1
|
Kim J, Bang H, Seong C, Kim ES, Kim SY. Transcription factors and hormone receptors: Sex‑specific targets for cancer therapy (Review). Oncol Lett 2025; 29:93. [PMID: 39691589 PMCID: PMC11650965 DOI: 10.3892/ol.2024.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Despite advancements in diagnostic and therapeutic technologies, cancer continues to pose a challenge to disease-free longevity in humans. Numerous factors contribute to the onset and progression of cancer, among which sex differences, as an intrinsic biological condition, warrant further attention. The present review summarizes the roles of hormone receptors estrogen receptor α (ERα), estrogen receptor β (ERβ) and androgen receptor (AR) in seven types of cancer: Breast, prostate, ovarian, lung, gastric, colon and liver cancer. Key cancer-related transcription factors known to be activated through interactions with these hormone receptors have also been discussed. To assess the impact of sex hormone receptors on different cancer types, hormone-related transcription factors were analyzed using the SignaLink 3.0 database. Further analysis focused on six key transcription factors: CCCTC-binding factor, forkhead box A1, retinoic acid receptor α, PBX homeobox 1, GATA binding protein 2 and CDK inhibitor 1A. The present review demonstrates that these transcription factors significantly influence hormone receptor activity across various types of cancer, and elucidates the complex interactions between these transcription factors and hormone receptors, offering new insights into their roles in cancer progression. The findings suggest that targeting these common transcription factors could improve the efficacy of hormone therapy and provide a unified approach to treating various types of cancer. Understanding the dual and context-dependent roles of these transcription factors deepens the current understanding of the molecular mechanisms underlying hormone-driven tumor progression and could lead to more effective targeted therapeutic strategies.
Collapse
Affiliation(s)
- Juyeon Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hyobin Bang
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Cheyun Seong
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
2
|
Su Q, Chen K, Ren J, Zhang Y, Han X, Leong SW, Wang J, Wu Q, Tu K, Sarwar A, Zhang Y. Hypoxia drives estrogen receptor β-mediated cell growth via transcription activation in non-small cell lung cancer. J Mol Med (Berl) 2024; 102:1471-1484. [PMID: 39420137 DOI: 10.1007/s00109-024-02496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a highly malignant tumor with a poor prognosis. Hypoxia conditions affect multiple cellular processes promoting the adaptation and progression of cancer cells via the activation of hypoxia-inducible factors (HIF) and subsequent transcription activation of their target genes. Preliminary studies have suggested that estrogen receptor β (ERβ) might play a promoting role in the progression of NSCLC. However, the precise mechanisms, particularly its connection to HIF-1α-mediated modulation under hypoxia, remain unclear. Our findings demonstrated that the overexpression of ERβ, not ERα, increased cell proliferation and inhibition of apoptosis in NSCLC cells and xenografts. Tissue microarray staining revealed a strong correlation between the protein expression of HIF-1α and ERβ. HIF-1α induced ERβ gene transcription and protein expression in CoCl2-induced hypoxia, 1% O2 incubation, or HIF-1α overexpressing cells. ChIP identified HIF-1α binding to a hypoxia response element in the ESR2 promoter. The suppression of HIF-1α and ERβ both in vitro and in vivo effectively reduced the tumor growth, thus emphasizing the promising prospects of targeting HIF-1α and ERβ as a therapeutic approach for the treatment of NSCLC. KEY MESSAGES: ERβ, not ERα, increases cell proliferation and inhibition of apoptosis in NSCLC cells and xenografts. A strong correlation exists between the protein expression of HIF-1α and ERβ. HIF-1α induced ERβ gene transcription and protein expression in hypoxic cells via binding to HRE in the ESR2 promoter. The suppression of HIF-1α and ERβ both in vitro and in vivo effectively reduced the NSCLC tumor growth.
Collapse
Affiliation(s)
- Qi Su
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an, Shaanxi Province, 710061, P. R. China
| | - Kun Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an, Shaanxi Province, 710061, P. R. China
| | - Jiayan Ren
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an, Shaanxi Province, 710061, P. R. China
| | - Yu Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an, Shaanxi Province, 710061, P. R. China
| | - Xu Han
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an, Shaanxi Province, 710061, P. R. China
| | - Sze Wei Leong
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Jingjing Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an, Shaanxi Province, 710061, P. R. China
| | - Qing Wu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an, Shaanxi Province, 710061, P. R. China
| | - Kaihui Tu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an, Shaanxi Province, 710061, P. R. China
| | - Ammar Sarwar
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an, Shaanxi Province, 710061, P. R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an, Shaanxi Province, 710061, P. R. China.
| |
Collapse
|
3
|
Zhang S, Zhang X, Huang W, Jiang G, Mo Y, Wei L, Fan P, Chen M, Jiang W. NUSAP1 is Upregulated by Estrogen to Promote Lung Adenocarcinoma Growth and Serves as a Therapeutic Target. Int J Biol Sci 2024; 20:5375-5395. [PMID: 39430250 PMCID: PMC11489181 DOI: 10.7150/ijbs.100188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Nucleolar and spindle-associated protein 1 (NUSAP1), a microtubule-associated protein, has been recently identified to exhibit aberrant expression patterns that correlate with malignant tumorigenesis and progression across various cancer types. However, the specific regulatory mechanisms and potential targeting therapies of NUSAP1 in lung adenocarcinoma (LUAD) remain largely elusive. In this study, by conducting bioinformatics analyses as well as in vitro and in vivo experiments, we identified that NUSAP1 was significantly upregulated in LUAD, with a notable correlation with poorer overall survival, higher scores for immunogenicity and immune infiltration, as well as increased sensitivity to conventional chemotherapeutic drugs such as paclitaxel, docetaxel and vinorelbine in LUAD. Functionally, NUSAP1 overexpression significantly promoted LUAD cell proliferation, while its knockdown markedly suppressed this process. Interestingly, our results revealed that NUSAP1 upregulation was mediated by estrogen via ERβ activation. Furthermore, we identified entinostat as a novel inhibitor of NUSAP1. Pharmacological targeting ERβ/NUSAP1 axis with fulvestrant (ERβ antagonist) or entinostat (novel NUSAP1 inhibitor) significantly reduced LUAD growth both in vitro and in vivo, which may represent effective alternative therapeutic strategies for patients with LUAD.
