1
|
Zhang Q, Guo S, Ge H, Wang H. The protective role of baicalin regulation of autophagy in cancers. Cytotechnology 2025; 77:33. [PMID: 39760060 PMCID: PMC11699138 DOI: 10.1007/s10616-024-00689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025] Open
Abstract
Autophagy is a conservative process of self degradation, in which abnormal organelles, proteins and other macromolecules are encapsulated and transferred to lysosomes for subsequent degradation. It maintains the intracellular balance, and responds to cellular conditions such as hunger or stress. To date, there are mainly three types of autophagy: macroautophagy, microautophagy and chaperone-mediated autophagy. Autophagy plays a key role in regulating multiple physiological and pathological processes, such as cell metabolism, development, energy homeostasis, cell death and hunger adaptation, and so on. Increasing evidence indicates that autophagy dysfunction participates in many kinds of cancers, such as liver cancer, pancreatic cancer, prostate cancer, and so on. However, the relevant mechanisms are not yet fully understood. Baicalin is a natural flavonoid compound extracted from the traditional Chinese medicine Scutellaria baicalensis. The research has shown that after oral or intravenous administration of baicalin, it is delivered to various organs through the systemic circulation, with the highest volume in the kidneys and lungs. More and more evidence suggests that baicalin has antioxidant, anticancer, anti-inflammatory, anti-apoptotic, immunomodulatory and antiviral effects. Therefore, baicalin plays an important role in various diseases, such as cancers, lung diseases, liver diseases, cardiovascular diseases, ans so on. However, the relevant mechanisms have not yet been fully clear. Recently, increasing evidence indicates that baicalin participates in different cancer by regulating autophagy. Herein, we reviewed the current knowledge about the role and mechanism of baicalin regulation of autophagy in multiple types of cancers to lay the theoretical foundation for future related researches.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Hangwei Ge
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| |
Collapse
|
2
|
Huamani Ortiz ADJ, Campos Segura AV, Magaño Bocanegra KJ, Velásquez Sotomayor MB, Barrón Pastor HJ, Llimpe Mitma de Barrón Y, Chacón Villanueva RD, Murillo Carrasco AG, Ortiz Rojas CA. Transcriptome-Based Survival Analysis Identifies MAP4K4 as a Prognostic Marker in Gastric Cancer with Microsatellite Instability. Cancers (Basel) 2025; 17:412. [PMID: 39941781 PMCID: PMC11816344 DOI: 10.3390/cancers17030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Gastric cancer (GC) is a highly aggressive malignancy with diverse molecular subtypes. While microsatellite instability (MSI) GC generally carries a favorable prognosis, a subset of patients experiences poor outcomes, highlighting the need for refined prognostic markers. Methods: This study utilized transcriptomic and clinical data from two independent cohorts, The Cancer Genome Atlas (TCGA) and the Asian Cancer Research Group (ACRG), to identify novel prognostic genes in MSI-GC. Results: Through rigorous survival analysis, we identified high MAP4K4 expression (MAP4K4high) as an independent and robust predictor of poor overall survival (OS) and disease-free survival (DFS) specifically within the MSI-GC subtype. MAP4K4high was associated with increased hazard ratios for both OS and DFS in both cohorts, even after adjusting for clinicopathological factors. Further analysis revealed that MAP4K4high MSI-GC tumors exhibit a distinct molecular profile characterized by increased extracellular matrix remodeling, epithelial-mesenchymal transition, and a microenvironment enriched in monocytes and cancer-associated fibroblasts (CAFs). Notably, a subgroup of MSI-GC patients with a CIN-like phenotype and high MAP4K4 expression exhibited particularly dismal outcomes. Conclusions: Our findings establish MAP4K4 as a promising prognostic biomarker for risk stratification in MSI-GC and suggest its potential role in driving aggressive tumor behavior through modulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Alvaro De Jesus Huamani Ortiz
- Molecular Medicine Research and Teaching Group (MEDMOL), Faculty of Medicine, National University of San Marcos, Lima 15081, Peru; (A.D.J.H.O.); (H.J.B.P.); (Y.L.M.d.B.)
- Immunology and Cancer Research Group (IMMUCA), OMICS, Lima 15001, Peru; (A.V.C.S.); (M.B.V.S.); (R.D.C.V.)
| | - Anthony Vladimir Campos Segura
- Immunology and Cancer Research Group (IMMUCA), OMICS, Lima 15001, Peru; (A.V.C.S.); (M.B.V.S.); (R.D.C.V.)
- Clinical and Functional Genomics Group, International Center of Research CIPE, A.C. Camargo Cancer Center, Sao Paulo 01509-010, Brazil
| | - Kevin Jorge Magaño Bocanegra
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Mariana Belén Velásquez Sotomayor
- Immunology and Cancer Research Group (IMMUCA), OMICS, Lima 15001, Peru; (A.V.C.S.); (M.B.V.S.); (R.D.C.V.)
- Faculty of Medicine, Southern Scientific University, Lima 150142, Peru
| | - Heli Jaime Barrón Pastor
- Molecular Medicine Research and Teaching Group (MEDMOL), Faculty of Medicine, National University of San Marcos, Lima 15081, Peru; (A.D.J.H.O.); (H.J.B.P.); (Y.L.M.d.B.)
| | - Yesica Llimpe Mitma de Barrón
- Molecular Medicine Research and Teaching Group (MEDMOL), Faculty of Medicine, National University of San Marcos, Lima 15081, Peru; (A.D.J.H.O.); (H.J.B.P.); (Y.L.M.d.B.)
| | - Ruy Diego Chacón Villanueva
- Immunology and Cancer Research Group (IMMUCA), OMICS, Lima 15001, Peru; (A.V.C.S.); (M.B.V.S.); (R.D.C.V.)
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-900, Brazil
| | - Alexis Germán Murillo Carrasco
- Immunology and Cancer Research Group (IMMUCA), OMICS, Lima 15001, Peru; (A.V.C.S.); (M.B.V.S.); (R.D.C.V.)
- Center for Translational Research in Oncology (LIM/24), Hospital das Clínicas, Faculty of Medicine, University of São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
- Comprehensive Center for Precision Oncology, University of São Paulo, São Paulo 01246-000, Brazil
| | - César Alexander Ortiz Rojas
- Immunology and Cancer Research Group (IMMUCA), OMICS, Lima 15001, Peru; (A.V.C.S.); (M.B.V.S.); (R.D.C.V.)
- Center for Translational Research in Oncology (LIM/24), Hospital das Clínicas, Faculty of Medicine, University of São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
- Medical Investigation Laboratory in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM/31), Hospital das Clínicas, Faculty of Medicine, University of São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
| |
Collapse
|
3
|
Zhang J, Zhang J, Yang C. Autophagy in brain tumors: molecular mechanisms, challenges, and therapeutic opportunities. J Transl Med 2025; 23:52. [PMID: 39806481 PMCID: PMC11727735 DOI: 10.1186/s12967-024-06063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
Autophagy is responsible for maintaining cellular balance and ensuring survival. Autophagy plays a crucial role in the development of diseases, particularly human cancers, with actions that can either promote survival or induce cell death. However, brain tumors contribute to high levels of both mortality and morbidity globally, with resistance to treatments being acquired due to genetic mutations and dysregulation of molecular mechanisms, among other factors. Hence, having knowledge of the role of molecular processes in the advancement of brain tumors is enlightening, and the current review specifically examines the role of autophagy. The discussion would focus on the molecular pathways that control autophagy in brain tumors, and its dual role as a tumor suppressor and a supporter of tumor survival. Autophagy can control the advancement of different types of brain tumors like glioblastoma, glioma, and ependymoma, demonstrating its potential for treatment. Autophagy mechanisms can influence metastasis and drug resistance in glioblastoma, and there is a complex interplay between autophagy and cellular responses to stress like hypoxia and starvation. Autophagy can inhibit the growth of brain tumors by promoting apoptosis. Hence, focusing on autophagy could offer fresh perspectives on creating successful treatments.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinan Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.
| | - Chen Yang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.
| |
Collapse
|
4
|
Li Y, Wang X, Liu X, Li X, Zhang J, Li Y. The dysregulation of PARP9 expression is linked to apoptosis and DNA damage in gastric cancer cells. PLoS One 2024; 19:e0316476. [PMID: 39739965 DOI: 10.1371/journal.pone.0316476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is a highly malignant gastrointestinal tumor characterized by difficult early diagnosis and poor prognosis. Therefore, it is imperative to explore potential therapeutic targets for gastric cancer. PARP9 is abnormally expressed in a variety of tumors and is associated with tumor cell apoptosis and DNA damage. However, its relationship with GC has not been fully studied. METHODS The expression and prognostic significance of PARP9 in gastric cancer (GC) were examined using bioinformatics approaches. Cell lines with either knockdown or overexpression of PARP9 were established through lentiviral transduction, and the role of PARP9 in the malignant phenotypes of GC cells was validated via CCK8 assays, wound healing assays, clonogenic assays, and Transwell migration experiments. Finally, alterations in downstream targets and signaling pathways following changes in PARP9 expression were analyzed through RNA sequencing. RESULTS PARP9 is highly expressed in GC tissues and is associated with poor prognosis. PARP9 knockdown can significantly inhibit the proliferation, invasion and migration of GC cells, and increase the apoptosis and DNA damage of GC cells. The therapeutic process of PARP9 in GC may be realized by synergistic interaction with SOX6 through MAPK signaling pathway. CONCLUSIONS Our study reveals a potential link between PARP9 and GC, providing a new target for the treatment of GC.
Collapse
Affiliation(s)
- Yating Li
- The First School of Clinical Medical, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Xing Wang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Xiaolong Liu
- The First School of Clinical Medical, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Xiangjie Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Jianling Zhang
- General Surgery Ward 5, The First Hospital of Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Yulan Li
- The First School of Clinical Medical, Lanzhou University, Lanzhou, Gansu, P.R. China
| |
Collapse
|
5
|
Chen S, Zhang D, Du Y, Shi J, Gu S, Zhou X, Yu H, Wang F, Chen J, Cui H. Targeting TRAF6/IRF3 axis to inhibit NF-κB-p65 nuclear translocation enhances the chemosensitivity of 5-FU and reverses the proliferation of gastric cancer. Cell Death Dis 2024; 15:924. [PMID: 39706834 DOI: 10.1038/s41419-024-07290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Chemoresistance poses a significant clinical challenge in the treatment of gastric cancer (GC), while its underlying molecular mechanisms are still not fully understood. Post-translational protein modification and abnormal activation of nuclear factor-kappa B (NF-κB) are critical regulators of tumor chemoresistance. This study investigates the role of TNF receptors-associated factors 6 (TRAF6) in 5-Fluorouracil (5-FU) resistant GC. Utilizing short hairpin RNA (shRNA) to suppress TRAF6 expression in 5-FU resistant GC cells across both in vivo and in vitro models, we observed a marked reduction in cell proliferation and tumor growth. Low expression of TRAF6 inhibited nuclear translocation of NF-κB-p65, which was achieved by promoting the expression of Interferon regulatory factor 3 (IRF3). Importantly, TRAF6, an E3 ubiquitin ligase, bound to the IRF3-Δ (SR + IAD) (1-190aa) domain, inducing Lys70 ubiquitination of IRF3 to regulate its protein stability, with ubiquitin K48 residue playing a crucial role in this process. In conclusion, our study reveals the mechanism by which the TRAF6/IRF3 axis decreases GC's cells sensitivity to 5-FU by promoting nuclear translocation of NF-κB-p65, offering valuable insights into overcoming chemoresistance in GC.
