the aim of providing assistance in the subsequent elucidation of the role of miRNA in tumorigenesis and the development of new strategies for tumor prevention and treatment.
Collapse
Affiliation(s)
- Shipeng Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Ya Wang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Dongmei Li
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Hui Wang
- The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Jing Yang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Longqing Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Ya Zhou
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Medical Physics, Zunyi Medical University, Zunyi 563000, China
- Correspondence: (Y.Z.); (G.L.); (L.X.)
| | - Guiyou Liang
- Department of Cardiovascular Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550031, China
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
- Correspondence: (Y.Z.); (G.L.); (L.X.)
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Correspondence: (Y.Z.); (G.L.); (L.X.)
| |
Collapse
|
19
|
Bonczek O, Wang L, Gnanasundram SV, Chen S, Haronikova L, Zavadil-Kokas F, Vojtesek B. DNA and RNA Binding Proteins: From Motifs to Roles in Cancer. Int J Mol Sci 2022; 23:ijms23169329. [PMID: 36012592 PMCID: PMC9408909 DOI: 10.3390/ijms23169329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
DNA and RNA binding proteins (DRBPs) are a broad class of molecules that regulate numerous cellular processes across all living organisms, creating intricate dynamic multilevel networks to control nucleotide metabolism and gene expression. These interactions are highly regulated, and dysregulation contributes to the development of a variety of diseases, including cancer. An increasing number of proteins with DNA and/or RNA binding activities have been identified in recent years, and it is important to understand how their activities are related to the molecular mechanisms of cancer. In addition, many of these proteins have overlapping functions, and it is therefore essential to analyze not only the loss of function of individual factors, but also to group abnormalities into specific types of activities in regard to particular cancer types. In this review, we summarize the classes of DNA-binding, RNA-binding, and DRBPs, drawing particular attention to the similarities and differences between these protein classes. We also perform a cross-search analysis of relevant protein databases, together with our own pipeline, to identify DRBPs involved in cancer. We discuss the most common DRBPs and how they are related to specific cancers, reviewing their biochemical, molecular biological, and cellular properties to highlight their functions and potential as targets for treatment.
Collapse
Affiliation(s)
- Ondrej Bonczek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
- Correspondence: (O.B.); (B.V.)
| | - Lixiao Wang
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | - Lucia Haronikova
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Correspondence: (O.B.); (B.V.)
| |
Collapse
|
20
|
Neuropilin-1 as a Potential Biomarker of Prognosis and Invasive-Related Parameters in Liver and Colorectal Cancer: A Systematic Review and Meta-Analysis of Human Studies. Cancers (Basel) 2022; 14:cancers14143455. [PMID: 35884516 PMCID: PMC9318974 DOI: 10.3390/cancers14143455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Neuropilin-1 (NRP1) is a transmembrane protein which has had recently increased interest from cancer researchers. Liver cancer and colorectal cancer (CRC) are two of the most frequent and deadly tumors worldwide. Here, we assessed the prognostic, diagnostic and clinicopathological value of NRP1 in liver cancer and CRC patients by systematic searches in PubMed, Scopus, Web of Science, Embase and Cochrane Library and a meta-analysis. Results obtained showed that NRP1 overexpression was significantly correlated with lower survival in liver cancer patients and with tumor development in hepatocarcinoma patients, and high levels of NRP1 were strongly correlated with an increased risk of vascular invasion in liver cancer and metastasis in CRC and liver tumors. Therefore, these findings could establish novel interest of NRP1 as a useful biomarker for patient prognosis as well as for invasive-related characteristics in patients with liver cancer or CRC. Abstract Neuropilin-1 (NRP1) is a transmembrane protein involved in numerous cellular functions which has had increasing interest from cancer researchers. Liver cancer and colorectal cancer (CRC) are two of the most frequent and deadly tumors with a complex pharmacological framework. Here, we assessed the prognostic, diagnostic and clinicopathological value of NRP1 in liver cancer and CRC patients. We searched PubMed, Scopus, Web of Science, Embase and Cochrane Library databases for articles evaluating the NRP1 correlation with survival parameters, tumor development or clinicopathological features. Hazard ratios and odds ratios with 95% confidence intervals were extracted or estimated by Parmar method and pooled to evaluate the overall effect size with STATA 16 software. Heterogeneity was analyzed by chi-square-based Q test and I2 statistic, along with meta-regression and subgroup analysis, and publication bias was assessed by funnel plot asymmetry and Egger’s test. The study protocol was registered in PROSPERO (CRD42022307062). NRP1 overexpression was significantly correlated with lower survival in liver cancer patients and with tumor development in hepatocarcinoma patients, and was strongly correlated with an increased risk of vascular invasion in liver cancer and metastasis in CRC and liver tumors. These results support the role of NRP1 as a potential and useful biomarker in both types of cancer.