Collapse
Affiliation(s)
- Shaoping Zhang
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Xiaozhen Zhang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Wenjian Huang
- Department of Breast Surgery, the Sixth Affiliated Hospital of South China University of Technology, the Sixth Clinical College of South China University of Technology, Foshan 528225, China
| | - Ganling Jiang
- Department of pharmacy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510145, China
| | - Yuanxin Mo
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Liuxia Wei
- Department of Medical Oncology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Pingming Fan
- Department of Breast Surgery, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
| | - Maojian Chen
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wei Jiang
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| |
Collapse
|
4
|
Lipowicz JM, Malińska A, Nowicki M, Rawłuszko-Wieczorek AA. Genes Co-Expressed with ESR2 Influence Clinical Outcomes in Cancer Patients: TCGA Data Analysis. Int J Mol Sci 2024; 25:8707. [PMID: 39201394 PMCID: PMC11354723 DOI: 10.3390/ijms25168707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
ERβ has been assigned a tumor suppressor role in many cancer types. However, as conflicting findings emerge, ERβ's tissue-specific expression and functional role have remained elusive. There remains a notable gap in compact and comprehensive analyses of ESR2 mRNA expression levels across diverse tumor types coupled with an exploration of its potential gene network. In this study, we aim to address these gaps by presenting a comprehensive analysis of ESR2 transcriptomic data. We distinguished cancer types with significant changes in ESR2 expression levels compared to corresponding healthy tissue and concluded that ESR2 influences patient survival. Gene Set Enrichment Analysis (GSEA) distinguished molecular pathways affected by ESR2, including oxidative phosphorylation and epithelial-mesenchymal transition. Finally, we investigated genes displaying similar expression patterns as ESR2 in tumor tissues, identifying potential co-expressed genes that may exert a synergistic effect on clinical outcomes, with significant results, including the expression of ACIN1, SYNE2, TNFRSF13C, and MDM4. Collectively, our results highlight the significant influence of ESR2 mRNA expression on the transcriptomic landscape and the overall metabolism of cancerous cells across various tumor types.
Collapse
Affiliation(s)
- Julia Maria Lipowicz
- Department of Histology and Embryology, Doctoral School, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781 Poznań, Poland;
| | - Agnieszka Malińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781 Poznań, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781 Poznań, Poland
| | | |
Collapse
|
5
|
Gong S, Li G, Li D, Liu Y, Wu B. The risk for subsequent primary lung cancer after cervical carcinoma: A quantitative analysis based on 864,627 cases. PLoS One 2024; 19:e0305670. [PMID: 38913637 PMCID: PMC11195986 DOI: 10.1371/journal.pone.0305670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Abstract
PURPOSE To compare the risk of developing subsequent primary lung cancer among cervical cancer patients and the general population. METHODS Several databases were searched from inception to April 25, 2023. The standard incidence ratios (SIRs) with 95% confidence intervals (CIs) were combined to identify the risk for second primary lung cancer after cervical carcinoma. Subgroup analyses based on the follow-up period, age, degree of malignancy and source of SIR were conducted. All the statistical analyses were performed with STATA 15.0 software. RESULTS A total of 22 retrospective studies involving 864,627 participants were included. The pooled results demonstrated that cervical cancer patients had a significantly greater risk for lung cancer than did the general population (SIR = 2.63, 95% CI: 2.37-2.91, P<0.001). Furthermore, subgroup analyses stratified by follow-up period (<5 years and ≥5 years), age (≤50 years and <50 years), and degree of malignancy (invasive and in situ) also revealed an increased risk of developing lung cancer among cervical carcinoma patients. CONCLUSION Cervical cancer patients are more likely to develop subsequent primary lung cancer than the general population, regardless of age, follow-up time or degree of malignancy. However, more high-quality prospective studies are still needed to verify our findings.
Collapse
Affiliation(s)
- Sheng Gong
- Department of Thoracic Surgery, The Public Health Clinical Center of Chengdu, Chengdu, P.R. China
| | - Gang Li
- Department of Thoracic Surgery, The Public Health Clinical Center of Chengdu, Chengdu, P.R. China
| | - Dan Li
- Department of Thoracic Surgery, The Public Health Clinical Center of Chengdu, Chengdu, P.R. China
| | - Yu Liu
- Department of Thoracic Surgery, The Public Health Clinical Center of Chengdu, Chengdu, P.R. China
| | - Banggui Wu
- Department of Thoracic Surgery, The Public Health Clinical Center of Chengdu, Chengdu, P.R. China
| |
Collapse
|
6
|
Nagandla H, Thomas C. Estrogen Signals through ERβ in Breast Cancer; What We Have Learned since the Discovery of the Receptor. RECEPTORS (BASEL, SWITZERLAND) 2024; 3:182-200. [PMID: 39175529 PMCID: PMC11340209 DOI: 10.3390/receptors3020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Estrogen receptor (ER) β (ERβ) is the second ER subtype that mediates the effects of estrogen in target tissues along with ERα that represents a validated biomarker and target for endocrine therapy in breast cancer. ERα was the only known ER subtype until 1996 when the discovery of ERβ opened a new chapter in endocrinology and prompted a thorough reevaluation of the estrogen signaling paradigm. Unlike the oncogenic ERα, ERβ has been proposed to function as a tumor suppressor in breast cancer, and extensive research is underway to uncover the full spectrum of ERβ activities and elucidate its mechanism of action. Recent studies have relied on new transgenic models to capture effects in normal and malignant breast that were not previously detected. They have also benefited from the development of highly specific synthetic ligands that are used to demonstrate distinct mechanisms of gene regulation in cancer. As a result, significant new information about the biology and clinical importance of ERβ is now available, which is the focus of discussion in the present article.
