1
|
Lu Y, Wu H, Luo Y, Xia W, Sun D, Chen R, Miao Z, Zhang W, Yu Y, Wen A. CircIRAK3 Promotes Neutrophil Extracellular Trap Formation by Improving the Stability of ELANE mRNA in Sepsis. Inflammation 2024:10.1007/s10753-024-02206-z. [PMID: 39707013 DOI: 10.1007/s10753-024-02206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Excessive formation of neutrophil extracellular traps (NETs) has been shown to exacerbate inflammatory injury and organ damage in patients with sepsis. Circular RNAs (circRNAs) abnormally expressed in immune cells of sepsis patients, and play an important role in the pathogenesis of dysregulated immune responses. However, the functions of circRNAs in NET formation during sepsis remain unknown. Here, we identified circIRAK3, a novel circRNA that was upregulated in peripheral blood neutrophils of sepsis patients. Combining clinical data, we revealed that elevated circIRAK3 was positively correlated with blood NET levels. Furthermore, knockdown and overexpression in differentiated HL-60 (dHL-60) neutrophil-like cells demonstrated that circIRAK3 promoted NET formation. In addition, we found that circIRAK3 promoted NET formation via positively regulating elastase expression in dHL-60 cells when treated with inflammatory stimuli. Mechanistically, circIRAK3 directly interacted with ELAVL1 to improve ELANE mRNA stability and consequently promote elastase protein expression. In summary, our study reveals that circIRAK3 promotes NET formation in sepsis by increasing ELANE mRNA levels.
Collapse
Affiliation(s)
- Yao Lu
- Department of Blood Transfusion, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, NO 10, Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Huang Wu
- Department of Blood Transfusion, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, NO 10, Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Yuanyuan Luo
- Department of Blood Transfusion Medicine, The First Medical Center of Chinese PLA General Hospital, NO 28, Fuxing Road, Haidian District, Beijing, 100853, China
| | - Wenjun Xia
- Department of Blood Transfusion, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, NO 10, Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Denglian Sun
- Department of Blood Transfusion, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, NO 10, Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Ruichi Chen
- Department of Blood Transfusion, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, NO 10, Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Zeqing Miao
- Department of Blood Transfusion, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, NO 10, Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Weiwei Zhang
- Department of Blood Transfusion, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, NO 10, Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Yang Yu
- Department of Blood Transfusion Medicine, The First Medical Center of Chinese PLA General Hospital, NO 28, Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Aiqing Wen
- Department of Blood Transfusion, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, NO 10, Changjiang Branch Road, Daping District, Chongqing, 400042, China.
| |
Collapse
|
2
|
Cheng S, Li Y, Sun X, Liu Z, Guo L, Wu J, Yang X, Wei S, Wu G, Xu S, Yang F, Wu J. The impact of glucose metabolism on inflammatory processes in sepsis-induced acute lung injury. Front Immunol 2024; 15:1508985. [PMID: 39712019 PMCID: PMC11659153 DOI: 10.3389/fimmu.2024.1508985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Acute lung injury (ALI) is a prevalent and critical complication of sepsis, marked by high incidence and mortality rates, with its pathogenesis still not being fully elucidated. Recent research has revealed a significant correlation between the metabolic reprogramming of glucose and sepsis-associated ALI (S-ALI). Throughout the course of S-ALI, immune cells, including macrophages and dendritic cells, undergo metabolic shifts to accommodate the intricate demands of immune function that emerge as sepsis advances. Indeed, glucose metabolic reprogramming in S-ALI serves as a double-edged sword, fueling inflammatory immune responses in the initial stages and subsequently initiating anti-inflammatory responses as the disease evolves. In this review, we delineate the current research progress concerning the pathogenic mechanisms linked to glucose metabolic reprogramming in S-ALI, with a focus on the pertinent immune cells implicated. We encapsulate the impact of glucose metabolic reprogramming on the onset, progression, and prognosis of S-ALI. Ultimately, by examining key regulatory factors within metabolic intermediates and enzymes, We have identified potential therapeutic targets linked to metabolic reprogramming, striving to tackle the inherent challenges in diagnosing and treating Severe Acute Lung Injury (S-ALI) with greater efficacy.