Collapse
Affiliation(s)
- Shitong Chen
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Dong Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Yi Du
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Junbo Shi
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Sikuan Gu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Xujun Zhou
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Feng Wang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Jinfei Chen
- Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| |
Collapse
|
6
|
Yu G, Nanding A. Salidroside overcomes cisplatin resistance in ovarian cancer via the inhibition of CRNDE-mediated autophagy. Mol Cell Biochem 2024:10.1007/s11010-024-05168-w. [PMID: 39636431 DOI: 10.1007/s11010-024-05168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Cisplatin (DDP) resistance significantly affects the survival rate of patients with ovarian cancer (OC). Autophagy is recognized as a common cause of resistance to DDP. This study aimed to investigate the impact of salidroside on OC progression and explore its potential regulatory effects on DDP resistance and autophagy. A DDP-resistant A2780 (A2780/DDP) cell line was induced by exposure to increasing DDP concentrations. The protein levels of autophagy proteins (p62, Beclin-1, ATG5, and LC3 II/LC3 I), apoptosis proteins (cleaved caspase-3 and cleaved caspase-9), and PI3K/AKT/mTOR pathway were determined by western blotting. Autophagic vacuoles in cells were observed with LC3 dyeing with confocal fluorescent microscopy. Cell viability and apoptosis were evaluated by cell counting kit-8 assays and flow cytometry. RT-qPCR was conducted to measure the relative levels of various lncRNAs in A2780 or A2780/DDP cells. A xenograft model was established by subcutaneous injection of 1 × 107 A2780 cells into the posterior flank of nude mice. Tumor size and weight were recorded. The expression of Ki67, cleaved caspase-3 and LC3 in tumor tissues was assessed by immunohistochemistry staining. The biodistribution of DDP in organs and blood of normal nude mice and tumors of tumor-bearing mice was detected using the ICP-MS. Hematoxylin-eosin staining was used to assess the histopathological changes of kidney, liver, and spleen sections. For in vitro analysis, autophagy was enhanced in DDP-resistant A2780 cells. Additionally, salidroside inhibits DDP resistance to A2780 cells via autophagy inhibition. Mechanistically, salidroside downregulated CRNDE in DDP-resistant A2780 cells. CRNDE knockdown inhibited autophagy, while CRNDE overexpression reversed the protective effects of salidroside. Additionally, salidroside activated the PI3K/AKT/mTOR pathway in DDP-resistant A2780 cells, and inhibition of PI3K reversed the effect of salidroside on inhibiting autophagy and apoptosis of A2780/DDP cells. For in vivo analysis, salidroside inhibited tumor growth, autophagy, and nephrotoxicity of DDP. Additionally, salidroside downregulated CRNDE and activated PI3K/AKT/mTOR signaling in vivo. Salidroside prevents autophagy-mediated DDP resistance in OC by downregulating lncRNA CRNDE and activating the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Ge Yu
- Department of Gynecology, Harbin Medical University Cancer Hospital, NO.150 Haping Road, Nangang District, Harbin, Heilongjiang Province, China
| | - Abiyasi Nanding
- Department of Pathology, Harbin Medical University Cancer Hospital, NO.150 Haping Road, Nangang District, Harbin, Heilongjiang Province, China.
| |
Collapse
|
7
|
Li Z, Zhang Y, Lei J, Wu Y. Autophagy in oral cancer: Promises and challenges (Review). Int J Mol Med 2024; 54:116. [PMID: 39422076 PMCID: PMC11518578 DOI: 10.3892/ijmm.2024.5440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Autophagy captures damaged or dysfunctional proteins and organelles through the lysosomal pathway to achieve proper cellular homeostasis. Autophagy possesses distinct characteristics and is given recognized functions in numerous physiological and pathological conditions, such as cancer. Early stage cancer development can be stopped by autophagy. After tumor cells have successfully undergone transformation and progressed to a late stage, the autophagy-mediated system of dynamic degradation and recycling will support cancer cell growth and adaptation to various cellular stress responses while preserving energy homeostasis. In the present study, the dual function that autophagy plays in various oral cancer development contexts and stages, the existing arguments for and against autophagy, and the ways in which autophagy contributes to oral cancer modifications, such as carcinogenesis, drug resistance, invasion, metastasis and self-proliferation, are reviewed. Special attention is paid to the mechanisms and functions of autophagy in oral cancer processes, and the most recent findings on the application of certain conventional drugs or natural compounds as novel agents that modulate autophagy in oral cancer are discussed. Overall, further research is needed to determine the validity and reliability of autophagy promotion and inhibition while maximizing the difficult challenge of increasing cancer suppression to improve clinical outcomes.
Collapse
Affiliation(s)
- Zhou Li
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
- Shanxi Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, P.R. China
| | - Yao Zhang
- Shanxi Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, P.R. China
| | - Jianhua Lei
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| | - Yunxia Wu
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
8
|
Zeng Z, Xu S, Wang R, Han X. FKBP4 promotes glycolysis and hepatocellular carcinoma progression via p53/HK2 axis. Sci Rep 2024; 14:26893. [PMID: 39505995 PMCID: PMC11542027 DOI: 10.1038/s41598-024-78383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
FKBP4, a member of the FK506-binding protein (FKBP) family, is a promising target for a variety of disorders, including cancer. However, its underlying molecular mechanism and potential function in hepatocellular carcinoma (HCC) are largely elusive. Therefore, we aimed to investigate the expression status, functional implications and underlying mechanisms of FKBP4 in HCC. Our bioinformatics analysis of TCGA LIHC datasets, ICGC LIRI-JP datasets and GEO datasets results showed FKBP4 was upregulated in HCC tissues. We also confirmed the elevated FKBP4 in clinical HCC samples. Additionally, quantitative RT-PCR results revealed FKBP4 was highly expressed in all five tested HCC cell lines. We also observed a correlation between elevated FKBP4 expression and poor prognosis in HCC patients. Loss of FKBP4 can inhibit the proliferation and migration in HCC cells. Furthermore, we found that silencing FKBP4 suppressed glucose uptake, lactic acid production and 18F-FDG uptake compared with the control group. Mechanistically, our funding indicated that FKBP4 participates in glycolysis through p53 mediated HK2 signaling pathway, specially, FKBP4 knockdown promotes the expression and stability of p53 protein rather than affecting the transcription level. Finally, rescue experiments revealed that simultaneous knockdown of both FKBP4 and p53 partially reversed the inhibitory effects on HK2 protein levels and 18F-FDG uptake. Our study elucidates a novel role of FKBP4 in promoting HCC development and glycolysis by modulating the p53/HK2 signaling pathway. Given the critical role of aerobic glycolysis in the progression of HCC, targeting FKBP4 may offer a new therapeutic strategy for treating this malignancy.
Collapse
Affiliation(s)
- Zhenzhen Zeng
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, China
| | - Shasha Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, China
| | - Ruihua Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, China.
| | - Xingmin Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, China.
| |
Collapse
|
9
|
Chen J, Cao W, Li Y, Zhu J. Comprehensive analysis of the expression level, prognostic value, and immune infiltration of cuproptosis-related genes in human breast cancer. Medicine (Baltimore) 2024; 103:e40132. [PMID: 39432636 PMCID: PMC11495725 DOI: 10.1097/md.0000000000040132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND As a novel cell death form, cuproptosis results from copper combining with lipidated proteins in the tricarboxylic acid cycle. To the best of our knowledge no study has yet comprehensively analyzed the relationship between cuproptosis-related genes and breast cancer. METHODS The expression, prognostic value, mutations, chemosensitivity, and immune infiltration of cuproptosis-related genes in breast carcinoma patients were analyzed, PPI networks were constructed, and enrichment analyses were performed based on these genes. TIMER, UALCAN, Kaplan-Meier plotter, Human Protein Atlas, cBioPortal, STRING, GeneMANIA, DAVID, and R program v4.0.3 were used to accomplish the analyses above. RESULTS Compared to normal breast tissues, FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, MTF1, and GLS were down-regulated in breast cancer tissues, while CDKN2A was up-regulated. High expression of FDX1, LIAS, DLD, DLAT, MTF1, GLS, and CDKN2A were associated with favorable overall survival. Cuproptosis-related genes showed a high alteration rate (51.3%) in breast cancer, contributing to worse clinical outcomes. The expression levels of FDX1, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, and CDKN2A were associated positively with 1 or more immune cell infiltrations in breast cancer. Patients with high levels of B cell, CD4+ T cell, CD8+ T cell, and dendritic cell infiltration had a higher survival rate at 10 years. CONCLUSION This study comprehensively investigated relationships between cuproptosis and breast cancer by bioinformatic analyses. We found that cuproptosis-related genes were generally lowly expressed in breast carcinoma tissue. As the critical gene of cuproptosis, high expression of FDX1 was related to favorable prognoses in breast cancer patients; thus, it might be a potential prognostic marker. Moreover, genes associated with cuproptosis were linked to immune infiltration in breast cancer and this relationship affected the prognosis of breast cancer.
Collapse
Affiliation(s)
- Jian Chen
- Breast Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Cao
- Breast Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yingliang Li
- Breast Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jia Zhu
- Breast Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Liao D, He Y, He B, Zeng S, Cui Y, Li C, Huang H. Inhibiting SNX10 induces autophagy to suppress invasion and EMT and inhibits the PI3K/AKT pathway in cervical cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03715-x. [PMID: 39367898 DOI: 10.1007/s12094-024-03715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/02/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE Cervical cancer (CC) is a prevalent malignancy among women with high morbidity and poor prognosis. Sorting nexin 10 (SNX10) is a newly recognized cancer regulatory factor, while its action on CC progression remains elusive. Hence, this study studied the effect of SNX10 on CC development and investigated the mechanism. METHODS The SNX10 level in CC and the overall survival of CC cases with different SNX10 expressions were determined by bioinformatics analysis in GEPIA. The SNX10 expression in tumor tissues and clinical significance were studied in 64 CC cases. The overall survival was assessed using Kaplan-Meier analysis. The formation of LC3 was evaluated using immunofluorescence. Cell invasion was measured using the Transwell assay. Epithelial-to-mesenchymal transition (EMT) was determined by observing cell morphology and assessing EMT marker levels. A xenograft tumor was constructed to evaluate tumor growth. RESULTS SNX10 was elevated in CC tissues and cells, and the CC cases with high SNX10 levels exhibited poor overall survival. Besides, SNX10 correlated with the FIGO stage, lymph node invasion, and stromal invasion of CC. SNX10 silencing induced CC cell autophagy and suppressed CC cell invasion and EMT. Meanwhile, silenced SNX10 could suppress invasion and EMT via inducing autophagy. Furthermore, SNX10 inhibition suppressed the PI3K/AKT pathway. Moreover, silenced SNX10 restrained the tumor growth, autophagy, and EMT of CC in vivo. CONCLUSION SNX10 was enhanced in CC and correlated with poor prognosis. Silenced SNX10 induced autophagy to suppress invasion and EMT and inhibited the PI3K/AKT pathway in CC, making SNX10 a valuable molecule for CC therapy.