Collapse
Affiliation(s)
- Harika Nagandla
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Christoforos Thomas
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
7
|
Li X, Liu G, Wu W. Progress in Biological Research and Treatment of Pseudomyxoma Peritonei. Cancers (Basel) 2024; 16:1406. [PMID: 38611084 PMCID: PMC11010892 DOI: 10.3390/cancers16071406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Pseudomyxoma peritonei (PMP) is a rare disease characterized by extensive peritoneal implantation and mass secretion of mucus after primary mucinous tumors of the appendix or other organ ruptures. Cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) is currently the preferred treatment, with excellent efficacy and safety, and is associated with breakthrough progress in long-term disease control and prolonged survival. However, the high recurrence rate of PMP is the key challenge in its treatment, which limits the clinical application of multiple rounds of CRS-HIPEC and does not benefit from conventional systemic chemotherapy. Therefore, the development of alternative therapies for patients with refractory or relapsing PMP is critical. The literature related to PMP research progress and treatment was searched in the Web of Science, PubMed, and Google Scholar databases, and a literature review was conducted. The overview of the biological research, treatment status, potential therapeutic strategies, current research limitations, and future directions associated with PMP are presented, focuses on CRS-HIPEC therapy and alternative or combination therapy strategies, and emphasizes the clinical transformation prospects of potential therapeutic strategies such as mucolytic agents and targeted therapy. It provides a theoretical reference for the treatment of PMP and the main directions for future research.
Collapse
Affiliation(s)
- Xi Li
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha 410008, China;
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guodong Liu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha 410008, China;
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei Wu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha 410008, China;
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
8
|
Kim M, Jang YJ, Lee M, Guo Q, Son AJ, Kakkad NA, Roland AB, Lee BK, Kim J. The transcriptional regulatory network modulating human trophoblast stem cells to extravillous trophoblast differentiation. Nat Commun 2024; 15:1285. [PMID: 38346993 PMCID: PMC10861538 DOI: 10.1038/s41467-024-45669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
During human pregnancy, extravillous trophoblasts play crucial roles in placental invasion into the maternal decidua and spiral artery remodeling. However, regulatory factors and their action mechanisms modulating human extravillous trophoblast specification have been unknown. By analyzing dynamic changes in transcriptome and enhancer profile during human trophoblast stem cell to extravillous trophoblast differentiation, we define stage-specific regulators, including an early-stage transcription factor, TFAP2C, and multiple late-stage transcription factors. Loss-of-function studies confirm the requirement of all transcription factors identified for adequate differentiation, and we reveal that the dynamic changes in the levels of TFAP2C are essential. Notably, TFAP2C pre-occupies the regulatory elements of the inactive extravillous trophoblast-active genes during the early stage of differentiation, and the late-stage transcription factors directly activate extravillous trophoblast-active genes, including themselves as differentiation further progresses, suggesting sequential actions of transcription factors assuring differentiation. Our results reveal stage-specific transcription factors and their inter-connected regulatory mechanisms modulating extravillous trophoblast differentiation, providing a framework for understanding early human placentation and placenta-related complications.
Collapse
Affiliation(s)
- Mijeong Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yu Jin Jang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Muyoung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Qingqing Guo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Albert J Son
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nikita A Kakkad
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Abigail B Roland
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
9
|
Meng Y, Lin W, Wang N, Wei X, Mei P, Wang X, Zhang C, Huang Q, Liao Y. USP7-mediated ERβ stabilization mitigates ROS accumulation and promotes osimertinib resistance by suppressing PRDX3 SUMOylation in non-small cell lung carcinoma. Cancer Lett 2024; 582:216587. [PMID: 38097136 DOI: 10.1016/j.canlet.2023.216587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Osimertinib resistance is regarded as a major obstacle limiting survival benefits for patients undergoing treatment of epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC). However, the underlying mechanisms of acquired resistance remain unclear. In this study, we report that estrogen receptor β (ERβ) is highly expressed in osimertinib-resistant NSCLC and plays a pivotal role in promoting osimertinib resistance. We further identified ubiquitin-specific protease 7 (USP7) as a critical binding partner that deubiquitinates and upregulates ERβ in NSCLC. ERβ promotes osimertinib resistance by mitigating reactive oxygen species (ROS) accumulation. We found that ERβ mechanistically suppresses peroxiredoxin 3 (PRDX3) SUMOylation and thus confers osimertinib resistance onto NSCLC. Furthermore, we provide evidence showing that depletion of ERβ induces ROS accumulation and reverses osimertinib resistance in NSCLC both in vitro and in vivo. Thus, our results demonstrate that USP7-mediated ERβ stabilization suppresses PRDX3 SUMOylation to mitigate ROS accumulation and promote osimertinib resistance, suggesting that targeting ERβ may be an effective therapeutic strategy to overcome osimertinib resistance in NSCLC.
