1
|
Zhang Y, Wang Y, Mu P, Zhu X, Dong Y. Bidirectional regulation of the cGAS-STING pathway in the immunosuppressive tumor microenvironment and its association with immunotherapy. Front Immunol 2024; 15:1470468. [PMID: 39464890 PMCID: PMC11502381 DOI: 10.3389/fimmu.2024.1470468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Adaptive anti-tumor immunity is currently dependent on the natural immune system of the body. The emergence of tumor immunotherapy has improved prognosis and prolonged the survival cycle of patients. Current mainstream immunotherapies, including immune checkpoint blockade, chimeric antigen receptor T-cell immunotherapy, and monoclonal antibody therapy, are linked to natural immunity. The cGAS-STING pathway is an important natural immunity signaling pathway that plays an important role in fighting against the invasion of foreign pathogens and maintaining the homeostasis of the organism. Increasing evidence suggests that the cGAS-STING pathway plays a key role in tumor immunity, and the combination of STING-related agonists can significantly enhance the efficacy of immunotherapy and reduce the emergence of immunotherapeutic resistance. However, the cGAS-STING pathway is a double-edged sword, and its activation can enhance anti-tumor immunity and immunosuppression. Immunosuppressive cells, including M2 macrophages, MDSC, and regulatory T cells, in the tumor microenvironment play a crucial role in tumor escape, thereby affecting the immunotherapy effect. The cGAS-STING signaling pathway can bi-directionally regulate this group of immunosuppressive cells, and targeting this pathway can affect the function of immunosuppressive cells, providing new ideas for immunotherapy. In this study, we summarize the activation pathway of the cGAS-STING pathway and its immunological function and elaborate on the key role of this pathway in immune escape mediated by the tumor immunosuppressive microenvironment. Finally, we summarize the mainstream immunotherapeutic approaches related to this pathway and explore ways to improve them, thereby providing guidelines for further clinical services.
Collapse
Affiliation(s)
- Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yudi Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Peizheng Mu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, China
| |
Collapse
|
2
|
Bibbò S, Capone E, Lovato G, Ponziani S, Lamolinara A, Iezzi M, Lattanzio R, Mazzocco K, Morini M, Giansanti F, De Laurenzi V, Whitfield J, Iacobelli S, Ippoliti R, Beaulieu ME, Soucek L, Sala A, Sala G. EV20/Omomyc: A novel dual MYC/HER3 targeting immunoconjugate. J Control Release 2024; 374:171-180. [PMID: 39128771 DOI: 10.1016/j.jconrel.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
MYC is one of the most important therapeutic targets in human cancer. Many attempts have been made to develop small molecules that could be used to curb its activity in patients, but most failed to identify a suitable direct inhibitor. After years of preclinical characterization, a tissue-penetrating peptide MYC inhibitor, called Omomyc, has been recently successfully used in a Phase I dose escalation study in late-stage, all-comers solid tumour patients. The study showed drug safety and positive signs of clinical activity, prompting the beginning of a new Phase Ib combination study currently ongoing in metastatic pancreatic adenocarcinoma patients. In this manuscript, we have explored the possibility to improve Omomyc targeting to specific cancer subtypes by linking it to a therapeutic antibody. The new immunoconjugate, called EV20/Omomyc, was developed by linking a humanised anti-HER3 antibody, named EV20, to Omomyc using a bifunctional linker. EV20/Omomyc shows antigen-dependent penetrating activity and therapeutic efficacy in a metastatic model of neuroblastoma. This study suggests that directing Omomyc into specific cell types using antibodies recognising tumour antigens could improve its therapeutic activity in specific indications, like in the paediatric setting.