Collapse
|
21
|
Machado-Pereira M, Saraiva C, Bernardino L, Cristóvão AC, Ferreira R. Argonaute-2 protects the neurovascular unit from damage caused by systemic inflammation. J Neuroinflammation 2022; 19:11. [PMID: 34991639 PMCID: PMC8740421 DOI: 10.1186/s12974-021-02324-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The brain vasculature plays a pivotal role in the inflammatory process by modulating the interaction between blood cells and the neurovascular unit. Argonaute-2 (Ago2) has been suggested as essential for endothelial survival but its role in the brain vasculature or in the endothelial-glial crosstalk has not been addressed. Thus, our aim was to clarify the significance of Ago2 in the inflammatory responses elicited by these cell types. METHODS Mouse primary cultures of brain endothelial cells, astrocytes and microglia were used to evaluate cellular responses to the modulation of Ago2. Exposure of microglia to endothelial cell-conditioned media was used to assess the potential for in vivo studies. Adult mice were injected intraperitoneally with lipopolysaccharide (LPS) (2 mg/kg) followed by three daily intraperitoneal injections of Ago2 (0.4 nM) to assess markers of endothelial disruption, glial reactivity and neuronal function. RESULTS Herein, we demonstrated that LPS activation disturbed the integrity of adherens junctions and downregulated Ago2 in primary brain endothelial cells. Exogenous treatment recovered intracellular Ago2 above control levels and recuperated vascular endothelial-cadherin expression, while downregulating LPS-induced nitric oxide release. Primary astrocytes did not show a significant change in Ago2 levels or response to the modulation of the Ago2 system, although endogenous Ago2 was shown to be critical in the maintenance of tumor necrosis factor-α basal levels. LPS-activated primary microglia overexpressed Ago2, and Ago2 silencing contained the inflammatory response to some extent, preventing interleukin-6 and nitric oxide release. Moreover, the secretome of Ago2-modulated brain endothelial cells had a protective effect over microglia. The intraperitoneal injection of LPS impaired blood-brain barrier and neuronal function, while triggering inflammation, and the subsequent systemic administration of Ago2 reduced or normalized endothelial, glial and neuronal markers of LPS damage. This outcome likely resulted from the direct action of Ago2 over the brain endothelium, which reestablished glial and neuronal function. CONCLUSIONS Ago2 could be regarded as a putative therapeutic agent, or target, in the recuperation of the neurovascular unit in inflammatory conditions.
Collapse
Affiliation(s)
- Marta Machado-Pereira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Cláudia Saraiva
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
- Present Address: Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Ana C. Cristóvão
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
- NeuroSoV, UBImedical, EM506, University of Beira Interior, Covilhã, Portugal
| | - Raquel Ferreira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
- CEDOC, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| |
Collapse
|
22
|
Rong Z, Luo Z, Fu Z, Zhang P, Li T, Zhang J, Zhu Z, Yu Z, Li Q, Qiu Z, Huang C. The novel circSLC6A6/miR-1265/C2CD4A axis promotes colorectal cancer growth by suppressing p53 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:324. [PMID: 34656159 PMCID: PMC8520208 DOI: 10.1186/s13046-021-02126-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023]
Abstract
Background Colorectal cancer (CRC) is one of the most frequent malignancy and a leading cause of cancer-related deaths. Therefore, further researches are required to identify novel and more effective diagnoses and to identify molecular targets in treatment of CRC. Methods C2CD4A expression in CRC tissues and cell lines was detected by qRT-PCR and western blot. The biological functions of C2CD4A were performed both in vitro and in vivo. Western blot, cDNA array, IP-MS, Co-immunoprecipitation assay, and Ubiquitination assay were used to analyze the interaction between C2CD4A and p53. Bioinformatics analysis, FISH, RNA sequencing, luciferase reporter assay, RNA immunoprecipitation, RNA pull-down and rescue experiments, were deployed to detect upstream regulation mechanism of C2CD4A. Results C2CD4A was elevated in CRC tissues compared with adjacent normal colorectal tissues. C2CD4A knockdown significantly promoted cell apoptosis and with inhibited proliferation in vitro, and tumorigenicity in vivo, whereas C2CD4A overexpression led to opposite effects. Moreover, circSLC6A6 was upregulated and shown to positively regulate C2CD4A expression via sponging miR-1265. Fundamentally, C2CD4A inhibited p53 signaling pathway through interacting with p53 and increasing its ubiquitination and degradation. Conclusion Our results identified that circSLC6A6/miR-1265/C2CD4A axis, which was involved in CRC via the p53 signaling pathway, may serve as a therapeutic target for CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02126-y.
Collapse
Affiliation(s)
- Zeyin Rong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Zai Luo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Zhongmao Fu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Pengshan Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Tengfei Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Jianming Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Zhonglin Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Zhilong Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|