Collapse
Affiliation(s)
- Yunchong Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wei Lin
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Na Wang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiao Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Peiyuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiaojun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chi Zhang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Quanfu Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
10
|
Shen ZQ, Feng KP, Fang ZY, Xia T, Pan S, Ding C, Xu C, Ju S, Chen J, Li C, Zhao J. Influence of adjuvant chemotherapy on survival for patients with completely resected high-risk stage IB NSCLC. J Cardiothorac Surg 2024; 19:1. [PMID: 38166960 PMCID: PMC10763355 DOI: 10.1186/s13019-023-02457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The use of adjuvant chemotherapy (ACT) in completely resected stage IB NSCLC is still controversial. This study aims to investigate the efficacy of ACT in pathological stage IB non-small cell lung cancer (NSCLC) with high risk factors. METHODS Patients with pT2aN0M0 stage IB NSCLC who underwent complete resection from 2013 to 2017 were retrospectively analyzed. Univariate and multivariable logistic regression analysis was used to assess potential independent risk factors associated with poor prognosis. To compare survival between patients who received ACT and those who did not. RESULTS In univariate and multivariate analyses, adenocarcinomas with predominantly micropapillary (MIP) and solid patterns (SOL), poorly differentiated squamous cell carcinoma (SCC), number of lymph nodes dissected less than 16 and tumor size larger than 36 mm were identified as high-risk factors for recurrence. In patients with high risk factors for recurrence, ACT resulted in significantly longer DFS (HR, 0.4689, 95%CI, 1.193-3.818; p = 0.0108) and OS (HR, 0.4696, 95%CI, 0.6578-6.895; p = 0.2073), although OS failed to reach statistically significance. After propensity score matching (PSM), 67 pairs of patients were 1:1 matched in the two groups and all baseline characteristics were well balanced. The results also demonstrated that ACT was associated with improved DFS (HR, 0.4776, 95%CI, 0.9779-4.484; p = 0.0440) while OS was not significantly different (92.5% vs. 91.0%; HR, 0.6167, 95%CI, 0.1688-2.038; p = 0.7458). In patients with low-risk factors for recurrence, DFS (HR, 0.4831, 95%CI, 0.03025-7.715; p = 0.6068) and OS (HR, 0.969, 95%CI, 0.08364-11.21; p = 0.9794) was not significantly different between those who received ACT and those who did not. CONCLUSION In patients with completely resected stage IB NSCLC, ACT can improve survival in patients with high risk for recurrence. Further large multicenter studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Zi-Qing Shen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, 215000, China
| | - Kun-Peng Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, 215000, China
| | - Zi-Yao Fang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, 215000, China
| | - Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, 215000, China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, 215000, China
| | - Cheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, 215000, China
| | - Chun Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, 215000, China
| | - Sheng Ju
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, 215000, China
| | - Jun Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, 215000, China
| | - Chang Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, 215000, China.
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
11
|
Chen Y, Liu F, Chen X, Li W, Li K, Cai H, Wang S, Wang H, Xu K, Zhang C, Ye S, Shen Y, Mou T, Cai S, Zhou J, Yu J. microRNA-622 upregulates cell cycle process by targeting FOLR2 to promote CRC proliferation. BMC Cancer 2024; 24:26. [PMID: 38166756 PMCID: PMC10763126 DOI: 10.1186/s12885-023-11766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Epigenetic alterations contribute greatly to the development and progression of colorectal cancer, and effect of aberrant miR-622 expression is still controversial. This study aimed to discover miR-622 regulation in CRC proliferation. METHODS miR-622 expression and prognosis were analyzed in clinical CRC samples from Nanfang Hospital. miR-622 regulation on cell cycle and tumor proliferation was discovered, and FOLR2 was screened as functional target of miR-622 using bioinformatics analysis, which was validated via dual luciferase assay and gain-of-function and loss-of-function experiments both in vitro and in vivo. RESULTS miR-622 overexpression in CRC indicated unfavorable prognosis and it regulated cell cycle to promote tumor growth both in vitro and in vivo. FOLR2 is a specific, functional target of miR-622, which negatively correlates with signature genes in cell cycle process to promote CRC proliferation. CONCLUSIONS miR-622 upregulates cell cycle process by targeting FOLR2 to promote CRC proliferation, proposing a novel mechanism and treatment target in CRC epigenetic regulation of miR-622.
Collapse
Affiliation(s)
- Yuehong Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Feng Liu
- Department of Colorectal and Anal Surgery Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510515, China
| | - Xinhua Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenyi Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kejun Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hailang Cai
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shunyi Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Honglei Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ke Xu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chenxi Zhang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shengzhi Ye
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yunhao Shen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Tingyu Mou
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jianwei Zhou
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China.
| | - Jiang Yu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
12
|
Yin R, Lu H, Cao Y, Zhang J, Liu G, Guo Q, Kai X, Zhao J, Wei Y. The Mechanisms of miRNAs on Target Regulation and their Recent Advances in Atherosclerosis. Curr Med Chem 2024; 31:5779-5804. [PMID: 37807413 DOI: 10.2174/0109298673253678230920054220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/25/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023]
Abstract
miRNAs are crucial regulators in a variety of physiological and pathological processes, while their regulation mechanisms were usually described as negatively regulating gene expression by targeting the 3'-untranslated region(3'-UTR) of target gene miRNAs through seed sequence in tremendous studies. However, recent evidence indicated the existence of non-canonical mechanisms mediated by binding other molecules besides mRNAs. Additionally, accumulating evidence showed that functions of intracellular and intercellular miRNAs exhibited spatiotemporal patterns. Considering that detailed knowledge of the miRNA regulating mechanism is essential for understanding the roles and further clinical applications associated with their dysfunction and dysregulation, which is complicated and not fully clarified. Based on that, we summarized the recently reported regulation mechanisms of miRNAs, including recognitions, patterns of actions, and chemical modifications. And we also highlight the novel findings of miRNAs in atherosclerosis progression researches to provide new insights for non-coding RNA-based therapy in intractable diseases.