Collapse
Affiliation(s)
- Sandra Bibbò
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Emily Capone
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giulio Lovato
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Sara Ponziani
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, Italy
| | - Alessia Lamolinara
- Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, Italy; Department of Neurosciences, Imaging and Clinical Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Manuela Iezzi
- Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Department of Neurosciences, Imaging and Clinical Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Katia Mazzocco
- Laboratory of Experimental Therap ies in Oncology, IRCCS Istituto Giannina Gaslini
| | - Martina Morini
- Laboratory of Experimental Therap ies in Oncology, IRCCS Istituto Giannina Gaslini
| | - Francesco Giansanti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | | | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, Italy.
| | | | - Laura Soucek
- Peptomyc S.L., Barcelona 08035, Spain; Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Arturo Sala
- Centre for Inflammation Research and Translational Medicine (CIRTM); College, of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom,.
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
3
|
Deng J, Pan T, Wang D, Hong Y, Liu Z, Zhou X, An Z, Li L, Alfano G, Li G, Dolcetti L, Evans R, Vicencio JM, Vlckova P, Chen Y, Monypenny J, Gomes CADC, Weitsman G, Ng K, McCarthy C, Yang X, Hu Z, Porter JC, Tape CJ, Yin M, Wei F, Rodriguez-Justo M, Zhang J, Tejpar S, Beatson R, Ng T. The MondoA-dependent TXNIP/GDF15 axis predicts oxaliplatin response in colorectal adenocarcinomas. EMBO Mol Med 2024; 16:2080-2108. [PMID: 39103698 PMCID: PMC11393413 DOI: 10.1038/s44321-024-00105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Chemotherapy, the standard of care treatment for cancer patients with advanced disease, has been increasingly recognized to activate host immune responses to produce durable outcomes. Here, in colorectal adenocarcinoma (CRC) we identify oxaliplatin-induced Thioredoxin-Interacting Protein (TXNIP), a MondoA-dependent tumor suppressor gene, as a negative regulator of Growth/Differentiation Factor 15 (GDF15). GDF15 is a negative prognostic factor in CRC and promotes the differentiation of regulatory T cells (Tregs), which inhibit CD8 T-cell activation. Intriguingly, multiple models including patient-derived tumor organoids demonstrate that the loss of TXNIP and GDF15 responsiveness to oxaliplatin is associated with advanced disease or chemotherapeutic resistance, with transcriptomic or proteomic GDF15/TXNIP ratios showing potential as a prognostic biomarker. These findings illustrate a potentially common pathway where chemotherapy-induced epithelial oxidative stress drives local immune remodeling for patient benefit, with disruption of this pathway seen in refractory or advanced cases.
Collapse
Affiliation(s)
- Jinhai Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- Clinical Research Centre (CRC), Medical Pathology Centre (MPC), Cancer Early Detection and Treatment Centre (CEDTC), Translational Medicine Research Centre (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Teng Pan
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), 518172, Shenzhen, China
| | - Dan Wang
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Yourae Hong
- Digestive Oncology Unit and Centre for Human Genetics, Universitair Ziekenhuis (UZ) Leuven, Leuven, Belgium
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhengwen An
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
| | - Giovanna Alfano
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Gang Li
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Luigi Dolcetti
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Rachel Evans
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Jose M Vicencio
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Petra Vlckova
- Cell Communication Lab, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | - Yue Chen
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - James Monypenny
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | | | - Gregory Weitsman
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Kenrick Ng
- Department of Medical Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Caitlin McCarthy
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Xiaoping Yang
- Centre of Excellence for Mass Spectrometry, Proteomics Facility, The James Black Centre, King's College London, London, UK
| | - Zedong Hu
- Digestive Oncology Unit and Centre for Human Genetics, Universitair Ziekenhuis (UZ) Leuven, Leuven, Belgium
| | - Joanna C Porter
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London (UCL), Rayne Building, London, UK
| | - Christopher J Tape
- Cell Communication Lab, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | - Mingzhu Yin
- Clinical Research Centre (CRC), Medical Pathology Centre (MPC), Cancer Early Detection and Treatment Centre (CEDTC), Translational Medicine Research Centre (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Fengxiang Wei
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), 518172, Shenzhen, China
| | | | - Jin Zhang
- 3rd Department of Breast Cancer Prevention, Treatment and Research Centre, Tianjin, PR China
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin, PR China
- Tianjin's Clinical Research Centre for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- National Clinical Research Centre for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
| | - Sabine Tejpar
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), 518172, Shenzhen, China
| | - Richard Beatson
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London (UCL), Rayne Building, London, UK.
