1
|
Yin L, Wan L, Zhang Y, Hua S, Shao X. Recent Developments and Evolving Therapeutic Strategies in KMT2A-Rearranged Acute Leukemia. Cancer Med 2024; 13:e70326. [PMID: 39428967 PMCID: PMC11491690 DOI: 10.1002/cam4.70326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Rearrangements of the histone-lysine-N-methyltransferase (KMT2A), previously referred to as mixed-lineage leukemia (MLL), are among the most common chromosomal abnormalities in patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), involving numerous different fusion partners. KMT2A-rearranged (KMT2A-r) leukemia is characterized by a rapid onset, aggressive progression, and significantly worse prognosis compared to non-KMT2A-r leukemias. Even with contemporary chemotherapeutic treatments and hematopoietic stem cell transplantations (HSCT), patients with KMT2A-r leukemia typically experience poor outcomes and limited responses to these therapies. OBJECTIVES This review aims to consolidate recent studies on the general gene characteristics and associated mechanisms of KMT2A-r acute leukemia, as well as the cytogenetics, immunophenotype, clinical presentation, and risk stratification of both KMT2A-r-AML and KMT2A-r-ALL. Particularly, the treatment targets in KMT2A-r acute leukemia are examined. METHODS A comprehensive review was carried out by systematically synthesizing existing literature on PubMed, using the combination of the keywords 'KMT2A-rearranged acute leukemia', 'lymphoblastic leukemia', 'myeloid leukemia', and 'therapy'. The available studies were screened for selection based on quality and relevance. CONCLUSIONS Studies indicate that KMT2A rearrangements are present in over 70% of infant leukemia cases, approximately 10% of adult AML cases, and numerous instances of secondary acute leukemias, making it a disease of critical concern to clinicians and researchers alike. The future of KMT2A-r acute leukemia research is characterized by an expanding knowledge of the disease's biology, with an emphasis on personalized therapies, immunotherapies, genomic advancements, and innovative therapeutic combinations. The overarching aim is to enhance patient outcomes, lessen the disease burden, and elevate the quality of life for those affected. Ongoing research and clinical trials in this area continue to offer promising opportunities for refining treatment strategies and improving patient prognosis.
Collapse
Affiliation(s)
- Lei Yin
- Department of Clinical LaboratoryChildren's Hospital of Soochow UniversitySuzhouChina
| | - Lin Wan
- Department of PediatricsThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
| | - Youjian Zhang
- Department of Clinical LaboratoryChildren's Hospital of Soochow UniversitySuzhouChina
| | - Shenghao Hua
- Department of Clinical LaboratoryChildren's Hospital of Soochow UniversitySuzhouChina
| | - Xuejun Shao
- Department of Clinical LaboratoryChildren's Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
2
|
Han J, Kim D, Park HJ, Park HJ, Lee SK. Antiproliferative Activity of Gibbosic Acid H through Induction of G 0/G 1 Cell Cycle Arrest and Apoptosis in Human Lung Cancer Cells. J Cancer Prev 2023; 28:201-211. [PMID: 38205360 PMCID: PMC10774477 DOI: 10.15430/jcp.2023.28.4.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 01/12/2024] Open
Abstract
Lung cancer is one of the most common causative cancers worldwide. Particularly, non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer cases. NSCLC is a serious form of lung cancer that requires prompt diagnosis, and the 5-year survival rate for patients with this disease is only 24%. Gibbosic acid H (GaH), a natural lanostanoid obtained from the Ganoderma species (Ganodermataceae), has antiproliferative activities against colon and lung cancer cells. The aim of the present study was to evaluate the antiproliferative activity of GaH in NSCLC cells and to elucidate the underlying molecular mechanisms. GaH was found to induce G0/G1 cell cycle arrest and autophagy by activating adenosine monophosphate-activated protein kinase in A549 and H1299 cells. The induction of this cell cycle arrest was associated with the downregulation of cyclin E1 and CDK2. Additionally, the induction of autophagy by GaH was correlated with the upregulation of LC3B, beclin-1, and p53 expression. GaH also induced apoptosis by upregulating cleaved caspase-3 and Bax in the lung cancer cells. These findings suggest that GaH has a potential in the growth inhibition of human lung cancer cells.