Collapse
Affiliation(s)
- Runting Yin
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Hongyu Lu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yixin Cao
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Zhang
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Geng Liu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Qian Guo
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Xinyu Kai
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Jiemin Zhao
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| |
Collapse
|
13
|
Vale N, Ribeiro E, Cruz I, Stulberg V, Koksch B, Costa B. New Perspective for Using Antimicrobial and Cell-Penetrating Peptides to Increase Efficacy of Antineoplastic 5-FU in Cancer Cells. J Funct Biomater 2023; 14:565. [PMID: 38132819 PMCID: PMC10744333 DOI: 10.3390/jfb14120565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
This study explores the effectiveness of the antineoplastic agent 5-FU in cancer cells by leveraging the unique properties of cationic antimicrobial peptides (CAMPs) and cell-penetrating peptides (CPPs). Traditional anticancer therapies face substantial limitations, including unfavorable pharmacokinetic profiles and inadequate specificity for tumor sites. These drawbacks often necessitate higher therapeutic agent doses, leading to severe toxicity in normal cells and adverse side effects. Peptides have emerged as promising carriers for targeted drug delivery, with their ability to selectively deliver therapeutics to cells expressing specific receptors. This enhances intracellular drug delivery, minimizes drug resistance, and reduces toxicity. In this research, we comprehensively evaluate the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of various AMPs and CPPs to gain insights into their potential as anticancer agents. The peptide synthesis involved a solid-phase synthesis using a Liberty Microwave Peptide Synthesizer. The peptide purity was confirmed via LC-MS and HPLC methods. For the ADMET screening, computational tools were employed, assessing parameters like absorption, distribution, metabolism, excretion, and toxicity. The cell lines A549 and UM-UC-5 were cultured and treated with 5-FU, CAMPs, and CPPs. The cell viability was measured using the MTT assay. The physicochemical properties analysis revealed favorable drug-likeness attributes. The peptides exhibited potential inhibitory activity against CYP3A4. The ADMET predictions indicated variable absorption and distribution characteristics. Furthermore, we assessed the effectiveness of these peptides alone and in combination with 5-FU, a widely used antineoplastic agent, in two distinct cancer cell lines, UM-UC-5 and A549. Our findings indicate that CAMPs can significantly reduce the cell viability in A549 cells, while CPPs exhibit promising results in UM-UC-5 cells. Understanding these multifaceted effects could open new avenues for antiviral and anticancer research. Further, experimental validation is necessary to confirm the mechanism of action of these peptides, especially in combination with 5-FU.
Collapse
Affiliation(s)
- Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (I.C.); (B.C.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Eduarda Ribeiro
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (I.C.); (B.C.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Inês Cruz
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (I.C.); (B.C.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Valentina Stulberg
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany; (V.S.); (B.K.)
| | - Beate Koksch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany; (V.S.); (B.K.)
| | - Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (I.C.); (B.C.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
14
|
Hu Y, Xu Y, Zhang T, Han Q, Li L, Liu M, Li N, Shao G. Cisplatin-activated ERβ/DCAF8 positive feedback loop induces chemoresistance in non-small cell lung cancer via PTEN/Akt axis. Drug Resist Updat 2023; 71:101014. [PMID: 37913652 DOI: 10.1016/j.drup.2023.101014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
High levels of the estrogen receptor β (ERβ) predict poor prognosis following platinum-containing adjuvant chemotherapies in patients with non-small cell lung cancer (NSCLC). However, the precise role of ERβ remains elusive. In this study, we demonstrated that targeting ERβ could significantly increase the cytotoxicity of cisplatin both in vitro and in vivo. Mechanically, cisplatin directly binds to ERβ, which facilitates its homodimerization and nuclear translocation. ERβ activation transcriptionally represses the expression of DCAF8, an adaptor of CRL4 E3 ubiquitin ligase, which in turn attenuates the proteasomal degradation of ERβ, leading to ERβ accumulation; this positive feedback loop results in Akt activation and eventually cisplatin resistance in NSCLC through PTEN inhibition. Moreover, low expression of DCAF8 and high expression of ERβ are associated with treatment resistance in patients receiving cisplatin-containing adjuvant chemotherapy. The present results provide insights into the underlying mechanism of ERβ-induced cisplatin resistance and offer an alternative therapeutic strategy to improve the efficacy of platinum-based chemotherapy in patients with NSCLC.
Collapse
Affiliation(s)
- Yumeng Hu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yongjie Xu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ting Zhang
- Department of Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Qianying Han
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Li Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Genze Shao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
15
|
Uram Ł, Wróbel K, Walczak M, Szymaszek Ż, Twardowska M, Wołowiec S. Exploring the Potential of Lapatinib, Fulvestrant, and Paclitaxel Conjugated with Glycidylated PAMAM G4 Dendrimers for Cancer and Parasite Treatment. Molecules 2023; 28:6334. [PMID: 37687164 PMCID: PMC10489794 DOI: 10.3390/molecules28176334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Fulvestrant (F), lapatinib (L), and paclitaxel (P) are hydrophobic, anticancer drugs used in the treatment of estrogen receptor (ER) and epidermal growth factor receptor (EGFR)-positive breast cancer. In this study, glycidylated PAMAM G4 dendrimers, substituted with F, L, and/or P and targeting tumor cells, were synthesized and characterized, and their antitumor activity against glioma U-118 MG and non-small cell lung cancer A549 cells was tested comparatively with human non-tumorogenic keratinocytes (HaCaT). All cell lines were ER+ and EGFR+. In addition, the described drugs were tested in the context of antinematode therapy on C. elegans. The results show that the water-soluble conjugates of G4P, G4F, G4L, and G4PFL actively entered the tested cells via endocytosis due to the positive zeta potential (between 13.57-40.29 mV) and the nanoparticle diameter of 99-138 nm. The conjugates of G4P and G4PFL at nanomolar concentrations were the most active, and the least active conjugate was G4F. The tested conjugates inhibited the proliferation of HaCaT and A549 cells; in glioma cells, cytotoxicity was associated mainly with cell damage (mitochondria and membrane transport). The toxicity of the conjugates was proportional to the number of drug residues attached, with the exception of G4L; its action was two- and eight-fold stronger against glioma and keratinocytes, respectively, than the equivalent of lapatinib alone. Unfortunately, non-cancer HaCaT cells were the most sensitive to the tested constructs, which forced a change in the approach to the use of ER and EGFR receptors as a goal in cancer therapy. In vivo studies on C. elegans have shown that all compounds, most notably G4PFL, may be potentially useful in anthelmintic therapy.