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Tony Ng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- UCL Cancer Institute, University College London, London, UK.
- Cancer Research UK City of London Centre, London, UK.
| |
Collapse
|
4
|
Li W, Zheng C, Xu X, Xia Y, Zhang K, Huang A, Zhang X, Zheng Y, Chen G, Zhang S. Combined therapy of dabrafenib and an anti-HER2 antibody-drug conjugate for advanced BRAF-mutant melanoma. Cell Mol Biol Lett 2024; 29:50. [PMID: 38594618 PMCID: PMC11005275 DOI: 10.1186/s11658-024-00555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Melanoma is the most lethal skin cancer characterized by its high metastatic potential. In the past decade, targeted and immunotherapy have brought revolutionary survival benefits to patients with advanced and metastatic melanoma, but these treatment responses are also heterogeneous and/or do not achieve durable responses. Therefore, novel therapeutic strategies for improving outcomes remain an unmet clinical need. The aim of this study was to evaluate the therapeutic potential and underlying molecular mechanisms of RC48, a novel HER2-target antibody drug conjugate, either alone or in combination with dabrafenib, a V600-mutant BRAF inhibitor, for the treatment of advanced BRAF-mutant cutaneous melanoma. METHODS We evaluated the therapeutic efficacy of RC48, alone or in combination with dabrafenib, in BRAF-mutant cutaneous melanoma cell lines and cell-derived xenograft (CDX) models. We also conducted signaling pathways analysis and global mRNA sequencing to explore mechanisms underlying the synergistic effect of the combination therapy. RESULTS Our results revealed the expression of membrane-localized HER2 in melanoma cells. RC48 effectively targeted and inhibited the growth of HER2-positive human melanoma cell lines and corresponding CDX models. When used RC48 and dabrafenib synergically induced tumor regression together in human BRAF-mutant melanoma cell lines and CDX models. Mechanically, our results demonstrated that the combination therapy induced apoptosis and cell cycle arrest while suppressing cell motility in vitro. Furthermore, global RNA sequencing analysis demonstrated that the combination treatment led to the downregulation of several key signaling pathways, including the PI3K-AKT pathway, MAPK pathway, AMPK pathway, and FOXO pathway. CONCLUSION These findings establish a preclinical foundation for the combined use of an anti-HER2 drug conjugate and a BRAF inhibitor in the treatment of BRAF-mutant cutaneous melanoma.
Collapse
Affiliation(s)
- Weisong Li
- Department of General Surgery, First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China
| | - Chao Zheng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Xi Xu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Yujie Xia
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Kai Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Ao Huang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xinyu Zhang
- Department of General Surgery, First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China
| | - Yong Zheng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China.
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China.
| | - Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Shuyong Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China.
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
5
|
Tang W, Zhou W, Ji M, Yang X. Role of STING in the treatment of non-small cell lung cancer. Cell Commun Signal 2024; 22:202. [PMID: 38566036 PMCID: PMC10986073 DOI: 10.1186/s12964-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent form of lung cancer. Patients with advanced NSCLC are currently being treated with various therapies, including traditional radiotherapy, chemotherapy, molecular targeted therapies and immunotherapy. However, a considerable proportion of advance patients who cannot benefit from them. Consequently, it is essential to identify a novel research target that offers an encouraging perspective. The stimulator of interferon genes (STING) has emerged as such a target. At present, it is confirmed that activating STING in NSCLC tumor cells can impede the proliferation and metastasis of dormant tumor cells. This review focuses on the role of STING in NSCLC treatment and the factors influencing its activation. Additionally, it explores the correlation between STING activation and diverse therapy modalities for NSCLC, such as radiotherapy, chemotherapy, molecular targeted therapies and immunotherapy. Furthermore, it proposes the prospect of innovative therapy methods involving nanoparticles, with the aim of using the features of STING to develop more strategies for NSCLC therapy.