Collapse
Affiliation(s)
- Jaeho Han
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Donghwa Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Hyen Joo Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Hee-Juhn Park
- Department of Pharmaceutical Engineering, Sangji University, Wonju, Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
3
|
Fitzgerald MC, O'Halloran PJ, Kerrane SA, Ní Chonghaile T, Connolly NMC, Murphy BM. The identification of BCL-XL and MCL-1 as key anti-apoptotic proteins in medulloblastoma that mediate distinct roles in chemotherapy resistance. Cell Death Dis 2023; 14:705. [PMID: 37898609 PMCID: PMC10613306 DOI: 10.1038/s41419-023-06231-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Medulloblastoma is the most common malignant paediatric brain tumour, representing 20% of all paediatric intercranial tumours. Current aggressive treatment protocols and the use of radiation therapy in particular are associated with high levels of toxicity and significant adverse effects, and long-term sequelae can be severe. Therefore, improving chemotherapy efficacy could reduce the current reliance on radiation therapy. Here, we demonstrated that systems-level analysis of basal apoptosis protein expression and their signalling interactions can differentiate between medulloblastoma cell lines that undergo apoptosis in response to chemotherapy, and those that do not. Combining computational predictions with experimental BH3 profiling, we identified a therapeutically-exploitable dependence of medulloblastoma cells on BCL-XL, and experimentally validated that BCL-XL targeting, and not targeting of BCL-2 or MCL-1, can potentiate cisplatin-induced cytotoxicity in medulloblastoma cell lines with low sensitivity to cisplatin treatment. Finally, we identified MCL-1 as an anti-apoptotic mediator whose targeting is required for BCL-XL inhibitor-induced apoptosis. Collectively, our study identifies that BCL-XL and MCL-1 are the key anti-apoptotic proteins in medulloblastoma, which mediate distinct protective roles. While BCL-XL has a first-line role in protecting cells from apoptosis basally, MCL-1 represents a second line of defence that compensates for BCL-XL upon its inhibition. We provide rationale for the further evaluation of BCL-XL and MCL-1 inhibitors in the treatment of medulloblastoma, and together with current efforts to improve the cancer-specificity of BCL-2 family inhibitors, these novel treatment strategies have the potential to improve the future clinical management of medulloblastoma.
Collapse
Affiliation(s)
- Marie-Claire Fitzgerald
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland
- National Children's Research Centre at the Children's Health Ireland at Crumlin, Dublin, D12 N512, Ireland
| | - Philip J O'Halloran
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham, UK
| | - Sean A Kerrane
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland
- National Children's Research Centre at the Children's Health Ireland at Crumlin, Dublin, D12 N512, Ireland
| | - Triona Ní Chonghaile
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland
| | - Niamh M C Connolly
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland
| | - Brona M Murphy
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland.
- National Children's Research Centre at the Children's Health Ireland at Crumlin, Dublin, D12 N512, Ireland.
| |
Collapse
|
4
|
Wu D, Li Y, Zheng L, Xiao H, Ouyang L, Wang G, Sun Q. Small molecules targeting protein-protein interactions for cancer therapy. Acta Pharm Sin B 2023; 13:4060-4088. [PMID: 37799384 PMCID: PMC10547922 DOI: 10.1016/j.apsb.2023.05.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 10/07/2023] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to many biological processes that play an important role in the occurrence and development of a variety of diseases. Targeting the interaction between tumour-related proteins with emerging small molecule drugs has become an attractive approach for treatment of human diseases, especially tumours. Encouragingly, selective PPI-based therapeutic agents have been rapidly advancing over the past decade, providing promising perspectives for novel therapies for patients with cancer. In this review we comprehensively clarify the discovery and development of small molecule modulators of PPIs from multiple aspects, focusing on PPIs in disease, drug design and discovery strategies, structure-activity relationships, inherent dilemmas, and future directions.