Collapse
Affiliation(s)
- Łukasz Uram
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańcow Warszawy Ave., 35-959 Rzeszów, Poland; (Ł.U.); (M.W.); (Ż.S.); (M.T.)
| | - Konrad Wróbel
- Medical College, Rzeszów University, 1a Warzywna Street, 35-310 Rzeszów, Poland;
| | - Małgorzata Walczak
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańcow Warszawy Ave., 35-959 Rzeszów, Poland; (Ł.U.); (M.W.); (Ż.S.); (M.T.)
| | - Żaneta Szymaszek
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańcow Warszawy Ave., 35-959 Rzeszów, Poland; (Ł.U.); (M.W.); (Ż.S.); (M.T.)
| | - Magdalena Twardowska
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańcow Warszawy Ave., 35-959 Rzeszów, Poland; (Ł.U.); (M.W.); (Ż.S.); (M.T.)
| | - Stanisław Wołowiec
- Medical College, Rzeszów University, 1a Warzywna Street, 35-310 Rzeszów, Poland;
| |
Collapse
|
16
|
Liu S, Hu C, Li M, Zhou W, Wang R, Xiao Y. Androgen receptor suppresses lung cancer invasion and increases cisplatin response via decreasing TPD52 expression. Int J Biol Sci 2023; 19:3709-3725. [PMID: 37564195 PMCID: PMC10411467 DOI: 10.7150/ijbs.84577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Lung cancer, as the most commonly diagnosed malignancy, still accounts for the leading cause of cancer-related deaths worldwide. The high rate of mortality and tumor recurrence has prompted clinicians and scientists to urgently explore new targets for improved treatment. Previous studies have indicated a potential role of the androgen receptor (AR) in the progression of non-small cell lung cancer (NSCLC). However, the precise mechanisms underlying this association, particularly its relation to TPD52-mediated cell invasion and cisplatin (DDP) response, have not been fully elucidated. Therefore, further investigation is necessary to gain a better understanding of these mechanisms and their potential implications for lung cancer treatment. In this study, we discovered that AR can suppress NSCLC cell invasion and increase cisplatin response by downregulating the expression of circular RNA (circRNA), specifically circ-SLCO1B7. This suppression is achieved through the direct binding of AR to the 5' promoter region of the host gene SLCO1B7. The decreased expression of circ-SLCO1B7, mediated by AR, released miR-139-5p back to the RISC (RNA induced silencing complex), where it bonds to the 3' untranslated region (3'UTR) of Tumor Protein D52 (TPD52) messenger RNA, resulting in TPD52 reduction. The in vivo data also validated the functional contribution of AR/circ-SLCO1B7/miR-139-5p/TPD52 axis to lung cancer progression. Furthermore, analysis of human NSCLC databases and clinical specimens confirmed the association of the AR/circ-SLCO1B7/miR-139-5p/TPD52 signaling pathway with NSCLC progression. Collectively, the results from our study suggest that AR can suppress lung cancer cell invasion and increase DDP response by modulating the circ-SLCO1B7/miR-139-5p/TPD52 signaling pathway. Targeting this novel signaling pathway may be a new therapeutic strategy to effectively constrain NSCLC development.
Collapse
Affiliation(s)
- Shiqing Liu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Li
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wolong Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yao Xiao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standards, Changsha 410008, China
| |
Collapse
|
17
|
Xiao M, Zhang Y, Zhang X, Zhang G, Jin C, Yang J, Wu S, Lu X. Bisphenol A and Di(2-Ethylhexyl) Phthalate promote pulmonary carcinoma in female rats via estrogen receptor beta: In vivo and in silico analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114496. [PMID: 36608567 DOI: 10.1016/j.ecoenv.2022.114496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/17/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The prevalence of lung cancer in women currently merits our attentions. However, cigarette exposure alone does not tell the whole story that lung cancer is more prevalent among non-smoking women. Since female lung cancer is closely linked to estrogen levels, many of endocrine disrupting chemicals (EDCs), as the substances similar to estrogen, affect hormone levels and become a potential risk of female lung cancer. Additionally, the combined toxicity of EDCs in daily environment has only been discussed on a limited scale. Consequently, this study explored the cancer-promoting effect of two representative substances of EDCs namely Bisphenol A (BPA) and Di(2-Ethylhexyl) Phthalate (DEHP) after their exposure alone or in combination, using a rat pulmonary tumor model published previously, combining bioinformatics analysis based on The Comparative Toxicogenomics Database (CTD) and The Cancer Genome Atlas (TCGA) databases. It demonstrated that BPA and DEHP enhanced the promotion of pulmonary tumor in female rats, either alone or in combination. Mechanistically, BPA and DEHP mainly directly bound and activated ESR2 protein, phosphorylated CREB protein, activated HDAC6 transcriptionally, induced the production of the proto-oncogene c-MYC, and accelerated the formation of pulmonary tumor in female rats. Remarkably, BPA, rather than DEHP, exhibited a much more critical effect in female lung cancer. Additionally, the transcription factor ESR2 was most affected in carcinogenesis, causing genetic disruption. Furthermore, the TCGA database revealed that ESR2 could enhance the promotion and progression of non-small cell lung cancer in females via activating the WNT/β-catenin pathway. Finally, our findings demonstrated that BPA and DEHP could enhance the promotion of pulmonary carcinoma via ESR2 in female rats and provide a potential and valuable insight into the causes and prevention of lung cancer in non-smoking women due to EDCs exposure.