Collapse
Affiliation(s)
- Dan Liao
- Department of Gynaecology, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China.
| | - Yanxian He
- Department of Gynaecology, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China
| | - Bin He
- Clinical Translational Medical Center, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Saitian Zeng
- Department of Gynaecology, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China
| | - Yejia Cui
- Department of Clinical Laboratory, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Cuifen Li
- Department of Gynaecology, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China
| | - Haohai Huang
- Clinical Translational Medical Center, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, China.
- Department of Clinical Pharmacy, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China.
| |
Collapse
|
11
|
Xie W, Xu Z. (Nano)biotechnological approaches in the treatment of cervical cancer: integration of engineering and biology. Front Immunol 2024; 15:1461894. [PMID: 39346915 PMCID: PMC11427397 DOI: 10.3389/fimmu.2024.1461894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
Cervical cancer is one of the most malignant gynaecological tumors characterised with the aggressive behaviour of the tumor cells. In spite of the development of different strategies for the treatment of cervical cancer, the tumor cells have developed resistance to conventional therapeutics. On the other hand, nanoparticles have been recently applied for the treatment of human cancers through delivery of drugs and facilitate tumor suppression. The stimuli-sensitive nanostructures can improve the release of therapeutics at the tumor site. In the present review, the nanostructures for the treatment of cervical cancer are discussed. Nanostructures can deliver both chemotherapy drugs and natural compounds to increase anti-cancer activity and prevent drug resistance in cervical tumor. Moreover, the genetic tools such as siRNA can be delivered by nanoparticles to enhance their accumulation at tumor site. In order to enhance selectivity, the stimuli-responsive nanoparticles such as pH- and redox-responsive nanocarriers have been developed to suppress cervical tumor. Moreover, nanoparticles can induce photo-thermal and photodynamic therapy to accelerate cell death in cervical tumor. In addition, nanobiotechnology demonstrates tremendous potential in the treatment of cervical cancer, especially in the context of tumor immunotherapy. Overall, metal-, carbon-, lipid- and polymer-based nanostructures have been utilized in cervical cancer therapy. Finally, hydrogels have been developed as novel kinds of carriers to encapsulate therapeutics and improve anti-cancer activity.
Collapse
Affiliation(s)
| | - Zhengmei Xu
- Department of Gynecology, Affiliated Hengyang Hospital of Hunan Normal University &
Hengyang Central Hospital, Hengyang, China
| |
Collapse
|
12
|
Wahyudianingsih R, Sanjaya A, Jonathan T, Pranggono EH, Achmad D, Hernowo BS. Chemotherapy's effects on autophagy in the treatment of Hodgkin's lymphoma: a scoping review. Discov Oncol 2024; 15:269. [PMID: 38976168 PMCID: PMC11231119 DOI: 10.1007/s12672-024-01142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Classical Hodgkin Lymphomas (HL) are a unique malignant growth with an excellent initial prognosis. However, 10-30% of patients will still relapse after remission. One primary cellular function that has been the focus of tumor progression is autophagy. This process can preserve cellular homeostasis under stressful conditions. Several studies have shown that autophagy may play a role in developing HL. Therefore, this review aimed to explore chemotherapy's effect on autophagy in HL, and the effects of autophagy on HL. METHODS A scoping review in line with the published PRISMA extension for scoping reviews (PRISMA-ScR) was conducted. A literature search was conducted on the MEDLINE database and the Cochrane Central Register of Controlled Trials (CENTRAL). All results were retrieved and screened, and the resulting articles were synthesized narratively. RESULTS The results showed that some cancer chemotherapy also induces autophagic flux. Although the data on HL is limited, since the mechanisms of action of these drugs are similar, we can infer a similar relationship. However, this increased autophagy activity may reflect a mechanism for increasing tumor growth or a cellular compensation to inhibit its growth. Although evidence supports both views, we argued that autophagy allowed cancer cells to resist cell death, mainly due to DNA damage caused by cytotoxic drugs. CONCLUSION Autophagy reflects the cell's adaptation to survive and explains why chemotherapy generally induces autophagy functions. However, further research on autophagy inhibition is needed as it presents a viable treatment strategy, especially against drug-resistant populations that may arise from HL chemotherapy regimens.
Collapse
Affiliation(s)
- Roro Wahyudianingsih
- Postgraduate Program of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
- Department of Anatomical Pathology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Ardo Sanjaya
- Department of Anatomy, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia.
| | - Timothy Jonathan
- Undergraduate Program in Medicine, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| | - Emmy Hermiyanti Pranggono
- Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/Rumah Sakit Hasan Sadikin, Bandung, West Java, Indonesia
| | - Dimyati Achmad
- Department of Oncological Surgery, Faculty of Medicine, Universitas Padjadjaran/Rumah Sakit Hasan Sadikin, Bandung, West Java, Indonesia
| | - Bethy Suryawathy Hernowo
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Rumah Sakit Hasan Sadikin, Bandung, West Java, Indonesia
| |
Collapse
|
13
|
Li Q, Zhou X, Xiao J, Gong Y, Gong X, Shao B, Wang J, Zhao L, Xiong Q, Wu Y, Tang J, Yang Q, Tang J, Xiang T. Role of ZNF334 in cervical cancer: implications for EMT reversal and tumor suppression. Med Oncol 2024; 41:191. [PMID: 38954116 DOI: 10.1007/s12032-024-02433-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Zinc-finger proteins are involved in many biological processes. However, the role of Zinc-finger protein 334 (ZNF334) in cervical cancer remains unidentified. This study showed that promoter methylation of ZNF334 was responsible for its reduced expression. ZNF334 suppressed malignant biological behaviors in cervical cancer. Notably, ZNF334 reversed the EMT process both in vitro and in vivo. RNA-seq coupled with bioinformatics analysis caught P3H3 which is upregulated by ZNF334. Dual-luciferase reporter and Chromatin immunoprecipitation assays illustrated that ZNF334 directly regulate P3H3. Knockdown of P3H3 attenuated the reversal of EMT induced by ZNF334. Additionally, ZNF334 overexpression sensitized cervical cancer cells to the cytotoxic effects of paclitaxel, cyclosporine and sunitinib. In conclusions, this study illustrated that DNA methylation-based silencing ZNF334 played a vital role in cervical cancer, by regulating P3H3 in turn affects EMT. ZNF334 has the potential to become a novel diagnostic biomarker and a potential treatment target for cervical cancer.
Collapse
Affiliation(s)
- Qian Li
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiangyi Zhou
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiayi Xiao
- West China School of Medicine, Sichuan University, Chengdu Sichuan, 610065, China
| | - Yijia Gong
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xue Gong
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bianfei Shao
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jianhua Wang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lijuan Zhao
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qi Xiong
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yue Wu
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jun Tang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qiyu Yang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Junying Tang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Tingxiu Xiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
14
|
Yin X, Liu X, Gong H, Chu Z. LncRNA STARD7-AS1 suppresses cervical cancer cell proliferation while promoting autophagy by regulating miR-31-5p/TXNIP axis to inactivate the mTOR signaling. J Gynecol Oncol 2024; 35:e97. [PMID: 38670562 PMCID: PMC11262893 DOI: 10.3802/jgo.2024.35.e97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/06/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE Cervical cancer (CC) is a serious gynecologic health issue for women worldwide. Long non-coding RNA (lncRNA) has been well-documented in controlling malignant behavior of various cancer cells. The role of lncRNA STARD7-AS1 in regulating CC cell proliferation and autophagy and its possible mechanism were investigated in this work. METHODS RNA expression and protein levels were quantified by reverse transcription quantitative polymerase chain reaction and western blotting. The location of STARD7-AS1 in CC cells was examined using subcellular fraction assays. Cell Counting Kit-8 assays and colony forming assays were performed to measure CC cell viability and proliferation. Autophagy in CC cells was evaluated using macrophage-derived chemokine (MDC) staining and transmission electron microscopy. The binding between microRNA (miR)-31-5p and STARD7-AS1 (or thioredoxin-interacting protein [TXNIP]) was determined by performing luciferase reporter, RNA pull-down or RNA immunoprecipitation assays. RESULTS STARD7-AS1 overexpression significantly suppressed CC cell viability and proliferation while notably inducing autophagy. STARD7-AS1 upregulated TXNIP expression via interaction with miR-31-5p. In addition, the effects of STARD7-AS1 on CC cell proliferation and autophagy were reversed by TXNIP silencing. The suppressive effect of STARD7-AS1 overexpression on phosphorylated levels of mTOR and S6K1 was countervailed by TXNIP deficiency. CONCLUSION In conclusion, lncRNA STARD7-AS1 inhibits CC cell proliferation and promotes cell autophagy by targeting the miR-31-5p/TXNIP axis to inactivate the mTOR signaling.
Collapse
Affiliation(s)
- Xiyao Yin
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, China
| | - Xin Liu
- Department of Central Laboratory, The 989th Hospital, Luoyang, China
| | - Hui Gong
- Department of Central Laboratory, The 989th Hospital, Luoyang, China
| | - Zhiliang Chu
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, China.
| |
Collapse
|
15
|
Fan HY, Zhao MD, Jiang HJ, Yu ZW, Fan YJ, Liang XH, Tang YL, Sun Y. Cisplatin-based miRNA delivery strategy inspired by the circCPNE1/miR-330-3p pathway for oral squamous cell carcinoma. Acta Pharm Sin B 2024; 14:2748-2760. [PMID: 38828155 PMCID: PMC11143742 DOI: 10.1016/j.apsb.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 12/14/2023] [Indexed: 06/05/2024] Open
Abstract
Circular RNAs (circRNAs) are ideal biomarkers of oral squamous cell carcinoma (OSCC) because of their highly stable closed-loop structure, and they can act as microRNA (miRNA) sponges to regulate OSCC progression. By analyzing clinical samples, we identified circCPNE1, a dysregulated circRNA in OSCC, and its expression level was negatively correlated with the clinical stage of OSCC patients. Gain-of-function assays revealed the tumor-suppressive effect of circCPNE1, which was then identified as a miR-330-3p sponge. MiR-330-3p was recognized as a tumor promoter in multiple studies, consistent with our finding that it could promote the proliferation, migration, and invasion of OSCC cells. These results indicated that selective inhibition of miR-330-3p could be an effective strategy to inhibit OSCC progression. Therefore, we designed cationic polylysine-cisplatin prodrugs to deliver antagomiR-330-3p (a miRNA inhibitory analog) via electrostatic interactions to form PP@miR nanoparticles (NPs). Paratumoral administration results revealed that PP@miR NPs effectively inhibited subcutaneous tumor progression and achieved partial tumor elimination (2/5), which confirmed the critical role of miR-330-3p in OSCC development. These findings provide a new perspective for the development of OSCC treatments.