Collapse
Affiliation(s)
- Shilei Cheng
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Yufei Li
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan, China
| | - Xiaoliang Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhirui Liu
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Liang Guo
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jueheng Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaohan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Sisi Wei
- Department of Anesthesiology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Guanghan Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Shilong Xu
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Fan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jianbo Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| |
Collapse
|
3
|
Liu C, Wei W, Huang Y, Fu P, Zhang L, Zhao Y. Metabolic reprogramming in septic acute kidney injury: pathogenesis and therapeutic implications. Metabolism 2024; 158:155974. [PMID: 38996912 DOI: 10.1016/j.metabol.2024.155974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Acute kidney injury (AKI) is a frequent and severe complication of sepsis and is characterized by significant mortality and morbidity. However, the pathogenesis of septic acute kidney injury (S-AKI) remains elusive. Metabolic reprogramming, which was originally referred to as the Warburg effect in cancer, is strongly related to S-AKI. At the onset of sepsis, both inflammatory cells and renal parenchymal cells, such as macrophages, neutrophils and renal tubular epithelial cells, undergo metabolic shifts toward aerobic glycolysis to amplify proinflammatory responses and fortify cellular resilience to septic stimuli. As the disease progresses, these cells revert to oxidative phosphorylation, thus promoting anti-inflammatory reactions and enhancing functional restoration. Alterations in mitochondrial dynamics and metabolic reprogramming are central to the energetic changes that occur during S-AKI. In this review, we summarize the current understanding of the pathogenesis of metabolic reprogramming in S-AKI, with a focus on each cell type involved. By identifying relevant key regulatory factors, we also explored potential metabolic reprogramming-related therapeutic targets for the management of S-AKI.
Collapse
Affiliation(s)
- Caihong Liu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Wei
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yongxiu Huang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuliang Zhao
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Li L, Li D, Jin J, Xu F, He N, Ren Y, Wang X, Tian L, Chen B, Li X, Chen Z, Zhang L, Qiao L, Wang L, Wang J. FOSL1-mediated LINC01566 negatively regulates CD4 + T-cell activation in myasthenia gravis. J Neuroinflammation 2024; 21:197. [PMID: 39113081 PMCID: PMC11308467 DOI: 10.1186/s12974-024-03194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Myasthenia gravis (MG) is an autoimmune disease characterized by pathogenic antibodies that target structures of the neuromuscular junction. The evidence suggests that the regulation of long noncoding RNAs (lncRNAs) that is mediated by transcription factors (TFs) plays a key role in the pathophysiology of MG. Nevertheless, the detailed molecular mechanisms of lncRNAs in MG remain largely undetermined. METHODS Using microarray analysis, we analyzed the lncRNA levels in MG. By bioinformatics analysis, LINC01566 was found to potentially play an important role in MG. First, qRT‒PCR was performed to verify the LINC1566 expressions in MG patients. Then, fluorescence in situ hybridization was conducted to determine the localization of LINC01566 in CD4 + T cells. Finally, the impact of LINC01566 knockdown or overexpression on CD4 + T-cell function was also analyzed using flow cytometry and CCK-8 assay. A dual-luciferase reporter assay was used to validate the binding of the TF FOSL1 to the LINC01566 promoter. RESULTS Based on the lncRNA microarray and differential expression analyses, we identified 563 differentially expressed (DE) lncRNAs, 450 DE mRNAs and 19 DE TFs in MG. We then constructed a lncRNA-TF-mRNA network. Through network analysis, we found that LINC01566 may play a crucial role in MG by regulating T-cell-related pathways. Further experiments indicated that LINC01566 is expressed at low levels in MG patients. Functionally, LINC01566 is primarily distributed in the nucleus and can facilitate CD4 + T-cell apoptosis and inhibit cell proliferation. Mechanistically, we hypothesized that LINC01566 may negatively regulate the expressions of DUSP3, CCR2, FADD, SIRPB1, LGALS3 and SIRPB1, which are involved in the T-cell activation pathway, to further influence the cellular proliferation and apoptosis in MG. Moreover, we found that the effect of LINC01566 on CD4 + T cells in MG was mediated by the TF FOSL1, and in vitro experiments indicated that FOSL1 can bind to the promoter region of LINC01566. CONCLUSIONS In summary, our research revealed the protective roles of LINC01566 in clinical samples and cellular experiments, illustrating the potential roles and mechanism by which FOSL1/LINC01566 negatively regulates CD4 + T-cell activation in MG.