Collapse
Affiliation(s)
- Mingyang Xiao
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Yating Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Xuan Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Guopei Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Cuihong Jin
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Jinghua Yang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Shengwen Wu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Xiaobo Lu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China.
| |
Collapse
|
18
|
Zou J, Lan H, Li W, Xie S, Tong Z, Song X, Wang C. Comprehensive Analysis of Circular RNA Expression Profiles in Gefitinib-Resistant Lung Adenocarcinoma Patients. Technol Cancer Res Treat 2022; 21:15330338221139167. [PMID: 36537128 PMCID: PMC9772949 DOI: 10.1177/15330338221139167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Gefitinib is a selective epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) widely used in lung adenocarcinoma (LUAD) patients harboring sensitive EGFR mutations. Although it has a good initial efficacy, acquired resistance to gefitinib is eventually inevitable. Studies have shown that circular RNA (circRNA) is involved in the development of acquired resistance to different anti-cancer drugs, but the comprehensive analysis of its expression profile and functions on acquired gefitinib resistance remains poor. Methods: To explore the aberrant circRNAs expression profiles, we collected peripheral plasma samples from 4 gefitinib-sensitive and 4 gefitinib-resistant patients for performing microarray analysis. Candidates of differentially expressed circRNAs were used and analyzed by bioinformatics modalities including gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and a constructed circRNA-microRNA RNA network. The differential expression of selected circRNAs was verified by quantitative real-time PCR (qRT-PCR). Results: A total of 2571 circRNAs with significantly different expression between the groups were identified by microarray analysis. GO, KEGG, and pathway enrichment analyses reveal that these differentially expressed circRNAs (DECs) were complicated in many biological pathways that may be related to EGFR-TKI resistance such as ABC transporter and PI3K-Akt pathways. A circRNA-microRNA network was constructed by 10 circRNAs potentially involved in EGFR-TKI resistance togethering with their corresponding microRNAs (miRNAs). Consistent with the results of microarray assay, hsa_circ_0030591 and hsa_circ_0040348 were validated to be upregulated in gefitinib-resistant patients by qRT-PCR. Conclusions: Our study provides valuable data on circRNAs expression profiles detected in liquid biopsy for LUAD patients with acquired gefitinib resistance, and we validate that upregulations of hsa_circ_0030591 and hsa_circ_0040348 may play key roles in EGFR-TKI resistance and thus serving as candidates for biomarker.
Collapse
Affiliation(s)
- Junyong Zou
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China,Department of Respiratory Medicine, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Huiyin Lan
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China,Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
| | - Wei Li
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongkai Tong
- Department of Respiratory Medicine, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xiaolian Song
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China,Changhui Wang, Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
Xiaolian Song, Changhui Wang, Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
19
|
Zhang X, Wang K, Dai H, Cai J, Liu Y, Yin C, Wu J, Li X, Wu G, Lu A, Liu Q, Guan D. Quantification of promoting efficiency and reducing toxicity of Traditional Chinese Medicine: A case study of the combination of Tripterygium wilfordii hook. f. and Lysimachia christinae hance in the treatment of lung cancer. Front Pharmacol 2022; 13:1018273. [PMID: 36339610 PMCID: PMC9631451 DOI: 10.3389/fphar.2022.1018273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional Chinese medicine (TCM) usually acts in the form of compound prescriptions in the treatment of complex diseases. The herbs contained in each prescription have the dual nature of efficiency and toxicity due to their complex chemical component, and the principle of prescription is usually to increase efficiency and reduce toxicity. At present, the studies on prescriptions have mainly focused on the consideration of the material basis and possible mechanism of the action mode, but the quantitative research on the compatibility rule of increasing efficiency and reducing toxicity is still the tip of the iceberg. With the extensive application of computational pharmacology technology in the research of TCM prescriptions, it is possible to quantify the mechanism of synergism and toxicity reduction of the TCM formula. Currently, there are some classic drug pairs commonly used to treat complex diseases, such as Tripterygium wilfordii Hook. f. with Lysimachia christinae Hance for lung cancer, Aconitum carmichaelii Debeaux with Glycyrrhiza uralensis Fisch. in the treatment of coronary heart disease, but there is a lack of systematic quantitative analysis model and strategy to quantitatively study the compatibility rule and potential mechanism of synergism and toxicity reduction. To address this issue, we designed an integrated model which integrates matrix decomposition and shortest path propagation, taking into account both the crosstalk of the effective network and the propagation characteristics. With the integrated model strategy, we can quantitatively detect the possible mechanisms of synergism and attenuation of Tripterygium wilfordii Hook. f. and Lysimachia christinae Hance in the treatment of lung cancer. The results showed the compatibility of Tripterygium wilfordii Hook. f. and Lysimachia christinae Hance could increase the efficacy and decrease the toxicity of lung cancer treatment through MAPK pathway and PD-1 checkpoint pathway in lung cancer.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Kexin Wang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Hui Dai
- Hospital Office, Ganzhou People’s Hospital, Ganzhou, China
- Hospital Office, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Jieqi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yujie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Chuanhui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Xiaowei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Guiyong Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Qinwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Chen J, Wang K, Ye S, Meng X, Jia X, Huang Y, Ma Q. Tyrosine kinase receptor RON activates MAPK/RSK/CREB signal pathway to enhance CXCR4 expression and promote cell migration and invasion in bladder cancer. Aging (Albany NY) 2022; 14:7093-7108. [PMID: 36103228 PMCID: PMC9512502 DOI: 10.18632/aging.204279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
Bladder cancer (BC) is one of the most lethal malignancies worldwide. The poor survival may be due to a high proportion of tumor metastasis. RON and CXCR4 are the key regulators of cell motility in BC, while the relationship between RON and CXCR4 remains elusive. In the present study, immunohistochemistry analysis of BC and adjacent normal tissues found that higher RON expression was positively correlated with CXCR4 expression. Inhibiting and replenishing RON level were used to regulate CXCR4 expression, observing the effects on migration and invasion of BC cells. Overexpression of RON reversed the inhibited cell migration and invasion following siCXCR4 treatment. Conversely, overexpression of CXCR4 restored the inhibition of cell migration and invasion caused by shRON. The activation of RON-MAPK/RSK/CREB pathway was demonstrated in BC cells under MSP treatment. Dual luciferase and CHIP assay showed that p-CREB targeted CXCR4 by binding to its CRE sequence. RON knockdown suppressed BC tumor growth in xenograft mouse tumors, accompanied by reduced expression of CXCR4. In conclusion, our data adds evidence that RON, a membrane tyrosine kinase receptor, promotes BC migration and invasion not only by itself, but also by activating MAPK/RSK/CREB signaling pathway to enhance CXCR4 expression.