Collapse
Affiliation(s)
- Hua-yang Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ming-da Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Hong-jie Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhen-wei Yu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu-jiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ya-ling Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
16
|
Song F, Zhang Z, Liu W, Xu T, Hu X, Wang Q, Zhang W, Ge L, Zhang C, Hu Q, Qin H, Zhang S, Ren X, Fan W, Zhang Y, Huang P. Peptide Transporter 1-Mediated Dipeptide Transport Promotes Hepatocellular Carcinoma Metastasis by Activating MAP4K4/G3BP2 Signaling Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306671. [PMID: 38639383 PMCID: PMC11200092 DOI: 10.1002/advs.202306671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/18/2024] [Indexed: 04/20/2024]
Abstract
Cancer metastasis is the leading cause of mortality in patients with hepatocellular carcinoma (HCC). To meet the rapid malignant growth and transformation, tumor cells dramatically increase the consumption of nutrients, such as amino acids. Peptide transporter 1 (PEPT1), a key transporter for small peptides, has been found to be an effective and energy-saving intracellular source of amino acids that are required for the growth of tumor cells. Here, the role of PEPT1 in HCC metastasis and its underlying mechanisms is explored. PEPT1 is upregulated in HCC cells and tissues, and high PEPT1 expression is associated with poor prognosis in patients with HCC. PEPT1 overexpression dramatically promoted HCC cell migration, invasion, and lung metastasis, whereas its knockdown abolished these effects both in vitro and in vivo. Mechanistic analysis revealed that high PEPT1 expression increased cellular dipeptides in HCC cells that are responsible for activating the MAP4K4/G3BP2 signaling pathway, ultimately facilitating the phosphorylation of G3BP2 at Thr227 and enhancing HCC metastasis. Taken together, these findings suggest that PEPT1 acts as an oncogene in promoting HCC metastasis through dipeptide-induced MAP4K4/G3BP2 signaling and that the PEPT1/MAP4K4/G3BP2 axis can serve as a promising therapeutic target for metastatic HCC.
Collapse
Affiliation(s)
- Feifeng Song
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhou310014China
- Zhejiang Provincial Clinical Research Center for malignant tumorHangzhou310014China
| | - Zhentao Zhang
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Weifeng Liu
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou310009China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhou310014China
- Zhejiang Provincial Clinical Research Center for malignant tumorHangzhou310014China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Qiyue Wang
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Wanli Zhang
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Luqi Ge
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Chengwu Zhang
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasion SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Qing Hu
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Hui Qin
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Song Zhang
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhou310014China
- Zhejiang Provincial Clinical Research Center for malignant tumorHangzhou310014China
| | - Xinxin Ren
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Weijiao Fan
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhou310014China
- Zhejiang Provincial Clinical Research Center for malignant tumorHangzhou310014China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhou310014China
- Zhejiang Provincial Clinical Research Center for malignant tumorHangzhou310014China
| |
Collapse
|
17
|
Zheng H, Liu M, Shi S, Huang H, Yang X, Luo Z, Song Y, Xu Q, Li T, Xue L, Lu F, Wang J. MAP4K4 and WT1 mediate SOX6-induced cellular senescence by synergistically activating the ATF2-TGFβ2-Smad2/3 signaling pathway in cervical cancer. Mol Oncol 2024; 18:1327-1346. [PMID: 38383842 PMCID: PMC11076992 DOI: 10.1002/1878-0261.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/18/2024] [Accepted: 02/04/2024] [Indexed: 02/23/2024] Open
Abstract
SRY-box transcription factor 6 (SOX6) is a member of the SOX gene family and inhibits the proliferation of cervical cancer cells by inducing cell cycle arrest. However, the final cell fate and significance of these cell-cycle-arrested cervical cancer cells induced by SOX6 remains unclear. Here, we report that SOX6 inhibits the proliferation of cervical cancer cells by inducing cellular senescence, which is mainly mediated by promoting transforming growth factor beta 2 (TGFB2) gene expression and subsequently activating the TGFβ2-Smad2/3-p53-p21WAF1/CIP1-Rb pathway. SOX6 promotes TGFB2 gene expression through the MAP4K4-MAPK (JNK/ERK/p38)-ATF2 and WT1-ATF2 pathways, which is dependent on its high-mobility group (HMG) domain. In addition, the SOX6-induced senescent cervical cancer cells are resistant to cisplatin treatment. ABT-263 (navitoclax) and ABT-199 (venetoclax), two classic senolytics, can specifically eliminate the SOX6-induced senescent cervical cancer cells, and thus significantly improve the chemosensitivity of cisplatin-resistant cervical cancer cells. This study uncovers that the MAP4K4/WT1-ATF2-TGFβ2 axis mediates SOX6-induced cellular senescence, which is a promising therapeutic target in improving the chemosensitivity of cervical cancer.
Collapse
Affiliation(s)
- Han Zheng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Mingchen Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Shu Shi
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Hongxin Huang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Xingwen Yang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Ziheng Luo
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Yarong Song
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Qiang Xu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Lixiang Xue
- Department of Radiation OncologyCancer Center of Peking University Third Hospital, Peking University Third HospitalBeijingChina
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Jie Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| |
Collapse
|
18
|
Wang T, He M, Zhang X, Guo Z, Wang P, Long F. Deciphering the impact of circRNA-mediated autophagy on tumor therapeutic resistance: a novel perspective. Cell Mol Biol Lett 2024; 29:60. [PMID: 38671354 PMCID: PMC11046940 DOI: 10.1186/s11658-024-00571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer therapeutic resistance remains a significant challenge in the pursuit of effective treatment strategies. Circular RNAs (circRNAs), a class of non-coding RNAs, have recently emerged as key regulators of various biological processes, including cancer progression and drug resistance. This review highlights the emerging role of circRNAs-mediated autophagy in cancer therapeutic resistance, a cellular process that plays a dual role in cancer by promoting both cell survival and death. Increasing evidence suggests that circRNAs can modulate autophagy pathways, thereby influencing the response of cancer cells to therapeutic agents. In this context, the intricate interplay between circRNAs, autophagy, and therapeutic resistance is explored. Various mechanisms are discussed through which circRNAs can impact autophagy, including direct interactions with autophagy-related genes, modulation of signaling pathways, and cross-talk with other non-coding RNAs. Furthermore, the review delves into specific examples of how circRNA-mediated autophagy regulation can contribute to resistance against chemotherapy and radiotherapy. Understanding these intricate molecular interactions provides valuable insights into potential strategies for overcoming therapeutic resistance in cancer. Exploiting circRNAs as therapeutic targets or utilizing them as diagnostic and predictive biomarkers opens new avenues for developing personalized treatment approaches. In summary, this review underscores the importance of circRNA-mediated autophagy in cancer therapeutic resistance and proposes future directions for research in this exciting and rapidly evolving field.
Collapse
Affiliation(s)
- Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Mengjie He
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China
| | - Xudong Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Zhixun Guo
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China.
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China.
| |
Collapse
|
19
|
Yin Z, Guo X, Liang X, Wang Z. FTO promotes gastric cancer progression by modulating MAP4K4 expression via demethylation in an m6A-dependent manner. Med Oncol 2024; 41:120. [PMID: 38643333 DOI: 10.1007/s12032-024-02369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/20/2024] [Indexed: 04/22/2024]
Abstract
Gastric cancer (GC) is a serious malignant tumour with a high mortality rate and a poor prognosis. Recently, emerging evidence has suggested that N6-methyladenosine (m6A) modification plays a crucial regulatory role in cancer progression. However, the exact role of m6A regulatory factors FTO in GC is unclear. First, the expression of m6A methylation-related regulatory factors in clinical samples and the clinical data of the corresponding patients were obtained from The Cancer Genome Atlas (TCGA-STAD) dataset, and correlation analysis between FTO expression and patient clinicopathological parameters was subsequently performed. qRT-PCR, immunohistochemistry (IHC) and western blotting (WB) were used to verify FTO expression in GC. CCK-8, EdU, flow cytometry and transwell assays were used to evaluate the effect of FTO on the behaviour of GC cells. Transcriptome sequencing and RNA immunoprecipitation analysis were used to explore the potential regulatory mechanisms mediated by FTO. FTO was highly expressed in GC tissues and cells, and high expression of FTO predicted a worse prognosis than low expression. Functionally, overexpression of FTO promoted the proliferation, migration and invasion of GC cells but inhibited cell apoptosis. Mechanistically, we found that FTO is upregulated in GC and promotes GC progression by modulating the expression of MAP4K4. Taken together, our findings provide new insights into the effects of FTO-mediated m6A demethylation and could lead to the development of new strategies for GC monitoring and aggressive treatment.
Collapse
Affiliation(s)
- Zhe Yin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
- Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Xiong Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Xiaolong Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
20
|
Yang Y, Liu L, Tian Y, Gu M, Wang Y, Ashrafizadeh M, Reza Aref A, Cañadas I, Klionsky DJ, Goel A, Reiter RJ, Wang Y, Tambuwala M, Zou J. Autophagy-driven regulation of cisplatin response in human cancers: Exploring molecular and cell death dynamics. Cancer Lett 2024; 587:216659. [PMID: 38367897 DOI: 10.1016/j.canlet.2024.216659] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
Despite the challenges posed by drug resistance and side effects, chemotherapy remains a pivotal strategy in cancer treatment. A key issue in this context is macroautophagy (commonly known as autophagy), a dysregulated cell death mechanism often observed during chemotherapy. Autophagy plays a cytoprotective role by maintaining cellular homeostasis and recycling organelles, and emerging evidence points to its significant role in promoting cancer progression. Cisplatin, a DNA-intercalating agent known for inducing cell death and cell cycle arrest, often encounters resistance in chemotherapy treatments. Recent studies have shown that autophagy can contribute to cisplatin resistance or insensitivity in tumor cells through various mechanisms. This resistance can be mediated by protective autophagy, which suppresses apoptosis. Additionally, autophagy-related changes in tumor cell metastasis, particularly the induction of Epithelial-Mesenchymal Transition (EMT), can also lead to cisplatin resistance. Nevertheless, pharmacological strategies targeting the regulation of autophagy and apoptosis offer promising avenues to enhance cisplatin sensitivity in cancer therapy. Notably, numerous non-coding RNAs have been identified as regulators of autophagy in the context of cisplatin chemotherapy. Thus, therapeutic targeting of autophagy or its associated pathways holds potential for restoring cisplatin sensitivity, highlighting an important direction for future clinical research.