Collapse
Affiliation(s)
- Defa Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Lang Zheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Xu H, Xiao L, Chen Y, Liu Y, Zhang Y, Gao Y, Man S, Yan N, Zhang M. Effect of CDK7 inhibitor on MYCN-amplified retinoblastoma. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194964. [PMID: 37536559 DOI: 10.1016/j.bbagrm.2023.194964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Retinoblastoma (RB) is a common malignancy that primarily affects pediatric populations. Although a well-known cause of RB is RB1 mutation, MYCN amplification can also lead to the disease, which is a poor prognosis factor. Studies conducted in various tumor types have shown that MYCN inhibition is an effective approach to impede tumor growth. Various indirect approaches have been developed to overcome the difficulty of directly targeting MYCN, such as modulating the super enhancer (SE) upstream of MYCN. The drug used in this study to treat MYCN-amplified RB was THZ1, a CDK7 inhibitor that can effectively suppress transcription by interfering with the activity of SEs. The study findings confirmed the anticancer activity of THZ1 against RB in both in vitro and in vivo experiments. Therapy with THZ1 was found to affect numerous genes in RB according to the RNA-seq analysis. Moreover, the gene expression changes induced by THZ1 treatment were enriched in ribosome, endocytosis, cell cycle, apoptosis, etc. Furthermore, the combined analysis of ChIP-Seq and RNA-seq data suggested a potential role of SEs in regulating the expression of critical transcription factors, such as MYCN, OTX2, and SOX4. Moreover, ChIP-qPCR experiments were conducted to confirm the interaction between MYCN and SEs. In conclusion, THZ1 caused substantial changes in gene transcription in RB, resulting in inhibited cell proliferation, interference with the cell cycle, and increased apoptosis. The efficacy of THZ1 is positively correlated with the degree of MYCN amplification and is likely exerted by interfering with MYCN upstream SEs.
Collapse
Affiliation(s)
- Hanyue Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Lirong Xiao
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Yi Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Yilin Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Yifan Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Yuzhu Gao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Shulei Man
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Naihong Yan
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China.
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
6
|
Zhang A, Guo Z, Ren JX, Chen H, Yang W, Zhou Y, Pan L, Chen Z, Ren F, Chen Y, Zhang M, Peng F, Chen W, Wang X, Zhang Z, Wu H. Development of an MCL-1-related prognostic signature and inhibitors screening for glioblastoma. Front Pharmacol 2023; 14:1162540. [PMID: 37538176 PMCID: PMC10394558 DOI: 10.3389/fphar.2023.1162540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction: The effect of the conventional treatment methods of glioblastoma (GBM) is poor and the prognosis of patients is poor. The expression of MCL-1 in GBM is significantly increased, which shows a high application value in targeted therapy. In this study, we predicted the prognosis of glioblastoma patients, and therefore constructed MCL-1 related prognostic signature (MPS) and the development of MCL-1 small molecule inhibitors. Methods: In this study, RNA-seq and clinical data of 168 GBM samples were obtained from the TCGA website, and immunological analysis, differential gene expression analysis and functional enrichment analysis were performed. Subsequently, MCL-1-associated prognostic signature (MPS) was constructed and validated by LASSO Cox analysis, and a nomogram was constructed to predict the prognosis of patients. Finally, the 17931 small molecules downloaded from the ZINC15 database were screened by LibDock, ADME, TOPKAT and CDOCKER modules and molecular dynamics simulation in Discovery Studio2019 software, and two safer and more effective small molecule inhibitors were finally selected. Results: Immunological analysis showed immunosuppression in the MCL1_H group, and treatment with immune checkpoint inhibitors had a positive effect. Differential expression gene analysis identified 449 differentially expressed genes. Build and validate MPS using LASSO Cox analysis. Use the TSHR HIST3H2A, ARGE OSMR, ARHGEF25 build risk score, proved that low risk group of patients prognosis is better. Univariate and multivariate analysis proved that risk could be used as an independent predictor of patient prognosis. Construct a nomogram to predict the survival probability of patients at 1,2,3 years. Using a series of computer-aided techniques, two more reasonable lead compounds ZINC000013374322 and ZINC000001090002 were virtually selected. These compounds have potential inhibitory effects on MCL-1 and provide a basis for the design and further development of MCL-1 specific small molecule inhibitors. Discussion: This study analyzed the effect of MCL-1 on the prognosis of glioblastoma patients from the perspective of immunology, constructed a new prognostic model to evaluate the survival rate of patients, and further screened 2 MCL-1 small molecule inhibitors, which provides new ideas for the treatment and prognosis of glioblastoma.