Collapse
Affiliation(s)
- Junfeng Chen
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
- Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
| | - Kejie Wang
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
- Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
| | - Shazhou Ye
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
- Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
| | - Xiangyu Meng
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
- Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
| | - Xiaolong Jia
- Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Qi Ma
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
- Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
- Comprehensive Urogenital Cancer Center, Ningbo First Hospital, The affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
| |
Collapse
|
21
|
Naghsh-Nilchi A, Ebrahimi Ghahnavieh L, Dehghanian F. Construction of miRNA-lncRNA-mRNA co-expression network affecting EMT-mediated cisplatin resistance in ovarian cancer. J Cell Mol Med 2022; 26:4530-4547. [PMID: 35810383 PMCID: PMC9357632 DOI: 10.1111/jcmm.17477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/21/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Platinum resistance is one of the major concerns in ovarian cancer treatment. Recent evidence shows the critical role of epithelial-mesenchymal transition (EMT) in this resistance. Epithelial-like ovarian cancer cells show decreased sensitivity to cisplatin after cisplatin treatment. Our study prospected the association between epithelial phenotype and response to cisplatin in ovarian cancer. Microarray dataset GSE47856 was acquired from the GEO database. After identifying differentially expressed genes (DEGs) between epithelial-like and mesenchymal-like cells, the module identification analysis was performed using weighted gene co-expression network analysis (WGCNA). The gene ontology (GO) and pathway analyses of the most considerable modules were performed. The protein-protein interaction network was also constructed. The hub genes were specified using Cytoscape plugins MCODE and cytoHubba, followed by the survival analysis and data validation. Finally, the co-expression of miRNA-lncRNA-TF with the hub genes was reconstructed. The co-expression network analysis suggests 20 modules relating to the Epithelial phenotype. The antiquewhite4, brown and darkmagenta modules are the most significant non-preserved modules in the Epithelial phenotype and contain the most differentially expressed genes. GO, and KEGG pathway enrichment analyses on these modules divulge that these genes were primarily enriched in the focal adhesion, DNA replication pathways and stress response processes. ROC curve and overall survival rate analysis show that the co-expression pattern of the brown module's hub genes could be a potential prognostic biomarker for ovarian cancer cisplatin resistance.
Collapse
Affiliation(s)
- Amirhosein Naghsh-Nilchi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Laleh Ebrahimi Ghahnavieh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fariba Dehghanian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
22
|
Lu X, Wu Y, Cao R, Yu X, Gong J. CXCL12 secreted by pancreatic stellate cells accelerates gemcitabine resistance of pancreatic cancer by enhancing glycolytic reprogramming. Anim Cells Syst (Seoul) 2022; 26:148-157. [PMID: 36046033 PMCID: PMC9423839 DOI: 10.1080/19768354.2022.2091019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Xiangyu Lu
- The Department of Hepatobiliary Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, People’s Republic of China
| | - Yilei Wu
- Department of Medical Records Statistics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, People’s Republic of China
| | - Rui Cao
- Medical University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Xiaojiong Yu
- The Department of Hepatobiliary Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, People’s Republic of China
| | - Jun Gong
- The Department of Hepatobiliary Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, People’s Republic of China
| |
Collapse
|
23
|
Estrogens, Cancer and Immunity. Cancers (Basel) 2022; 14:cancers14092265. [PMID: 35565393 PMCID: PMC9101338 DOI: 10.3390/cancers14092265] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Sex hormones are included in many physiological and pathological pathways. Estrogens belong to steroid hormones active in female sex. Estradiol (E2) is the strongest female sex hormone and, with its receptors, contributes to oncogenesis, cancer progression and response to treatment. In recent years, a role of immunosurveillance and suppression of immune response in malignancy has been well defined, forming the basis for cancer immunotherapy. The interplay of sex hormones with cancer immunity, as well as the response to immune checkpoint inhibitors, is of interest. In this review, we investigate the impact of sex hormones on natural immune response with respect to main active elements in anticancer immune surveillance: dendritic cells, macrophages, lymphocytes and checkpoint molecules. We describe the main sex-dependent tumors and the contribution of estrogen in their progression, response to treatment and especially modulation of anticancer immune response.
Collapse
|
24
|
Chen P, Li B, Ou-Yang L. Role of estrogen receptors in health and disease. Front Endocrinol (Lausanne) 2022; 13:839005. [PMID: 36060947 PMCID: PMC9433670 DOI: 10.3389/fendo.2022.839005] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/26/2022] [Indexed: 12/14/2022] Open
Abstract
Estrogen receptors (ERs) regulate multiple complex physiological processes in humans. Abnormal ER signaling may result in various disorders, including reproductive system-related disorders (endometriosis, and breast, ovarian, and prostate cancer), bone-related abnormalities, lung cancer, cardiovascular disease, gastrointestinal disease, urogenital tract disease, neurodegenerative disorders, and cutaneous melanoma. ER alpha (ERα), ER beta (ERβ), and novel G-protein-coupled estrogen receptor 1 (GPER1) have been identified as the most prominent ERs. This review provides an overview of ERα, ERβ, and GPER1, as well as their functions in health and disease. Furthermore, the potential clinical applications and challenges are discussed.
Collapse
Affiliation(s)
| | - Bo Li
- *Correspondence: Bo Li, libo‐‐
| | | |
Collapse
|