Collapse
Affiliation(s)
- Yang Yang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Lixia Liu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, IL, USA
| | - Miaomiao Gu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yanan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Ji Yan Road, Jinan, Shandong, China
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc, 6, Tide Street, Boston, MA, 02210, USA
| | - Israel Cañadas
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | - Yuzhuo Wang
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| | - Jianyong Zou
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, China.
| |
Collapse
|
21
|
Chang HC, Yang CC, Loi LK, Hung CH, Wu CH, Lin YC. Interplay of p62-mTORC1 and EGFR signaling promotes cisplatin resistance in oral cancer. Heliyon 2024; 10:e28406. [PMID: 38560690 PMCID: PMC10979205 DOI: 10.1016/j.heliyon.2024.e28406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Cisplatin resistance poses a major challenge in the treatment of oral squamous cell carcinoma (OSCC). Deeper investigations into the mechanisms underlying this drug resistance is of great importance. Here, we used cellular assays and clinical immunohistochemistry to examine molecular pathways involved in both innate and acquired cisplatin resistance. We demonstrated that the p62-mTORC1 signaling complex plays a pivotal role, and is driven by the EGFR signaling network, specifically through the PI3K-Akt axis and the transcription factor C/EBP-β. Elevated p-mTOR expression was associated with cancer relapse and poor prognosis among oral cancer patients. Additionally, we illustrated that mTOR inhibitors enhance the cytotoxic effect of cisplatin, by employing cancer stem cell characteristics. Our work unveils fundamental mechanisms for cisplatin resistance, thereby presenting therapeutic implications for OSCC.
Collapse
Affiliation(s)
- Hsiu-Chuan Chang
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Lai-Keng Loi
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Hsun Hung
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Hsien Wu
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Cheng Lin
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Oral Medicine Innovation Center (OMIC), National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
22
|
Wang Y, Li F, Mao L, Liu Y, Chen S, Liu J, Huang K, Chen Q, Wu J, Lu L, Zheng Y, Shen W, Ying T, Dai Y, Shen Y. Promoting collateral formation in type 2 diabetes mellitus using ultra-small nanodots with autophagy activation and ROS scavenging. J Nanobiotechnology 2024; 22:85. [PMID: 38429826 PMCID: PMC10908163 DOI: 10.1186/s12951-024-02357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Impaired collateral formation is a major factor contributing to poor prognosis in type 2 diabetes mellitus (T2DM) patients with atherosclerotic cardiovascular disease. However, the current pharmacological treatments for improving collateral formation remain unsatisfactory. The induction of endothelial autophagy and the elimination of reactive oxygen species (ROS) represent potential therapeutic targets for enhancing endothelial angiogenesis and facilitating collateral formation. This study investigates the potential of molybdenum disulfide nanodots (MoS2 NDs) for enhancing collateral formation and improving prognosis. RESULTS Our study shows that MoS2 NDs significantly enhance collateral formation in ischemic tissues of diabetic mice, improving effective blood resupply. Additionally, MoS2 NDs boost the proliferation, migration, and tube formation of endothelial cells under high glucose/hypoxia conditions in vitro. Mechanistically, the beneficial effects of MoS2 NDs on collateral formation not only depend on their known scavenging properties of ROS (H2O2, •O2-, and •OH) but also primarily involve a molecular pathway, cAMP/PKA-NR4A2, which promotes autophagy and contributes to mitigating damage in diabetic endothelial cells. CONCLUSIONS Overall, this study investigated the specific mechanism by which MoS2 NDs mediated autophagy activation and highlighted the synergy between autophagy activation and antioxidation, thus suggesting that an economic and biocompatible nano-agent with dual therapeutic functions is highly preferable for promoting collateral formation in a diabetic context, thus, highlighting their therapeutic potential.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China
| | - Feifei Li
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China
| | - Linshuang Mao
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China
| | - Yu Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China
| | - Shuai Chen
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China
| | - Jingmeng Liu
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China
| | - Ke Huang
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China
| | - Qiujing Chen
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China
| | - Jianrong Wu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lin Lu
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Weifeng Shen
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China
| | - Tao Ying
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Yang Dai
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China.
| | - Ying Shen
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China.
| |
Collapse
|
23
|
Zhang W, Lu R, Lv L, Ma C, Ding Y, Yang F, Fang Q, Wu Y, Pan R, Chen Y. 2α, 3α, 24-Thrihydroxyurs-12-en-24-ursolic acid enhances the cytotoxic effect of cisplatin on oral cancer cells by down-regulating autophagy. J Cell Biochem 2024; 125:e30504. [PMID: 37992225 DOI: 10.1002/jcb.30504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
This study aimed to investigate the effect and mechanism of 2α, 3α, 24-thrihydroxyurs-12-en-24-ursolic acid (TEOA) alone or in combination with cisplatin on oral cancer. TEOA, a pentacyclic triterpenoid compound isolated from the roots of Actinidia eriantha, has demonstrated antitumor activity in preclinical experiments. However, its role in oral cancer remains poorly understood. Our findings revealed that a low concentration of TEOA did not exhibit significant cytotoxicity against oral squamous cell carcinoma cells. However, when combined with cisplatin, TEOA showed a significant therapeutic effect. The combined treatments resulted in a significant inhibition of proliferation and migration and a significant increase in apoptosis of squamous cell carcinoma cells. Cisplatin exposure increased autophagy levels, which may contribute to chemoresistance. Of note, the presence of TEOA significantly inhibited cisplatin-induced autophagy, leading to improved chemotherapy efficacy. Our findings indicate that a mild low dosage of TEOA may enhance the cytotoxic effect of cisplatin by downregulating autophagy in oral cancer cells.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Cancer Center, Hangzhou, Zhejiang, China
| | - Ruijie Lu
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Leyao Lv
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenxi Ma
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yude Ding
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Cancer Center, Hangzhou, Zhejiang, China
| | - Fan Yang
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Cancer Center, Hangzhou, Zhejiang, China
| | - Qingxia Fang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Center for Clinical Pharmacy, Cancer Center, Hangzhou, Zhejiang, China
| | - Yue Wu
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Center for Clinical Pharmacy, Cancer Center, Hangzhou, Zhejiang, China
| | - Ruolang Pan
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Yunfang Chen
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Cancer Center, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Li S, Gao K, Yao D. Comprehensive analysis of autophagy associated genes and immune infiltrates in cervical cancer. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:813-824. [PMID: 38800011 PMCID: PMC11127083 DOI: 10.22038/ijbms.2024.74431.16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/26/2023] [Indexed: 05/29/2024]
Abstract
Objectives Cervical cancer (CC) is the most common gynecological malignant tumor and the fourth leading cause of cancer-related death in women. The progression of CC is significantly affected by autophagy. Our objective was to use bioinformatics analysis to explore the expression, prognostic significance, and immune infiltration of autophagy-related genes in CC. Materials and Methods We identified a set of autophagy-related differentially expressed genes (ARDEGs) from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. ARDEGs were further validated by The Human Protein Atlas (HPA), GSE52903, and GSE39001 dataset. Hub genes were found by the STRING network and Cytoscape. We performed Gene Set Enrichment Analysis (GSEA), Gene ontology analysis (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and immune infiltration analysis to further understand the functions of the hub genes. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) were used to check the hub genes. Results A total of 10 up-regulated (CXCR4, BAX, SPHK1, EIF2AK2, TBK1, TNFSF10, ITGB4, CDKN2A, IL24, and BIRC5) and 19 down-regulated (PINK1, ATG16L2, ATG4D, IKBKE, MLST8, MAPK3, ERBB2, ULK3, TP53INP2, MTMR14, BNIP3, FOS, CCL2, FAS, CAPNS1, HSPB8, PTK6, FKBP1B , and DNAJB1) ARDEGs were identified. The ARDEGs were enriched in cell growth, apoptosis, human papillomavirus infection, and cytokine-mediated. Then, we found that low expression of MAPK3 was associated with poor prognosis in CC patients and was significantly enriched in immune pathways. In addition, the expression of MAPK3 was significantly positively correlated with the infiltration levels of macrophages, B cells, mast cell activation, and cancer-associated fibroblasts. Furthermore, MAPK3 was positively correlated with LGALS9, and negatively correlated with CTLA4 and CD40. Conclusion Our results show that MAPK3 can be used as a new prognostic biomarker to predict the prognosis of patients with CC.
Collapse
Affiliation(s)
- Shuzhen Li
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Kun Gao
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Desheng Yao
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| |
Collapse
|
25
|
Li AX, Martin TA, Lane J, Jiang WG. Cellular Impacts of Striatins and the STRIPAK Complex and Their Roles in the Development and Metastasis in Clinical Cancers (Review). Cancers (Basel) 2023; 16:76. [PMID: 38201504 PMCID: PMC10777921 DOI: 10.3390/cancers16010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Striatins (STRNs) are generally considered to be cytoplasmic proteins, with lower expression observed in the nucleus and at cell-cell contact regions. Together with protein phosphatase 2A (PP2A), STRNs form the core region of striatin-interacting phosphatase and kinase (STRIPAK) complexes through the coiled-coil region of STRN proteins, which is crucial for substrate recruitment. Over the past two decades, there has been an increasing amount of research into the biological and cellular functions of STRIPAK members. STRNs and the constituent members of the STRIPAK complex have been found to regulate several cellular functions, such as cell cycle control, cell growth, and motility. Dysregulation of these cellular events is associated with cancer development. Importantly, their roles in cancer cells and clinical cancers are becoming recognised, with several STRIPAK components found to have elevated expression in cancerous tissues compared to healthy tissues. These molecules exhibit significant diagnostic and prognostic value across different cancer types and in metastatic progression. The present review comprehensively summarises and discusses the current knowledge of STRNs and core STRIPAK members, in cancer malignancy, from both cellular and clinical perspectives.