Collapse
Affiliation(s)
- Wenhua Tang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Wenjie Zhou
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Mei Ji
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Xin Yang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
6
|
He W, Mu X, Wu X, Liu Y, Deng J, Liu Y, Han F, Nie X. The cGAS-STING pathway: a therapeutic target in diabetes and its complications. BURNS & TRAUMA 2024; 12:tkad050. [PMID: 38312740 PMCID: PMC10838060 DOI: 10.1093/burnst/tkad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 02/06/2024]
Abstract
Diabetic wound healing (DWH) represents a major complication of diabetes where inflammation is a key impediment to proper healing. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a central mediator of inflammatory responses to cell stress and damage. However, the contribution of cGAS-STING activation to impaired healing in DWH remains understudied. In this review, we examine the evidence that cGAS-STING-driven inflammation is a critical factor underlying defective DWH. We summarize studies revealing upregulation of the cGAS-STING pathway in diabetic wounds and discuss how this exacerbates inflammation and senescence and disrupts cellular metabolism to block healing. Partial pharmaceutical inhibition of cGAS-STING has shown promise in damping inflammation and improving DWH in preclinical models. We highlight key knowledge gaps regarding cGAS-STING in DWH, including its relationships with endoplasmic reticulum stress and metal-ion signaling. Elucidating these mechanisms may unveil new therapeutic targets within the cGAS-STING pathway to improve healing outcomes in DWH. This review synthesizes current understanding of how cGAS-STING activation contributes to DWH pathology and proposes future research directions to exploit modulation of this pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
7
|
Cheng D, Ge K, Yao X, Wang B, Chen R, Zhao W, Fang C, Ji M. Tumor-associated macrophages mediate resistance of EGFR-TKIs in non-small cell lung cancer: mechanisms and prospects. Front Immunol 2023; 14:1209947. [PMID: 37649478 PMCID: PMC10463184 DOI: 10.3389/fimmu.2023.1209947] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are the first-line standard treatment for advanced non-small cell lung cancer (NSCLC) with EGFR mutation. However, resistance to EGFR-TKIs is inevitable. Currently, most studies on the mechanism of EGFR-TKIs resistance mainly focus on the spontaneous resistance phenotype of NSCLC cells. Studies have shown that the tumor microenvironment (TME) also mediates EGFR-TKIs resistance in NSCLC. Tumor-associated macrophages (TAMs), one of the central immune cells in the TME of NSCLC, play an essential role in mediating EGFR-TKIs resistance. This study aims to comprehensively review the current mechanisms underlying TAM-mediated resistance to EGFR-TKIs and discuss the potential efficacy of combining EGFR-TKIs with targeted TAMs therapy. Combining EGFR-TKIs with TAMs targeting may improve the prognosis of NSCLC with EGFR mutation to some extent.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cheng Fang
- Departments of Oncology, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Mei Ji
- Departments of Oncology, the Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
8
|
Dunker W, Zaver SA, Pineda JMB, Howard CJ, Bradley RK, Woodward JJ. The proto-oncogene SRC phosphorylates cGAS to inhibit an antitumor immune response. JCI Insight 2023; 8:e167270. [PMID: 37166992 PMCID: PMC10371251 DOI: 10.1172/jci.insight.167270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is a DNA sensor and responsible for inducing an antitumor immune response. Recent studies reveal that cGAS is frequently inhibited in cancer, and therapeutic targets to promote antitumor cGAS function remain elusive. SRC is a proto-oncogene tyrosine kinase and is expressed at elevated levels in numerous cancers. Here, we demonstrate that SRC expression in primary and metastatic bladder cancer negatively correlates with innate immune gene expression and immune cell infiltration. We determine that SRC restricts cGAS signaling in human cell lines through SRC small molecule inhibitors, depletion, and overexpression. cGAS and SRC interact in cells and in vitro, while SRC directly inhibits cGAS enzymatic activity and DNA binding in a kinase-dependent manner. SRC phosphorylates cGAS, and inhibition of cGAS Y248 phosphorylation partially reduces SRC inhibition. Collectively, our study demonstrates that cGAS antitumor signaling is hindered by the proto-oncogene SRC and describes how cancer-associated proteins can regulate the innate immune system.
