1
|
Shao L, Chang Y, Liu J, Lin L, Chang L, Zhang J, Lan Z, Zhang H, Chen X. scRNA-Seq reveals age-dependent microglial evolution as a determinant of immune response following spinal cord injury. Brain Res Bull 2024; 219:111116. [PMID: 39515654 DOI: 10.1016/j.brainresbull.2024.111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Spinal cord injury (SCI) is a debilitating condition of the central nervous system (CNS) that leads to severe impairments in sensory and motor functions. Previous studies have pointed out that patient age is a critical factor influencing SCI prognosis. However, the role of microglia in age-related differences in SCI outcomes remains unclear. The current study aims to identify specific microglial subtypes and investigate their responses and functional differences in SCI recovery across different age groups. Single-cell RNA sequencing (scRNA-seq) data were obtained from the Gene Expression Omnibus (GEO) database, integrating multiple datasets to identify microglial subtypes. We performed pseudotime trajectory analysis and cell-cell communication analysis to understand microglial differentiation and interactions. Finally, immunofluorescence staining of mouse model samples was conducted to validate our bioinformatics findings. Microglia were classified into four subtypes: Homeostatic, Proliferating, Inflammatory A, and Inflammatory B. The Young SCI group exhibited a higher proportion of Homeostatic microglia and Inflammatory microglia A, whereas the old SCI group had more Inflammatory Microglia B but lacked Homeostatic Microglia. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that markers for homeostasis microglia were enriched in immune modulation pathways. While makers for Inflammatory Microglia were enriched in immune response pathways. Specifically, markers for Inflammatory microglia B were enriched in pathways associated with overactive immune response. Pseudotime analysis indicated that microglia in young mice predominantly differentiated into Inflammatory Microglia A and Homeostatic Microglia, whereas in old mice, they tended to only differentiate into Inflammatory Microglia B. CellChat analysis showed increased pro-inflammatory signaling generated by Inflammatory Microglia B, exclusively in the old group. Our study demonstrates significant differences in microglial subtypes and functions between different age groups following SCI. These findings provide novel insights into the development of age-related therapeutic strategies and microglia-targeted biological treatments for SCI.
Collapse
Affiliation(s)
- Lufei Shao
- Neurology Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China; Ningxia nervous system disease Diagnosis and treatment Engineering Technology Research center, Yinchuan 750004, China
| | - Yueliang Chang
- Neurology Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Jinfang Liu
- Neurology Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Leilei Lin
- Orthopedics Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Long Chang
- Orthopedics Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Jialin Zhang
- Orthopedics Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Zhibin Lan
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Honglai Zhang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xiaolei Chen
- Orthopedics Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
2
|
Zhang Y, Li T, Wang G, Ma Y. Advancements in Single-Cell RNA Sequencing and Spatial Transcriptomics for Central Nervous System Disease. Cell Mol Neurobiol 2024; 44:65. [PMID: 39387975 PMCID: PMC11467076 DOI: 10.1007/s10571-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
The incidence of central nervous system (CNS) disease has persistently increased over the last several years. There is an urgent need for effective methods to improve the cure rates of CNS disease. However, the precise molecular basis underlying the development and progression of major CNS diseases remains elusive. A complete molecular map will contribute to research on CNS disease treatment strategies. Emerging technologies such as single-cell RNA sequencing (scRNA-seq) and Spatial Transcriptomics (ST) are potent tools for exploring the molecular complexity, cell heterogeneity, and functional specificity of CNS disease. scRNA-seq and ST can provide insights into the disease at cellular and spatial transcription levels. This review presents a survey of scRNA-seq and ST studies on CNS diseases, such as chronic neurodegenerative diseases, acute CNS injuries, and others. These studies offer novel perspectives in treating and diagnosing CNS diseases by discovering new cell types or subtypes associated with the disease, proposing new pathophysiological mechanisms, uncovering novel therapeutic targets, and identifying putative biomarkers.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacy, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Teng Li
- Department of Laboratory Medicine, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Yabin Ma
- Department of Pharmacy, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
3
|
Peng R, Zhang L, Xie Y, Guo S, Cao X, Yang M. Spatial multi-omics analysis of the microenvironment in traumatic spinal cord injury: a narrative review. Front Immunol 2024; 15:1432841. [PMID: 39267742 PMCID: PMC11390538 DOI: 10.3389/fimmu.2024.1432841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 09/15/2024] Open
Abstract
Traumatic spinal cord injury (tSCI) is a severe injury to the central nervous system that is categorized into primary and secondary injuries. Among them, the local microenvironmental imbalance in the spinal cord caused by secondary spinal cord injury includes accumulation of cytokines and chemokines, reduced angiogenesis, dysregulation of cellular energy metabolism, and dysfunction of immune cells at the site of injury, which severely impedes neurological recovery from spinal cord injury (SCI). In recent years, single-cell techniques have revealed the heterogeneity of multiple immune cells at the genomic, transcriptomic, proteomic, and metabolomic levels after tSCI, further deepening our understanding of the mechanisms underlying tSCI. However, spatial information about the tSCI microenvironment, such as cell location and cell-cell interactions, is lost in these approaches. The application of spatial multi-omics technology can solve this problem by combining the data obtained from immunohistochemistry and multiparametric analysis to reveal the changes in the microenvironment at different times of secondary injury after SCI. In this review, we systematically review the progress of spatial multi-omics techniques in the study of the microenvironment after SCI, including changes in the immune microenvironment and discuss potential future therapeutic strategies.