Collapse
Affiliation(s)
- Lifang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Danyang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Jingnan Jin
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Fanfan Xu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Ni He
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yingjie Ren
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Xiaokun Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Liting Tian
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Biying Chen
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Xiaoju Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Zihong Chen
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Lanxin Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Lukuan Qiao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
5
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
6
|
Ding X, Liang W, Xia H, Liu Y, Liu S, Xia X, Zhu X, Pei Y, Zhang D. Analysis of Immune and Prognostic-Related lncRNA PRKCQ-AS1 for Predicting Prognosis and Regulating Effect in Sepsis. J Inflamm Res 2024; 17:279-299. [PMID: 38229689 PMCID: PMC10790647 DOI: 10.2147/jir.s433057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024] Open
Abstract
Background Sepsis was a high mortality and great harm systemic inflammatory response syndrome caused by infection. lncRNAs were potential prognostic marker and therapeutic target. Therefore, we expect to screen and analyze lncRNAs with potential prognostic markers in sepsis. Methods Transcriptome sequencing and limma was used to screen dysregulated RNAs. Key RNAs were screened by correlation analysis, lncRNA-mRNA co-expression and weighted gene co-expression network analysis. Immune infiltration, gene set enrichment analysis and gene set variation analysis were used to analyze the immune correlation. Kaplan-Meier curve, receiver operator characteristic curve, Cox regression analysis and nomogram were used to analyze the correlation between key RNAs and prognosis. Sepsis model was established by lipopolysaccharide-induced HUVECs injury, and then cell viability and migration ability were detected by cell counting kit-8 and wound healing assay. The levels of apoptosis-related proteins and inflammatory cytokines were detected by RT-qPCR and Western blot. Reactive Oxygen Species and superoxide dismutase were detected by commercial kit. Results Fourteen key differentially expressed lncRNAs and 663 key differentially expressed genes were obtained. And these lncRNAs were closely related to immune cells, especially T cell activation, immune response and inflammation. Subsequently, Subsequently, lncRNA PRKCQ-AS1 was identified as the regulator for further investigation in sepsis. RT-qPCR results showed that PRKCQ-AS1 expression was up-regulated in clinical samples and sepsis model cells, which was an independent prognostic factor in sepsis patients. Immune correlation analysis showed that PRKCQ-AS1 was involved in the immune response and inflammatory process of sepsis. Cell function tests confirmed that PRKCQ-AS1 could inhibit sepsis model cells viability and promote cell apoptosis, inflammatory damage and oxidative stress. Conclusion We constructed immune-related lncRNA-mRNA regulatory networks in the progression of sepsis and confirmed that PRKCQ-AS1 is an important prognostic factor affecting the progression of sepsis and is involved in immune response.