Collapse
Affiliation(s)
| | - Shivam A. Zaver
- Department of Microbiology and
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
| | - Jose Mario Bello Pineda
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | - Robert K. Bradley
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
9
|
Greaves GE, Kiryushko D, Auner HW, Porter AE, Phillips CC. Label-free nanoscale mapping of intracellular organelle chemistry. Commun Biol 2023; 6:583. [PMID: 37258606 PMCID: PMC10232547 DOI: 10.1038/s42003-023-04943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
The ability to image cell chemistry at the nanoscale is key for understanding cell biology, but many optical microscopies are restricted by the ~(200-250)nm diffraction limit. Electron microscopy and super-resolution fluorescence techniques beat this limit, but rely on staining and specialised labelling to generate image contrast. It is challenging, therefore, to obtain information about the functional chemistry of intracellular components. Here we demonstrate a technique for intracellular label-free chemical mapping with nanoscale (~30 nm) resolution. We use a probe-based optical microscope illuminated with a mid-infrared laser whose wavelengths excite vibrational modes of functional groups occurring within biological molecules. As a demonstration, we chemically map intracellular structures in human multiple myeloma cells and compare the morphologies with electron micrographs of the same cell line. We also demonstrate label-free mapping at wavelengths chosen to target the chemical signatures of proteins and nucleic acids, in a way that can be used to identify biochemical markers in the study of disease and pharmacology.
Collapse
Affiliation(s)
- George E Greaves
- Experimental Solid State Group, Department of Physics, Imperial College London, London, UK.
| | - Darya Kiryushko
- Experimental Solid State Group, Department of Physics, Imperial College London, London, UK
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, UK
| | - Holger W Auner
- Department of Immunology and Inflammation, The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London, UK
| | - Alexandra E Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, UK
| | - Chris C Phillips
- Experimental Solid State Group, Department of Physics, Imperial College London, London, UK.
| |
Collapse
|
10
|
Li Y, Li X, Yi J, Cao Y, Qin Z, Zhong Z, Yang W. Nanoparticle-Mediated STING Activation for Cancer Immunotherapy. Adv Healthc Mater 2023:e2300260. [PMID: 36905358 DOI: 10.1002/adhm.202300260] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Indexed: 03/12/2023]
Abstract
As the first line of host defense against pathogenic infections, innate immunity plays a key role in antitumor immunotherapy. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) (cGAS-STING) pathway has attracted much attention because of the secretion of various proinflammatory cytokines and chemokines. Many STING agonists have been identified and applied into preclinical or clinical trials for cancer immunotherapy. However, the fast excretion, low bioavailability, nonspecificity, and adverse effects of the small molecule STING agonists limit their therapeutic efficacy and in vivo application. Nanodelivery systems with appropriate size, charge, and surface modification are capable of addressing these dilemmas. In this review, the mechanism of the cGAS-STING pathway is discussed and the STING agonists, focusing on nanoparticle-mediated STING therapy and combined therapy for cancers, are summarized. Finally, the future direction and challenges of nano-STING therapy are expounded, emphasizing the pivotal scientific problems and technical bottlenecks and hoping to provide general guidance for its clinical application.