Collapse
Affiliation(s)
- Run Peng
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Liang Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Yongqi Xie
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Shuang Guo
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinqi Cao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Mingliang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation, Research Center, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
4
|
Fan YP, Lou JS, Jin MR, Zhou CH, Shen HH, Fu CY, Mao XJ, Chen YY, Zhong JJ, Wang LL, Wu JS. UBC9-mediated SUMOylation of Lamin B1 enhances DNA-damage-induced nuclear DNA leakage and autophagy after spinal cord injury. J Cell Physiol 2024; 239:e31213. [PMID: 38308641 DOI: 10.1002/jcp.31213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Recent studies have shown that nucleophagy can mitigate DNA damage by selectively degrading nuclear components protruding from the nucleus. However, little is known about the role of nucleophagy in neurons after spinal cord injury (SCI). Western blot analysis and immunofluorescence were performed to evaluate the nucleophagy after nuclear DNA damage and leakage in SCI neurons in vivo and NSC34 expression in primary neurons cultured with oxygen-glucose deprivation (OGD) in vitro, as well as the interaction and colocalization of autophagy protein LC3 with nuclear lamina protein Lamin B1. The effect of UBC9, a Small ubiquitin-related modifier (SUMO) E2 ligase, on Lamin B1 SUMOylation and nucleophagy was examined by siRNA transfection or 2-D08 (a small-molecule inhibitor of UBC9), immunoprecipitation, and immunofluorescence. In SCI and OGD injured NSC34 or primary cultured neurons, neuronal nuclear DNA damage induced the SUMOylation of Lamin B1, which was required by the nuclear Lamina accumulation of UBC9. Furthermore, LC3/Atg8, an autophagy-related protein, directly bound to SUMOylated Lamin B1, and delivered Lamin B1 to the lysosome. Knockdown or suppression of UBC9 with siRNA or 2-D08 inhibited SUMOylation of Lamin B1 and subsequent nucleophagy and protected against neuronal death. Upon neuronal DNA damage and leakage after SCI, SUMOylation of Lamin B1 is induced by nuclear Lamina accumulation of UBC9. Furthermore, it promotes LC3-Lamin B1 interaction to trigger nucleophagy that protects against neuronal DNA damage.
Collapse
Affiliation(s)
- Yun-Peng Fan
- Department of Orthopaedics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun-Sheng Lou
- Department of Orthopaedics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng-Ran Jin
- Department of Orthopaedics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cong-Hui Zhou
- Department of Orthopaedics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong-Hao Shen
- Department of Orthopaedics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chun-Yan Fu
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing-Jia Mao
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying-Ying Chen
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin-Jie Zhong
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-Lin Wang
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Medicine, Tarim University, Ale, China
| | - Jun-Song Wu
- Department of Orthopaedics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Kagohashi K, Sasaki Y, Ozawa K, Tsuchiya T, Kawahara S, Saitoh K, Ichii M, Toda J, Harada Y, Kubo M, Kitai Y, Muromoto R, Oritani K, Kashiwakura JI, Matsuda T. Role of Signal-Transducing Adaptor Protein-1 for T Cell Activation and Pathogenesis of Autoimmune Demyelination and Airway Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:951-961. [PMID: 38315039 DOI: 10.4049/jimmunol.2300202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024]
Abstract
Signal-transducing adaptor protein (STAP)-1 is an adaptor protein that is widely expressed in T cells. In this article, we show that STAP-1 upregulates TCR-mediated T cell activation and T cell-mediated airway inflammation. Using STAP-1 knockout mice and STAP-1-overexpressing Jurkat cells, we found that STAP-1 enhanced TCR signaling, resulting in increased calcium mobilization, NFAT activity, and IL-2 production. Upon TCR engagement, STAP-1 binding to ITK promoted formation of ITK-LCK and ITK-phospholipase Cγ1 complexes to induce downstream signaling. Consistent with the results, STAP-1 deficiency reduced the severity of symptoms in experimental autoimmune encephalomyelitis. Single-cell RNA-sequencing analysis revealed that STAP-1 is essential for accumulation of T cells and Ifng and Il17 expression in spinal cords after experimental autoimmune encephalomyelitis induction. Th1 and Th17 development was also attenuated in STAP-1 knockout naive T cells. Taken together, STAP-1 enhances TCR signaling and plays a role in T cell-mediated immune disorders.