Collapse
Affiliation(s)
- Xian Ding
- Department of Emergency, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Wenqi Liang
- Department of Emergency, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Hongjuan Xia
- Department of Emergency, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Yuee Liu
- Department of Emergency, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Shuxiong Liu
- Department of Emergency, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Xinyu Xia
- Department of Emergency, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Xiaoli Zhu
- Department of Emergency, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Yongyan Pei
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, People’s Republic of China
| | - Dewen Zhang
- Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Liu D, Xiao M, Zhou J, Wang P, Peng J, Mao W, Hu Y, Liu Y, Yin J, Ke L, Li W. PFKFB3 promotes sepsis-induced acute lung injury by enhancing NET formation by CXCR4 hi neutrophils. Int Immunopharmacol 2023; 123:110737. [PMID: 37543012 DOI: 10.1016/j.intimp.2023.110737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
CXCR4hi neutrophils, which are a subset of neutrophils with high CXCR4 expression, are important contributors to sepsis-induced acute lung injury (ALI). PFKFB3, a key glycolysis gene, plays an essential role in neutrophil inflammatory activation. However, the specific involvement of PFKFB3 in sepsis-induced ALI remains unclear. Here, we observed that PFKFB3 was upregulated in CXCR4hi neutrophils and facilitated sepsis-induced ALI. Mechanistically, we observed that PFKFB3 promoted sepsis-induced ALI by enhancing neutrophil extracellular trap (NET) formation by CXCR4hi neutrophils. Further study indicated that PFKFB3 promoted NET formation by upregulating glycolytic metabolism in CXCR4hi neutrophils. In summary, our study uncovered a new mechanism by which CXCR4hi neutrophils trigger sepsis-induced ALI by promoting NET formation, which is supported by PFKFB3-mediated glycolytic metabolism.
Collapse
Affiliation(s)
- Dadong Liu
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Xiao
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Zhou
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng Wang
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingwen Peng
- Center of Severe Acute Pancreatitis (CSAP), Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Wenjian Mao
- Center of Severe Acute Pancreatitis (CSAP), Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yuepeng Hu
- Center of Severe Acute Pancreatitis (CSAP), Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yuxiu Liu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiangtao Yin
- Department of Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; Digestive Disease Institute, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Lu Ke
- Center of Severe Acute Pancreatitis (CSAP), Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| | - Weiqin Li
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Zhu H, Xu J, Li K, Chen M, Wu Y, Zhang X, Chen H, Chen D. DOCK8 inhibits the immune function of neutrophils in sepsis by regulating aerobic glycolysis. Immun Inflamm Dis 2023; 11:e965. [PMID: 37647440 PMCID: PMC10461417 DOI: 10.1002/iid3.965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023] Open
Abstract
INTRODUCTION This study endeavored to investigate the role of DOCK8 in modulating the immune function triggered by sepsis. METHODS Expression of DOCK8 in the whole blood of sepsis patients and its enrichment pathways were assayed by bioinformatics. Pearson analysis was used to predict the relationship between glycolytic signaling pathway and its relevance to neutrophil function in sepsis. A sepsis mouse model was then built by performing cecal ligation and puncture treatment on male mice. Neutrophils were isolated, and their purity was tested by flow cytometry. Neutrophils were then stimulated by lipopolysaccharide to build a sepsis cell model. Next, quantitative reverse transcription polymerase chain reaction and CCK-8 were applied to test the expression of DOCK8 and cell viability, western blot to assay the expression of HK-2, PKM2, and LDHA proteins, ELISA to measure the concentrations of TNF-α, IL-1β, and IL-6, Transwell to detect the chemotaxis of neutrophils and flow cytometry to detect the phagocytic activity of neutrophils. Finally, in different treatment groups, we used Seahorse XF 96 to analyze the extracellular acidification rate (ECAR) of sepsis cells and used enzyme-linked immunosorbent assay to detect the contents of pyruvic acid, lactic acid, and ATP in sepsis cells. RESULTS DOCK8 was downregulated in sepsis blood and activated neutrophils. Aerobic glycolysis was positively correlated with sepsis. Activated neutrophils promoted the expression of inflammatory factors TNF-α, IL-1β, and IL-6. Low expression of DOCK8 facilitated the proliferation, chemotaxis, and phagocytic activity of sepsis cells and promoted the expression of inflammatory factors. Bioinformatics analysis revealed that DOCK8 was enriched in the glycolytic signaling pathway. Low expression of DOCK8 induced ECAR, promoted the protein expression of HK-2, PKM2 and LDHA, and favored the increase of pyruvate, lactate, and ATP contents. While 2-DG treatment could restore these effects. CONCLUSION DOCK8 may inhibit sepsis-induced neutrophil immune function by regulating aerobic glycolysis and causing excessive inflammation, which helps to explore potential therapeutic targets.