Collapse
Affiliation(s)
- Yongjuan Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China.,The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xinyan Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China.,The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jinmeng Yi
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China.,The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yongjian Cao
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China.,The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Weijing Yang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
11
|
Chen S, Tang J, Liu F, Li W, Yan T, Shangguan D, Yang N, Liao D. Changes of tumor microenvironment in non-small cell lung cancer after TKI treatments. Front Immunol 2023; 14:1094764. [PMID: 36949948 PMCID: PMC10025329 DOI: 10.3389/fimmu.2023.1094764] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common lung cancer diagnosis, among which epidermal growth factor receptor (EGFR), Kirsten rat sarcoma (KRAS), and anaplastic lymphoma kinase (ALK) mutations are the common genetic drivers. Their relative tyrosine kinase inhibitors (TKIs) have shown a better response for oncogene-driven NSCLC than chemotherapy. However, the development of resistance is inevitable following the treatments, which need a new strategy urgently. Although immunotherapy, a hot topic for cancer therapy, has shown an excellent response for other cancers, few responses for oncogene-driven NSCLC have been presented from the existing evidence, including clinical studies. Recently, the tumor microenvironment (TME) is increasingly thought to be a key parameter for the efficacy of cancer treatment such as targeted therapy or immunotherapy, while evidence has also shown that the TME could be affected by multi-factors, such as TKIs. Here, we discuss changes in the TME in NSCLC after TKI treatments, especially for EGFR-TKIs, to offer information for a new therapy of oncogene-driven NSCLC.
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Pharmacy, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jingyi Tang
- Department of Pharmacy, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Fen Liu
- Department of Pharmacy, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Li
- Department of Pharmacy, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ting Yan
- Department of Pharmacy, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Dangang Shangguan
- Department of Pharmacy, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Nong Yang
- Lung Cancer and Gastrointestinal Unit, Department of Medical Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
12
|
Larsen ME, Lyu H, Liu B. HER3-targeted therapeutic antibodies and antibody-drug conjugates in non-small cell lung cancer refractory to EGFR-tyrosine kinase inhibitors. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:11-17. [PMID: 39170873 PMCID: PMC11332908 DOI: 10.1016/j.pccm.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 08/23/2024]
Abstract
Human epidermal growth factor receptor 3 (HER3) is a unique member of the human epidermal growth factor receptor (HER/EGFR) family, since it has negligible kinase activity. Therefore, HER3 must interact with a kinase-proficient receptor to form a heterodimer, leading to the activation of signaling cascades. Overexpression of HER3 is observed in various human cancers, including non-small cell lung cancer (NSCLC), and correlates with poor clinical outcomes in patients. Studies on the underlying mechanism demonstrate that HER3-initiated signaling promotes tumor metastasis and causes treatment failure in human cancers. Upregulation of HER3 is frequently observed in EGFR-mutant NSCLC treated with EGFR-tyrosine kinase inhibitors (TKIs). Increased expression of HER3 triggers the so-called EGFR-independent mechanism via interactions with other receptors to activate "bypass signaling pathways", thereby resulting in resistance to EGFR-TKIs. To date, no HER3-targeted therapy has been approved for cancer treatment. In both preclinical and clinical studies, targeting HER3 with a blocking antibody (Ab) is the only strategy being examined. Recent evaluations of an anti-HER3 Ab-drug conjugate (ADC) show promising results in patients with EGFR-TKI-resistant NSCLC. Herein, we summarize our understanding of the unique biology of HER3 in NSCLC refractory to EGFR-TKIs, with a focus on its dimerization partners and subsequent activation of signaling pathways. We also discuss the latest development of the therapeutic Abs and ADCs targeting HER3 to abrogate EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Margaret E. Larsen
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| | - Hui Lyu
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| | - Bolin Liu