Collapse
Affiliation(s)
- Ao Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhen Guo
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia-xin Ren
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Hongyu Chen
- Department of Neurosurgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenzhuo Yang
- Department of Neurosurgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang Zhou
- Clinical College, Jilin University, Changchun, China
| | - Lin Pan
- Clinical College, Jilin University, Changchun, China
| | - Zhuopeng Chen
- Department of Neurosurgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fei Ren
- Clinical College, Jilin University, Changchun, China
| | - Youqi Chen
- Clinical College, Jilin University, Changchun, China
| | - Menghan Zhang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Xinxiang Medical College, Xinxiang, China
| | - Fei Peng
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Wanting Chen
- Clinical College, Jilin University, Changchun, China
| | - Xinhui Wang
- Department of Hematology, The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Zhiyun Zhang
- Department of Plastic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hui Wu
- Department of Ophthalmology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Hsu MJ, Chen HK, Lien JC, Huang YH, Huang SW. Suppressing VEGF-A/VEGFR-2 Signaling Contributes to the Anti-Angiogenic Effects of PPE8, a Novel Naphthoquinone-Based Compound. Cells 2022; 11:cells11132114. [PMID: 35805198 PMCID: PMC9266117 DOI: 10.3390/cells11132114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/05/2023] Open
Abstract
Natural naphthoquinones and their derivatives exhibit a broad spectrum of pharmacological activities and have thus attracted much attention in modern drug discovery. However, it remains unclear whether naphthoquinones are potential drug candidates for anti-angiogenic agents. The aim of this study was to evaluate the anti-angiogenic properties of a novel naphthoquinone derivative, PPE8, and explore its underlying mechanisms. Determined by various assays including BrdU, migration, invasion, and tube formation analyses, PPE8 treatment resulted in the reduction of VEGF-A-induced proliferation, migration, and invasion, as well as tube formation in human umbilical vein endothelial cells (HUVECs). We also used an aorta ring sprouting assay, Matrigel plug assay, and immunoblotting analysis to examine PPE8’s ex vivo and in vivo anti-angiogenic activities and its actions on VEGF-A signaling. It has been revealed that PPE8 inhibited VEGF-A-induced micro vessel sprouting and was capable of suppressing angiogenesis in in vivo models. In addition, PPE8 inhibited VEGF receptor (VEGFR)-2, Src, FAK, ERK1/2, or AKT phosphorylation in HUVECs exposed to VEGF-A, and it also showed significant decline in xenograft tumor growth in vivo. Taken together, these observations indicated that PPE8 may target VEGF-A–VEGFR-2 signaling to reduce angiogenesis. It also supports the role of PPE8 as a potential drug candidate for the development of therapeutic agents in the treatment of angiogenesis-related diseases including cancer.