Collapse
Affiliation(s)
| | - Tracey A. Martin
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (A.X.L.); (J.L.); (W.G.J.)
| | | | | |
Collapse
|
26
|
Bahmad HF, Thiravialingam A, Sriganeshan K, Gonzalez J, Alvarez V, Ocejo S, Abreu AR, Avellan R, Arzola AH, Hachem S, Poppiti R. Clinical Significance of SOX10 Expression in Human Pathology. Curr Issues Mol Biol 2023; 45:10131-10158. [PMID: 38132479 PMCID: PMC10742133 DOI: 10.3390/cimb45120633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The embryonic development of neural crest cells and subsequent tissue differentiation are intricately regulated by specific transcription factors. Among these, SOX10, a member of the SOX gene family, stands out. Located on chromosome 22q13, the SOX10 gene encodes a transcription factor crucial for the differentiation, migration, and maintenance of tissues derived from neural crest cells. It plays a pivotal role in developing various tissues, including the central and peripheral nervous systems, melanocytes, chondrocytes, and odontoblasts. Mutations in SOX10 have been associated with congenital disorders such as Waardenburg-Shah Syndrome, PCWH syndrome, and Kallman syndrome, underscoring its clinical significance. Furthermore, SOX10 is implicated in neural and neuroectodermal tumors, such as melanoma, malignant peripheral nerve sheath tumors (MPNSTs), and schwannomas, influencing processes like proliferation, migration, and differentiation. In mesenchymal tumors, SOX10 expression serves as a valuable marker for distinguishing between different tumor types. Additionally, SOX10 has been identified in various epithelial neoplasms, including breast, ovarian, salivary gland, nasopharyngeal, and bladder cancers, presenting itself as a potential diagnostic and prognostic marker. However, despite these associations, further research is imperative to elucidate its precise role in these malignancies.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA;
| | - Aran Thiravialingam
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Karthik Sriganeshan
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Jeffrey Gonzalez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Veronica Alvarez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Stephanie Ocejo
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Alvaro R. Abreu
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Rima Avellan
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Alejandro H. Arzola
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Sana Hachem
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Robert Poppiti
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA;
- Department of Pathology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
27
|
Long S, Long S, He H, Luo L, Liu M, Ding T. Exosomal miR-182 derived from bone marrow mesenchymal stem cells drives carfilzomib resistance of multiple myeloma cells by targeting SOX6. J Orthop Surg Res 2023; 18:937. [PMID: 38062424 PMCID: PMC10702080 DOI: 10.1186/s13018-023-04399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a common hematological malignancy. Drug resistance remains to be a major clinical challenge in MM therapy. In this study, we aim to investigate the functional roles of bone marrow mesenchymal stem cells (BMSC)-derived exosomal miR-182 on the carfilzomib resistance of MM and its underlying mechanism. METHODS qRT-PCR and Western blot methods were utilized to confirm the gene or protein expressions. CCK-8 and transwell assays were performed to measure the capabilities of proliferation, migration, and invasion. The molecular interactions were validated through ChIP and Dual luciferase assay. RESULTS Our findings indicated that miR-182 expression was upregulated in serum, BMSCs and BMSC-derived exosomes from MM patients. Hypoxia-inducible factor-1α (HIF-1α), a key transcriptional factor in tumor microenvironment, could boost miR-182 expression by directly binding to its promoter, thus favoring exosomal secretion. Moreover, exosomal miR-182 from BMSCs could be transferred to MM cells and was able to promote malignant proliferation, metastasis, and invasion, as well as decrease the sensitivity of MM cells against carfilzomib. Additionally, SOX6 was identified as a downstream target of miR-182 in MM cells, and its expression was negatively regulated by miR-182. Rescue experiments proved that loss of SOX6 in MM cells dramatically reversed the promoting roles of BMSC-secreted exosomal miR-182 on proliferation, metastasis, and carfilzomib resistance in MM cells. CONCLUSION Collectively, our findings indicated that exosomal miR-182 derived from BMSCs contributed to the metastasis and carfilzomib resistance of MM cells by targeting SOX6. This study sheds light on the pathogenesis of the BMSC-derived exosome containing miR-182 in the malignant behaviors of MM cells and carfzomib resistance.
Collapse
Affiliation(s)
- Shifeng Long
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, No. 110, Jinggangshan Avenue, Jizhou District, Ji'an, 343000, Jiangxi Province, People's Republic of China.
| | - Shengping Long
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, No. 110, Jinggangshan Avenue, Jizhou District, Ji'an, 343000, Jiangxi Province, People's Republic of China
| | - Honglei He
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, No. 110, Jinggangshan Avenue, Jizhou District, Ji'an, 343000, Jiangxi Province, People's Republic of China
| | - Liang Luo
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, No. 110, Jinggangshan Avenue, Jizhou District, Ji'an, 343000, Jiangxi Province, People's Republic of China
| | - Mei Liu
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, No. 110, Jinggangshan Avenue, Jizhou District, Ji'an, 343000, Jiangxi Province, People's Republic of China
| | - Ting Ding
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, No. 110, Jinggangshan Avenue, Jizhou District, Ji'an, 343000, Jiangxi Province, People's Republic of China
| |
Collapse
|
28
|
Xu J, Ma H, Shi L, Zhou H, Cheng Y, Tong J, Meng B, Xu X, He K, Ding S, Zhang J, Yue L, Xiang G. Inflammatory Cell-Derived MYDGF Attenuates Endothelial LDL Transcytosis to Protect Against Atherogenesis. Arterioscler Thromb Vasc Biol 2023; 43:e443-e467. [PMID: 37767706 DOI: 10.1161/atvbaha.123.319905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Inflammation contributes to the pathogenesis of atherosclerosis. But little is known about the potential benefits of inflammatory cells to atherosclerosis. The aim of this study was to investigate the function of inflammatory cells/endothelium axis and determine whether and how inflammatory cell-derived MYDGF (myeloid-derived growth factor) inhibited endothelial LDL (low-density lipoprotein) transcytosis. METHODS In in vivo experiments, both loss- and gain-of-function strategies were used to evaluate the effect of inflammatory cell-derived MYDGF on LDL transcytosis. We generated monocyte/macrophage-targeted MYDGF-null mice on an Ldlr (LDL receptor)-/- background in the loss-of-function strategy and restored the inflammatory cell-derived MYDGF by bone marrow transplantation and inflammatory cell-specific overexpression of MYDGF mice model in the gain-of-function strategy. In in vitro experiments, coculture experiments between primary mouse aortic endothelial cells and macrophages and mouse aortic endothelial cells supplemented with or without recombinant MYDGF were conducted. RESULTS Inflammatory cell-derived MYDGF deficiency aggravated endothelial LDL transcytosis, drove LDL uptake by artery wall, and thus exacerbated atherosclerosis in vivo. Inflammatory cell-derived MYDGF restoration by bone marrow transplantation and inflammatory cell MYDGF overexpression alleviated LDL transport across the endothelium, prevented LDL accumulation in the subendothelial space, and subsequently ameliorated atherosclerosis in vivo. Furthermore, in the in vitro study, macrophages isolated from MYDGF+/+ mice and recombinant MYDGF attenuated LDL transcytosis and uptake in mouse aortic endothelial cells. Mechanistically, MYDGF inhibited MAP4K4 (mitogen-activated protein kinase kinase kinase kinase isoform 4) phosphorylation, enhanced activation of Akt (protein kinase B)-1, and diminished the FoxO (forkhead box O) 3a signaling cascade to exert protective effects of MYDGF on LDL transcytosis and atherosclerosis. CONCLUSIONS The findings support a role for inflammatory cell-derived MYDGF served as a cross talk factor between inflammatory cells and endothelial cells that inhibits LDL transcytosis across endothelium. MYDGF may become a novel therapeutic drug for atherosclerosis, and the beneficial effects of inflammatory cell in atherosclerosis deserve further attention.
Collapse
Affiliation(s)
- Jinling Xu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China (J.X., L.S., Y.C., J.T., K.H., S.D., G.X.)
| | - Huaxing Ma
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, China (H.M.)
| | - Lingfeng Shi
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China (J.X., L.S., Y.C., J.T., K.H., S.D., G.X.)
| | - Hui Zhou
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Hunan, China (H.Z.)
| | - Yangyang Cheng
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, China (H.M.)
| | - Jiayue Tong
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China (J.X., L.S., Y.C., J.T., K.H., S.D., G.X.)
| | - Biying Meng
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
| | - Xiaoli Xu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
| | - Kaiyue He
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China (J.X., L.S., Y.C., J.T., K.H., S.D., G.X.)
| | - Sheng Ding
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China (J.X., L.S., Y.C., J.T., K.H., S.D., G.X.)
| | - Jiajia Zhang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
| | - Ling Yue
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
| | - Guangda Xiang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China (J.X., L.S., Y.C., J.T., K.H., S.D., G.X.)
| |
Collapse
|
29
|
George N, Bhandari P, Shruptha P, Jayaram P, Chaudhari S, Satyamoorthy K. Multidimensional outlook on the pathophysiology of cervical cancer invasion and metastasis. Mol Cell Biochem 2023; 478:2581-2606. [PMID: 36905477 PMCID: PMC10006576 DOI: 10.1007/s11010-023-04686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Cervical cancer being one of the primary causes of high mortality rates among women is an area of concern, especially with ineffective treatment strategies. Extensive studies are carried out to understand various aspects of cervical cancer initiation, development and progression; however, invasive cervical squamous cell carcinoma has poor outcomes. Moreover, the advanced stages of cervical cancer may involve lymphatic circulation with a high risk of tumor recurrence at distant metastatic sites. Dysregulation of the cervical microbiome by human papillomavirus (HPV) together with immune response modulation and the occurrence of novel mutations that trigger genomic instability causes malignant transformation at the cervix. In this review, we focus on the major risk factors as well as the functionally altered signaling pathways promoting the transformation of cervical intraepithelial neoplasia into invasive squamous cell carcinoma. We further elucidate genetic and epigenetic variations to highlight the complexity of causal factors of cervical cancer as well as the metastatic potential due to the changes in immune response, epigenetic regulation, DNA repair capacity, and cell cycle progression. Our bioinformatics analysis on metastatic and non-metastatic cervical cancer datasets identified various significantly and differentially expressed genes as well as the downregulation of potential tumor suppressor microRNA miR-28-5p. Thus, a comprehensive understanding of the genomic landscape in invasive and metastatic cervical cancer will help in stratifying the patient groups and designing potential therapeutic strategies.
Collapse
Affiliation(s)
- Neena George
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Poonam Bhandari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padival Shruptha
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
30
|
Xi J, Gu Z, Sun C, Chen Z, Zhang T, Chen R, Liu T, Liao H, Zou J, Yang D, Xu Q, Wang J, Wei G, Cheng Z, Lu F, Chen X. A novel hepatitis B virus capsid assembly modulator QL-007 inhibits HBV replication and infection through altering capsid assembly. Antiviral Res 2023; 218:105715. [PMID: 37683938 DOI: 10.1016/j.antiviral.2023.105715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The core protein allosteric modulators (CpAMs) have shown great potential as highly effective antiviral drugs against hepatitis B virus (HBV) in preclinical studies and clinical trials. In this study, we evaluated a small molecule compound called QL-007, which could potentially influence capsid assembly, using HBV replicated and susceptible cell models as well as mice infected with rAAV-HBV. QL-007 significantly inhibited HBV replication in a dose-dependent manner both in vitro and in vivo, resulting in significant decreases in HBV DNA, 3.5 kb HBV RNA and HBeAg. Furthermore, QL-007 not only induced the formation of misshaped Cp149 capsids but also possessed the capability to disassemble HBV capsids. It is noteworthy that QL-007 effectively reduced cccDNA biosynthesis in de novo infections. Mechanistically, QL-007 blocked the encapsidation of pgRNA and induced aberrant polymers assembly at concentrations ≥100 nM, while having no impact on the stability of core proteins. In conclusion, our findings underscore the potential of QL-007 as an effective agent against HBV replication and introduce it as a novel CpAM for the antiviral treatment of chronic hepatitis B.