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
13
|
Osimertinib Resistance: Molecular Mechanisms and Emerging Treatment Options. Cancers (Basel) 2023; 15:cancers15030841. [PMID: 36765799 PMCID: PMC9913144 DOI: 10.3390/cancers15030841] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The development of tyrosine kinase inhibitors (TKIs) targeting the mutant epidermal growth factor receptor (EGFR) protein initiated the success story of targeted therapies in non-small-cell lung cancer (NSCLC). Osimertinib, a third-generation EGFR-TKI, is currently indicated as first-line therapy in patients with NSCLC with sensitizing EGFR mutations, as second-line therapy in patients who present the resistance-associated mutation T790M after treatment with previous EGFR-TKIs, and as adjuvant therapy for patients with early stage resected NSCLC, harboring EGFR mutations. Despite durable responses in patients with advanced NSCLC, resistance to osimertinib, similar to other targeted therapies, inevitably develops. Understanding the mechanisms of resistance, including both EGFR-dependent and -independent molecular pathways, as well as their therapeutic potential, represents an unmet need in thoracic oncology. Interestingly, differential resistance mechanisms develop when osimertinib is administered in a first-line versus second-line setting, indicating the importance of selection pressure and clonal evolution of tumor cells. Standard therapeutic approaches after progression to osimertinib include other targeted therapies, when a targetable genetic alteration is detected, and cytotoxic chemotherapy with or without antiangiogenic and immunotherapeutic agents. Deciphering the when and how to use immunotherapeutic agents in EGFR-positive NSCLC is a current challenge in clinical lung cancer research. Emerging treatment options after progression to osimertinib involve combinations of different therapeutic approaches and novel EGFR-TKI inhibitors. Research should also be focused on the standardization of liquid biopsies in order to facilitate the monitoring of molecular alterations after progression to osimertinib.
Collapse
|
14
|
Wu Y, Chen L, Chen J, Xue H, He Q, Zhong D, Diao X. Covalent Binding Mechanism of Furmonertinib and Osimertinib With Human Serum Albumin. Drug Metab Dispos 2023; 51:8-16. [PMID: 36328480 DOI: 10.1124/dmd.122.001019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
As third-generation tyrosine kinase inhibitors, furmonertinib and osimertinib exhibit better efficacy than first- and second-generation tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer. However, radioactive pharmacokinetics studies showed that parent-related components remain in human plasma for at least 21 days after oral administration. Similar pharmacokinetic profiles were found in pyrotinib and neratinib, which have been identified to covalently bind with human serum albumin at Lys-190, leading to low extraction recovery in protein precipitation. However, the binding mechanism of furmonertinib and osimertinib in human plasma has not been confirmed. Comprehensive techniques were used to investigate the mechanism of this binding, including ultra high-performance liquid chromatography coupled with high-resolution mass spectrometry and online/offline radioactivity profiling. SDS-PAGE and further autoradiography were also used to detect drug-protein adducts. We found that most furmonertinib exists in the human plasma following ex vivo incubation in the form of protein-drug adducts. Only lysine-furmonertinb adducts were found in pronase digests. A standard reference of lysine-furmonertinib was synthesized and confirmed by NMR. Through peptide mapping analysis, we confirmed that furmonertinib almost exclusively binds with human serum albumin (HSA) in plasma following ex vivo incubation, via Michael addition at Lys-195 and Lys-199, instead of Lys-190. Two peptides found to bond with furmonertinib were ASSAKQR and LKCASLQK. Osimertinib was also found to bond with Lys-195 and Lys-199 of HSA via peptide mapping analysis. SIGNIFICANCE STATEMENT: Here we report that furmonertinib and osimertinib can covalently bind with human serum albumin at the site of Lys-195 and Lys-199 instead of Lys-190, potentially leading to the long duration of drug-protein adducts in the human body.
Collapse
Affiliation(s)
- Yali Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| | - Lili Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| | - Jian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| | - Hao Xue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| | - Qingfeng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| | - Dafang Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| | - Xingxing Diao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| |
Collapse
|