Collapse
Affiliation(s)
- Hongjun Zhu
- Clinical Laboratory, The Sixth Affiliated Hospital of Wenzhou Medical UniversityLishui People's HospitalLishui CityChina
| | - Junlong Xu
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Wenzhou Medical UniversityLishui People's HospitalLishui CityChina
| | - Ke Li
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Wenzhou Medical UniversityLishui People's HospitalLishui CityChina
| | - Miaomiao Chen
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Wenzhou Medical UniversityLishui People's HospitalLishui CityChina
| | - Yueming Wu
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Wenzhou Medical UniversityLishui People's HospitalLishui CityChina
| | - Xian Zhang
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Wenzhou Medical UniversityLishui People's HospitalLishui CityChina
| | - Hua Chen
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Wenzhou Medical UniversityLishui People's HospitalLishui CityChina
| | - Deyuan Chen
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Wenzhou Medical UniversityLishui People's HospitalLishui CityChina
| |
Collapse
|
9
|
Luaibi AR, Al-Saffar M, Jalil AT, Rasol MA, Fedorovich EV, Saleh MM, Ahmed OS. Long non-coding RNAs: The modulators of innate and adaptive immune cells. Pathol Res Pract 2023; 241:154295. [PMID: 36608622 DOI: 10.1016/j.prp.2022.154295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Before very sensitive current genomics platforms were discovered, long non-coding RNAs (lncRNAs) as controllers of gene expression, were thought to be accumulated genetic garbage. The past few years have seen a lot of interest in a large classification of non-coding transcripts with an indeterminate length of more than 200 nucleotides [1]. lncRNAs' association with immunity and disease progression has been revealed by a growing body of experimental research. Only a limited subset of lncRNAs, however, has solid proof of their role. It is also clear that various immune cells express lncRNAs differently. In this review, we concentrated on the role of lncRNA expression in the regulation of immune cell function and response to pathological conditions in macrophages, dendritic cells, natural killer (NK) cells, neutrophils, Myeloid-derived suppressor cells (MDSCs), T cells, and B cells. The innate and adaptive immune response systems may be significantly regulated by lncRNAs, according to emerging research. To discover possible therapeutic targets for the therapy of different diseases, it may be helpful to have a better realization of the molecular mechanisms beyond the role of lncRNAs in the immune response. Therefore, it is crucial to investigate lncRNA expression and comprehend its significance for the immune system.