Collapse
Affiliation(s)
- Jingyuan Xi
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Department of Clinical Laboratory Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Zhiqiang Gu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chunyan Sun
- Department of Nonclinical Development, Qilu Pharmaceutical Co, Ltd, 243 Gong Ye Bei Road, Jinan, Shandong, 250100, China
| | - Zimin Chen
- R&D Department, Xiamen Innobiomax Biotechnology Co, Ltd, 126 Xin Yuan Road, Xiamen, Fujian, 361022, China
| | - Ting Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ran Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Tianyu Liu
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hao Liao
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Department of Clinical Laboratory, Shenzhen Third People's Hospital, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, 518112, China
| | - Jun Zou
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Danli Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qiang Xu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jie Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Guochao Wei
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhe Cheng
- Department of Nonclinical Development, Qilu Pharmaceutical Co, Ltd, 243 Gong Ye Bei Road, Jinan, Shandong, 250100, China.
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Beijing, 100044, China.
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
31
|
Zhang L, Ma J, Zhou D, Zhou J, Hu B, Ma X, Tang J, Bai Y, Chen H, Jing Y. Single-Nucleus Transcriptome Profiling of Locally Advanced Cervical Squamous Cell Cancer Identifies Neural-Like Progenitor Program Associated with the Efficacy of Radiotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300348. [PMID: 37424047 PMCID: PMC10477877 DOI: 10.1002/advs.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Radiotherapy is the first-line treatment for locally advanced cervical squamous cell cancer (CSCC). However, ≈50% of patients fail to respond to therapy and, in some cases, tumors progress after radical radiotherapy. Here, single-nucleus RNA-seq is performed to construct high-resolution molecular landscapes of various cell types in CSCC before and during radiotherapy, to better understand radiotherapy related molecular responses within tumor microenvironment. The results show that expression levels of a neural-like progenitor (NRP) program in tumor cells are significantly higher after radiotherapy and these are enriched in the tumors of nonresponding patients. The enrichment of the NRP program in malignant cells from the tumors of nonresponders in an independent cohort analyzed by bulk RNA-seq is validated. In addition, an analysis of The Cancer Genome Atlas dataset shows that NRP expression is associated with poor prognosis in CSCC patients. In vitro experiments on the CSCC cell line demonstrate that downregulation of neuregulin 1 (NRG1), a key gene from NRP program, is associated with decreased cell growth and increased sensitivity to radiation. Immunohistochemistry staining in cohort 3 validated key genes, NRG1 and immediate early response 3 from immunomodulatory program, as radiosensitivity regulators. The findings reveal that the expression of NRP in CSCC can be used to predict the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Radiation OncologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Jun Ma
- Eye InstituteEye & ENT HospitalShanghai Medical CollegeFudan UniversityShanghai200031China
| | - Di Zhou
- Department of Radiation OncologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Junjun Zhou
- Department of Radiation OncologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Bin Hu
- Department of Radiation OncologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Xiumei Ma
- Department of Radiation OncologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Jianming Tang
- Department of Radiation OncologyThe First Hospital of Lanzhou UniversityLanzhou UniversityLanzhou730000China
| | - Yongrui Bai
- Department of Radiation OncologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Haiyan Chen
- Department of Radiation OncologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Ying Jing
- Center for Intelligent Medicine ResearchGreater Bay Area Institute of Precision Medicine (Guangzhou)Fudan UniversityGuangzhou511458China
| |
Collapse
|
32
|
Jin C, Wang T, Yang Y, Zhou P, Li J, Wu W, Lv X, Ma G, Wang A. Rational targeting of autophagy in colorectal cancer therapy: From molecular interactions to pharmacological compounds. ENVIRONMENTAL RESEARCH 2023; 227:115721. [PMID: 36965788 DOI: 10.1016/j.envres.2023.115721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
The abnormal progression of tumors has been a problem for treatment of cancer and therapeutic should be directed towards targeting main mechanisms involved in tumorigenesis in tumors. The genomic mutations can result in changes in biological mechanisms in human cancers. Colorectal cancer is one of the most malignant tumors of gastrointestinal tract and its treatment has been faced some difficulties due to development of resistance in tumor cells and also, their malignant behavior. Hence, new therapeutic modalities for colorectal cancer are being investigated. Autophagy is a "self-digestion" mechanism that is responsible for homeostasis preserving in cells and its aberrant activation/inhibition can lead to tumorigenesis. The current review focuses on the role of autophagy mechanism in colorectal cancer. Autophagy may be associated with increase/decrease in progression of colorectal cancer due to mutual function of this molecular mechanism. Pro-survival autophagy inhibits apoptosis to increase proliferation and survival rate of colorectal tumor cells and it is also involved in cancer metastasis maybe due to EMT induction. In contrast, pro-death autophagy decreases growth and invasion of colorectal tumor cells. The status of autophagy (upregulation and down-regulation) is a determining factor for therapy response in colorectal tumor cells. Therefore, targeting autophagy can increase sensitivity of colorectal tumor cells to chemotherapy and radiotherapy. Interestingly, nanoparticles can be employed for targeting autophagy in cancer therapy and they can both induce/suppress autophagy in tumor cells. Furthermore, autophagy modulators can be embedded in nanostructures in improving tumor suppression and providing cancer immunotherapy.
Collapse
Affiliation(s)
- Canhui Jin
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Tianbao Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Yanhui Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pin Zhou
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Juncheng Li
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Wenhao Wu
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Xin Lv
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Guoqing Ma
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Aihong Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China.
| |
Collapse
|
33
|
González-Montero J, Rojas CI, Burotto M. MAP4K4 and cancer: ready for the main stage? Front Oncol 2023; 13:1162835. [PMID: 37223681 PMCID: PMC10200945 DOI: 10.3389/fonc.2023.1162835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/06/2023] [Indexed: 05/25/2023] Open
Abstract
MAP4K4 is a serine/threonine kinase that belongs to the MAP kinase family and plays a critical role in embryogenesis and cellular migration. It contains approximately 1,200 amino acids and has a molecular mass of 140 kDa. MAP4K4 is expressed in most tissues where it has been examined and its knockout is embryonic lethal due to impaired somite development. Alterations in MAP4K4 function have a central role in the development of many metabolic diseases such as atherosclerosis and type 2 diabetes, but have recently been implicated in the initiation and progression of cancer. For example, it has been shown that MAP4K4 can stimulate the proliferation and invasion of tumor cells by activating pro-proliferative pathways (such as the c-Jun N-terminal kinase [JNK] and mixed-lineage protein kinase 3 [MLK3] pathways), attenuate anti-tumor cytotoxic immune responses, and stimulate cell invasion and migration by altering cytoskeleton and actin function. Recent in vitro experiments using RNA interference-based knockdown (miR) techniques have shown that inhibition of MAP4K4 function reduces tumor proliferation, migration, and invasion, and may represent a promising therapeutic approach in many types of cancer such as pancreatic cancer, glioblastoma, and medulloblastoma, among others. Over the last few years, specific MAP4K4 inhibitors such as GNE-495 have been developed but have not yet been tested in cancer patients. However, these novel agents may be useful for cancer treatment in the future.
Collapse
|
34
|
Singh SK, Roy R, Kumar S, Srivastava P, Jha S, Rana B, Rana A. Molecular Insights of MAP4K4 Signaling in Inflammatory and Malignant Diseases. Cancers (Basel) 2023; 15:cancers15082272. [PMID: 37190200 PMCID: PMC10136566 DOI: 10.3390/cancers15082272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are crucial in extracellular signal transduction to cellular responses. The classical three-tiered MAPK cascades include signaling through MAP kinase kinase kinase (MAP3K) that activates a MAP kinase kinase (MAP2K), which in turn induces MAPK activation and downstream cellular responses. The upstream activators of MAP3K are often small guanosine-5'-triphosphate (GTP)-binding proteins, but in some pathways, MAP3K can be activated by another kinase, which is known as a MAP kinase kinase kinase kinase (MAP4K). MAP4K4 is one of the widely studied MAP4K members, known to play a significant role in inflammatory, cardiovascular, and malignant diseases. The MAP4K4 signal transduction plays an essential role in cell proliferation, transformation, invasiveness, adhesiveness, inflammation, stress responses, and cell migration. Overexpression of MAP4K4 is frequently reported in many cancers, including glioblastoma, colon, prostate, and pancreatic cancers. Besides its mainstay pro-survival role in various malignancies, MAP4K4 has been implicated in cancer-associated cachexia. In the present review, we discuss the functional role of MAP4K4 in malignant/non-malignant diseases and cancer-associated cachexia and its possible use in targeted therapy.
Collapse
Affiliation(s)
- Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ruchi Roy
- UICentre for Drug Discovery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Piush Srivastava
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Saket Jha
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
35
|
MAP4K4 promotes ovarian cancer metastasis through diminishing ADAM10-dependent N-cadherin cleavage. Oncogene 2023; 42:1438-1452. [PMID: 36922678 PMCID: PMC10154218 DOI: 10.1038/s41388-023-02650-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Peritoneal metastasis is a key feature of advanced ovarian cancer, but the critical protein required for ovarian cancer metastasis and progression is yet to be defined. Thus, an unbiased high throughput and in-depth study is warranted to unmask the mechanism. Transcriptomic sequencing of paired primary ovarian tumors and metastases unveiled that MAP4K4, a serine/threonine kinase belongs to the Ste20 family of kinases, was highly expressed in metastatic sites. Increased MAP4K4 expression in metastasis was further validated in other independent patients, with higher MAP4K4 expression associated with poorer survival, higher level of CA125 and more advanced FIGO stage. Down regulation of MAP4K4 inhibited cancer cell adhesion, migration, and invasion. Notably, MAP4K4 was found to stabilize N-cadherin. Further results showed that MAP4K4 mediated phosphorylation of ADAM10 at Ser436 results in suppression of N-cadherin cleavage by ADAM10, leading to N-cadherin stabilization. Pharmacologic inhibition of MAP4K4 abrogated peritoneal metastases. Overall, our data reveal MAP4K4 as a significant promoter in ovarian cancer metastasis. Targeting MAP4K4 may be a potential therapeutic approach for ovarian cancer patients.
Collapse
|
36
|
Machine learning-based models for genomic predicting neoadjuvant chemotherapeutic sensitivity in cervical cancer. Biomed Pharmacother 2023; 159:114256. [PMID: 36652730 DOI: 10.1016/j.biopha.2023.114256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The PI3K/Akt pathway involves in regulating resistance to platinum-based neoadjuvant chemotherapy (NACT) in locally advanced cervical cancer (LACC) patients. Single nucleotide polymorphisms (SNPs) reflect the basic genetic variation between individuals. Random forest (RF) is one of the machine-learning models that can predict drug sensitivity with high accuracy. We applied the RF model for genomic prediction of NACT sensitivity in LACC patients. MATERIALS AND METHODS A total of 259 LACC patients were separated to two groups (i) effective and (ii) ineffective NACT group, depending on the NACT response. The 24 SNPs in four genes (PTEN, PIK3CA, Akt1, and Akt2) were genotyped by the Sequenom MassArray system in these patients. We implemented the SNPs as the feature to train the RF model, calculated the feature importance using mean decreases in impurity based on the model, and further analyzed the importance of each SNP. RESULTS The importance analysis indicated that the top three SNPs (rs4558508, rs1130233, and rs7259541) and the last six loci (rs892120, rs62107593, rs34716810, rs10416620, rs41275748, and rs41275746) were all located in Akt. The patients carrying heterozygous GA in Akt2 rs4558508 had a considerably higher risk of chemoresistance than those carrying GG or AA genotype. CONCLUSION The RF model could accurately predict the response to platinum-based NACT of LACC patients. The variables of Akt2 rs4558508 and rs7259541, and Akt1 rs1130233 were major polymorphic loci for NACT inefficiency. The LACC patients carrying heterozygous GA of Akt2 rs4558508 had a significantly increased risk of chemoresistance. Akt was an important gene in PI3K/Akt pathway that could predict the response of platinum-based NACT. The study applied the basis for an individualized approach to LACC patient therapy.