Collapse
Affiliation(s)
- Ming-Jen Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Kun Chen
- Department of General Surgery, Chi Mei Medical Center, Tainan 71067, Taiwan;
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan;
- Department of Medical Research, Hospital of China Medical University, Taichung 40402, Taiwan
| | - Yu-Han Huang
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Shiu-Wen Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Research Center of Thoracic Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-27361661 (ext. 3198)
| |
Collapse
|
8
|
Hsu MJ, Chen HK, Chen CY, Lien JC, Gao JY, Huang YH, Hsu JBK, Lee GA, Huang SW. Anti-Angiogenetic and Anti-Lymphangiogenic Effects of a Novel 2-Aminobenzimidazole Derivative, MFB. Front Oncol 2022; 12:862326. [PMID: 35795066 PMCID: PMC9251317 DOI: 10.3389/fonc.2022.862326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/24/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Purpose Benzimidazoles have attracted much attention over the last few decades due to their broad-spectrum pharmacological properties. Increasing evidence is showing the potential use of benzimidazoles as anti-angiogenic agents, although the mechanisms that impact angiogenesis remain to be fully defined. In this study, we aim to investigate the anti-angiogenic mechanisms of MFB, a novel 2-aminobenzimidazole derivative, to develop a novel angiogenesis inhibitor. Experimental Approach MTT, BrdU, migration and invasion assays, and immunoblotting were employed to examine MFB’s effects on vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation, migration, invasion, as well as signaling molecules activation. The anti-angiogenic effects of MFB were analyzed by tube formation, aorta ring sprouting, and matrigel plug assays. We also used a mouse model of lung metastasis to determine the MFB’s anti-metastatic effects. Key Results MFB suppressed cell proliferation, migration, invasion, and endothelial tube formation of VEGF-A-stimulated human umbilical vascular endothelial cells (HUVECs) or VEGF-C-stimulated lymphatic endothelial cells (LECs). MFB suppressed VEGF-A and VEGF-C signaling in HUVECs or LECs. In addition, MFB reduced VEGF-A- or tumor cells-induced neovascularization in vivo. MFB also diminished B16F10 melanoma lung metastasis. The molecular docking results further showed that MFB may bind to VEGFR-2 rather than VEGF-A with high affinity. Conclusions and Implications These observations indicated that MFB may target VEGF/VEGFR signaling to suppress angiogenesis and lymphangiogenesis. It also supports the role of MFB as a potential lead in developing novel agents for the treatment of angiogenesis- or lymphangiogenesis-associated diseases and cancer.
Collapse
Affiliation(s)
- Ming-Jen Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Han-Kun Chen
- Department of General Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Cheng-Yu Chen
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Radiology, National Defense Medical Center, Taipei, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, Taiwan
- Department of Medical Research, Hospital of China Medical University, Taichung, Taiwan
| | - Jing-Yan Gao
- School of Pharmacy, China Medical University, Taichung, Taiwan
- Department of Medical Research, Hospital of China Medical University, Taichung, Taiwan
| | - Yu-Han Huang
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, United States
| | - Justin Bo-Kai Hsu
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Medical Research; Research Center of Thoracic Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Gilbert Aaron Lee
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Medical Research; Research Center of Thoracic Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shiu-Wen Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Medical Research; Research Center of Thoracic Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Research Center of Thoracic Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- *Correspondence: Shiu-Wen Huang,
| |
Collapse
|
9
|
Benot-Dominguez R, Cimini A, Barone D, Giordano A, Pentimalli F. The Emerging Role of Cyclin-Dependent Kinase Inhibitors in Treating Diet-Induced Obesity: New Opportunities for Breast and Ovarian Cancers? Cancers (Basel) 2022; 14:2709. [PMID: 35681689 PMCID: PMC9179653 DOI: 10.3390/cancers14112709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Overweight and obesity constitute the most impactful lifestyle-dependent risk factors for cancer and have been tightly linked to a higher number of tumor-related deaths nowadays. The excessive accumulation of energy can lead to an imbalance in the level of essential cellular biomolecules that may result in inflammation and cell-cycle dysregulation. Nutritional strategies and phytochemicals are gaining interest in the management of obesity-related cancers, with several ongoing and completed clinical studies that support their effectiveness. At the same time, cyclin-dependent kinases (CDKs) are becoming an important target in breast and ovarian cancer treatment, with various FDA-approved CDK4/6 inhibitors that have recently received more attention for their potential role in diet-induced obesity (DIO). Here we provide an overview of the most recent studies involving nutraceuticals and other dietary strategies affecting cell-cycle pathways, which might impact the management of breast and ovarian cancers, as well as the repurposing of already commercialized chemotherapeutic options to treat DIO.
Collapse
Affiliation(s)
- Reyes Benot-Dominguez
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (R.B.-D.); (A.G.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Daniela Barone
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (R.B.-D.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|