Collapse
Affiliation(s)
- Aseel Riyadh Luaibi
- Utbah bin Ghazwan High School for Girls, Al_Karkh first Directorate of Education, Ministry of Education, Baghdad, Iraq
| | - Montaha Al-Saffar
- Community Health Department, Institute of Medical Technology /Baghdad, Middle Technical University, Baghdad, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | - Mustafa Asaad Rasol
- College of Dentistry, National University of Science and Technology, Dhi Qar, Iraq
| | - Eremin Vladimir Fedorovich
- Republican Scientific and Practical Center for Transfusiology and Medical, Biotechnologies, Minsk, Belarus
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq; Department of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | |
Collapse
|
10
|
Involvement of plasma lncRNA GSEC in sepsis discrimination and prognosis, and its correlation with macrophage cell inflammation and proliferation. Immunobiology 2022; 227:152264. [PMID: 36049364 DOI: 10.1016/j.imbio.2022.152264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Despite the dysregulation and function of G-quadruplex-forming sequence containing lncRNA (GSEC) have been widely reported in human cancers, there are few available data revealing its role in sepsis. OBJECTIVE To assess the expression and function of GSEC in the development of sepsis and its potential molecular mechanism. MATERIALS AND METHODS A total of 78 sepsis patients, 55 non-sepsis intensive care unit patients, and 42 healthy individuals were enrolled in this study. The expression of GSEC was evaluated in plasma and macrophage cells with polymerase chain reaction. The inflammation response of sepsis patients and macrophage cells was analyzed with an enzyme-linked immunosorbent assay. The diagnostic and prognostic value of GSEC in sepsis patients were estimated by receiver operator curve (ROC) and Cox analysis. The molecular mechanism underlying the function of GSEC was investigated in RAW264.7 cell with luciferase reporter assay and cell transfection. RESULTS Significant upregulation of GSEC was observed in sepsis patients' plasma, which could discriminate sepsis patients from healthy and non-sepsis individuals. Upregulation of GSEC was positively correlated with inflammation cytokine levels and adverse prognosis of sepsis patients. In vitro, GSEC was found to modulate the expression level of miR-873-3p, which mediated the regulatory effect of GSEC on the inflammation and proliferation of RAW264.7. CONCLUSION Upregulated GSEC could serve as a biomarker of sepsis pathogenesis and development. GSEC regulates the inflammation and proliferation of macrophage cells through modulating miR-873-3p.
Collapse
|
11
|
Tan Y, Liu Q, Li Z, Yang S, Cui L. Epigenetics-mediated pathological alternations and their potential in antiphospholipid syndrome diagnosis and therapy. Autoimmun Rev 2022; 21:103130. [PMID: 35690246 DOI: 10.1016/j.autrev.2022.103130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
APS (antiphospholipid syndrome) is a systematic autoimmune disease accompanied with venous or arterial thrombosis and poor pregnant manifestations, partly attributing to the successive elevated aPL (antiphospholipid antibodies) and provoked prothrombotic and proinflammatory molecules production. Nowadays, most researches focus on the laboratory detection and clinic features of APS, but its precise etiology remains to be deeply explored. As we all know, the dysfunction of ECs (endothelial cells), monocytes, platelets, trophoblasts and neutrophils are key contributors to APS progression. Especially, their epigenetic variations, mainly including the promoter CpGs methylation, histone PTMs (post-translational modifications) and ncRNAs (noncoding RNAs), result in genes expression or silence engaged in inflammation initiation, thrombosis formation, autoimmune activation and APOs (adverse pregnancy outcomes) in APS. Given the potential of epigenetic markers serving as diagnostic biomarkers or therapeutic targets of APS, and the encouraging advancements in epigenetic drugs are being made. In this review, we would systematically introduce the epigenetic underlying mechanisms for APS progression, comprehensively elucidate the functional mechanisms of epigenetics in boosting ECs, monocytes, platelets, trophoblasts and neutrophils. Lastly, the application of epigenetic alterations for probing novel diagnostic, specific therapeutic and prognostic strategies would be proposed.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Zhongxin Li
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
12
|
DeSouza-Vieira T. The metamorphosis of neutrophil transcriptional program during Leishmania infection. Parasite Immunol 2022; 44:e12922. [PMID: 35437801 DOI: 10.1111/pim.12922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022]
Abstract
The role of neutrophils in the course of Leishmania infection remains controversial, displaying tremendous variability depending on the species of parasite, stage of infection, host genetic background, and methodological discrepancies among studies. Although neutrophils have long been categorized as short-lived cells with limited capacity to express proteins de novo, recent advances have revealed significant plasticity in neutrophil transcriptional programs and intrapopulation heterogeneity, which can be regulated by both intrinsic and extrinsic factors that together determine the profile of neutrophil effector response. In this review, we focus on the current understanding of neutrophil transcriptional plasticity, neutrotime, evidence of Leishmania-mediated alterations in neutrophil transcriptome leading to the rise of subpopulations, and finally, functional implications of those findings to the course of Leishmania infection.
Collapse
Affiliation(s)
- Thiago DeSouza-Vieira
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|