Collapse
|
37
|
Jovanovic D, Yan S, Baumgartner M. The molecular basis of the dichotomous functionality of MAP4K4 in proliferation and cell motility control in cancer. Front Oncol 2022; 12:1059513. [PMID: 36568222 PMCID: PMC9774001 DOI: 10.3389/fonc.2022.1059513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
The finely tuned integration of intra- and extracellular cues by components of the mitogen-activated protein kinase (MAPK) signaling pathways controls the mutually exclusive phenotypic manifestations of uncontrolled growth and tumor cell dissemination. The Ser/Thr kinase MAP4K4 is an upstream integrator of extracellular cues involved in both proliferation and cell motility control. Initially identified as an activator of the c-Jun N-terminal kinase (JNK), the discovery of diverse functions and additional effectors of MAP4K4 beyond JNK signaling has considerably broadened our understanding of this complex kinase. The implication of MAP4K4 in the regulation of cytoskeleton dynamics and cell motility provided essential insights into its role as a pro-metastatic kinase in cancer. However, the more recently revealed role of MAP4K4 as an activator of the Hippo tumor suppressor pathway has complicated the understanding of MAP4K4 as an oncogenic driver kinase. To develop a better understanding of the diverse functions of MAP4K4 and their potential significance in oncogenesis and tumor progression, we have collected and assessed the current evidence of MAP4K4 implication in molecular mechanisms that control proliferation and promote cell motility. A better understanding of these mechanisms is particularly relevant in the brain, where MAP4K4 is highly expressed and under pathological conditions either drives neuronal cell death in neurodegenerative diseases or cell dissemination in malignant tumors. We review established effectors and present novel interactors of MAP4K4, which offer mechanistic insights into MAP4K4 function and may inspire novel intervention strategies. We discuss possible implications of novel interactors in tumor growth and dissemination and evaluate potential therapeutic strategies to selectively repress pro-oncogenic functions of MAP4K4.
Collapse
Affiliation(s)
| | | | - Martin Baumgartner
- Pediatric Molecular Neuro-Oncology Research, Children’s Research Centre, Division of Oncology, University Children’s Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
38
|
Mirzaei S, Paskeh MDA, Entezari M, Mirmazloomi SR, Hassanpoor A, Aboutalebi M, Rezaei S, Hejazi ES, Kakavand A, Heidari H, Salimimoghadam S, Taheriazam A, Hashemi M, Samarghandian S. SOX2 function in cancers: Association with growth, invasion, stemness and therapy response. Biomed Pharmacother 2022; 156:113860. [DOI: 10.1016/j.biopha.2022.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022] Open
|
39
|
Zhang J, Cai X, Cui W, Wei Z. Bioinformatics and Experimental Analyses Reveal MAP4K4 as a Potential Marker for Gastric Cancer. Genes (Basel) 2022; 13:genes13101786. [PMID: 36292671 PMCID: PMC9601900 DOI: 10.3390/genes13101786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Gastric cancer remains the most prevalent and highly lethal disease worldwide. MAP4K4, a member of Ste20, plays an important role in various pathologies, including cancer. However, its role in gastric cancer is not yet fully elucidated. Therefore, this study aims to determine the tumor-promoting role of MAP4K4 in gastric cancer and whether it can be used as a new and reliable biomarker to predict the prognosis of gastric cancer. For this purpose, we divide the samples into high- and low-expression groups according to the expression level of MAP4K4. The association of MAP4K4 expression with prognosis is assessed using the Kaplan–Meier survival analysis. Furthermore, immune infiltration analysis using ESTIMATE is conducted to evaluate the tumor immune scores of the samples. Results: The findings reveal a significantly higher expression of MAP4K4 in tumor samples than in adjacent samples. The high-expression group was significantly enriched in tumor-related pathways, such as the PI3K-Akt signaling pathway. In addition, immune infiltration analysis revealed a positive correlation between immune scores and MAP4K4 expression. We also observed that miRNAs, such as miR-192-3p (R = −0.317, p-value 3.111 × 10−9), miR-33b-5p (R= −0.238, p-value 1.166 × 10−5), and miR-582-3p (R = −0.214, p-value 8.430 × 10−5), had potential negative regulatory effects on MAP4K4. Moreover, we identified several transcription factors, ubiquitinated proteins, and interacting proteins that might regulate MAP4K4. The relationship between MAP4K4 and DNA methylation was also identified. Finally, we verified the high expression of MAP4K4 and its effect on promoting cancer. Conclusion: MAP4K4 might be closely related to gastric cancer’s progression, invasion, and metastasis. Its high expression negatively impacts the prognosis of gastric cancer patients. This suggests MAP4K4 as an important prognostic factor for gastric cancer and could be regarded as a new potential prognostic detection and therapeutic target.
Collapse
Affiliation(s)
- Junping Zhang
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, China
- School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China
| | - Xiaoping Cai
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, China
- School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China
| | - Weifeng Cui
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, China
- School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China
| | - Zheng Wei
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, China
- School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China
- Correspondence:
| |
Collapse
|
40
|
Liu J, Chen Y, Nie L, Liang X, Huang W, Li R. In silico analysis and preclinical findings uncover potential targets of anti-cervical carcinoma and COVID-19 in laminarin, a promising nutraceutical. Front Pharmacol 2022; 13:955482. [PMID: 36016559 PMCID: PMC9395986 DOI: 10.3389/fphar.2022.955482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022] Open
Abstract
Until today, the coronavirus disease 2019 (COVID-19) pandemic has caused 6,043,094 deaths worldwide, and most of the mortality cases have been related to patients with long-term diseases, especially cancer. Autophagy is a cellular process for material degradation. Recently, studies demonstrated the association of autophagy with cancer development and immune disorder, suggesting autophagy as a possible target for cancer and immune therapy. Laminarin is a polysaccharide commonly found in brown algae and has been reported to have pharmaceutic roles in treating human diseases, including cancers. In the present report, we applied network pharmacology with systematic bioinformatic analysis, including gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, reactome pathway analysis, and molecular docking to determine the pharmaceutic targets of laminarin against COVID-19 and cervical cancer via the autophagic process. Our results showed that the laminarin would target ten genes: CASP8, CFTR, DNMT1, HPSE, KCNH2, PIK3CA, PIK3R1, SERPINE1, TLR4, and VEGFA. The enrichment analysis suggested their involvement in cell death, immune responses, apoptosis, and viral infection. In addition, molecular docking further demonstrated the direct binding of laminarin to its target proteins, VEGFA, TLR4, CASP8, and PIK3R1. The present findings provide evidence that laminarin could be used as a combined therapy for treating patients with COVID-19 and cervical cancer.
Collapse
Affiliation(s)
- Jiaqi Liu
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yudong Chen
- Department of Gynecology, Guigang City People’s Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Litao Nie
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiao Liang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Wenjun Huang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- *Correspondence: Wenjun Huang, ; Rong Li,
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- *Correspondence: Wenjun Huang, ; Rong Li,
| |
Collapse
|
41
|
Capdeville C, Russo L, Penton D, Migliavacca J, Zecevic M, Gries A, Neuhauss SC, Grotzer MA, Baumgartner M. Spatial proteomics finds CD155 and Endophilin-A1 as mediators of growth and invasion in medulloblastoma. Life Sci Alliance 2022; 5:5/6/e202201380. [PMID: 35296518 PMCID: PMC8926928 DOI: 10.26508/lsa.202201380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
The composition of the plasma membrane (PM)-associated proteome of tumor cells determines cell-cell and cell-matrix interactions and the response to environmental cues. Whether the PM-associated proteome impacts the phenotype of Medulloblastoma (MB) tumor cells and how it adapts in response to growth factor cues is poorly understood. Using a spatial proteomics approach, we observed that hepatocyte growth factor (HGF)-induced activation of the receptor tyrosine kinase c-MET in MB cells changes the abundance of transmembrane and membrane-associated proteins. The depletion of MAP4K4, a pro-migratory effector kinase downstream of c-MET, leads to a specific decrease of the adhesion and immunomodulatory receptor CD155 and of components of the fast-endophilin-mediated endocytosis (FEME) machinery in the PM-associated proteome of HGF-activated MB cells. The decreased surface expression of CD155 or of the fast-endophilin-mediated endocytosis effector endophilin-A1 reduces growth and invasiveness of MB tumor cells in the tissue context. These data thus describe a novel function of MAP4K4 in the control of the PM-associated proteome of tumor cells and identified two downstream effector mechanisms controlling proliferation and invasiveness of MB cells.
Collapse
Affiliation(s)
- Charles Capdeville
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Linda Russo
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - David Penton
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Jessica Migliavacca
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Milica Zecevic
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Alexandre Gries
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Stephan Cf Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Michael A Grotzer
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Martin Baumgartner
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
42
|
Xie D, Li S, Wu T, Wang X, Fang L. MiR-181c suppresses triple-negative breast cancer tumorigenesis by targeting MAP4K4. Pathol Res Pract 2022; 230:153763. [PMID: 35026645 DOI: 10.1016/j.prp.2022.153763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 11/26/2022]
Abstract
Breast cancer (BC) ranks as the highest incidence among cancer types in women all over the world. Triple-negative breast cancer (TNBC) is known as a highly aggressive subtype of BC due to high rate of recurrence and metastasis, poor prognosis and lacking of effective targeted therapies. MicroRNAs (miRNAs) are a class of short endogenous non-coding RNA that mostly functioning to silence the target mRNAs. In this study, we found miR-181c-5p (miR-181c) was down-expressed in TNBC tissues and cell lines, whereas MAP4K4 was highly-expressed. Up-regulation of miR-181c inhibited TNBC cells proliferation and migration, promoted TNBC cells apoptosis and regulated the cell cycle by arresting cells in the G0/G1 cell phase, while depletion of miR-181c showed opposite effect. Importantly, miR-181c suppressed MAP4K4 expression at both mRNA and protein levels by directly targeting MAP4K4, thereby inhibiting the tumor-promoting effect of MAP4K4. This study is the first to demonstrate the miR-181c/MAP4K4 signaling in suppressing TNBC, providing a novel therapeutic target for TNBC.
Collapse
Affiliation(s)
- Dan Xie
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China; Changzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu 213000, PR China.
| | - Saiyang Li
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China; Changzhou First People's Hospital, Changzhou, Jiangsu 213000, PR China
| | - Tianqi Wu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Xuehui Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China.
| |
Collapse
|