Collapse
Affiliation(s)
- Kota Kagohashi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuto Sasaki
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kiyotaka Ozawa
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takuya Tsuchiya
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shoya Kawahara
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kodai Saitoh
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Toda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuyo Harada
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita, Japan
| | - Jun-Ichi Kashiwakura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Life Science, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
6
|
Liu Y, Lin F, Wu C, Liu W, Wang H, Xiao C, Chen X. In Situ Reaction-Generated Aldehyde-Scavenging Polypeptides-Curcumin Conjugate Nanoassemblies for Combined Treatment of Spinal Cord Injury. ACS NANO 2024; 18:7346-7362. [PMID: 38416031 DOI: 10.1021/acsnano.3c08662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The microenvironment after traumatic spinal cord injury (SCI) involves complex pathological processes, including elevated oxidative stress, accumulated reactive aldehydes from lipid peroxidation, excessive immune cell infiltration, etc. Unfortunately, most of current neuroprotection therapies cannot cope with the intricate pathophysiology of SCI, leading to scant treatment efficacies. Here, we developed a facile in situ reaction-induced self-assembly method to prepare aldehyde-scavenging polypeptides (PAH)-curcumin conjugate nanoassemblies (named as PFCN) for combined neuroprotection in SCI. The prepared PFCN could release PAH and curcumin in response to oxidative and acidic SCI microenvironment. Subsequently, PFCN exhibited an effectively neuroprotective effect through scavenging toxic aldehydes as well as reactive nitrogen and oxygen species in neurons, modulating microglial M1/M2 polarization, and down-regulating the expression of inflammation-related cytokines to inhibit neuroinflammation. The intravenous administration of PFCN could significantly ameliorate the malignant microenvironment of injured spinal cord, protect the neurons, and promote the motor function recovery in the contusive SCI rat model.
Collapse
Affiliation(s)
- Yixuan Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Feng Lin
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Cheng Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Wanguo Liu
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
7
|
Perez JC, Poulen G, Cardoso M, Boukhaddaoui H, Gazard CM, Courtand G, Bertrand SS, Gerber YN, Perrin FE. CSF1R inhibition at chronic stage after spinal cord injury modulates microglia proliferation. Glia 2023; 71:2782-2798. [PMID: 37539655 DOI: 10.1002/glia.24451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Traumatic spinal cord injury (SCI) induces irreversible autonomic and sensory-motor impairments. A large number of patients exhibit chronic SCI and no curative treatment is currently available. Microglia are predominant immune players after SCI, they undergo highly dynamic processes, including proliferation and morphological modification. In a translational aim, we investigated whether microglia proliferation persists at chronic stage after spinal cord hemisection and whether a brief pharmacological treatment could modulate microglial responses. We first carried out a time course analysis of SCI-induced microglia proliferation associated with morphological analysis up to 84 days post-injury (dpi). Second, we analyzed outcomes on microglia of an oral administration of GW2580, a colony stimulating factor-1 receptor tyrosine kinase inhibitor reducing selectively microglia proliferation. After SCI, microglia proliferation remains elevated at 84 dpi. The percentage of proliferative microglia relative to proliferative cells increases over time reaching almost 50% at 84 dpi. Morphological modifications of microglia processes are observed up to 84 dpi and microglia cell body area is transiently increased up to 42 dpi. A transient post-injury GW2580-delivery at two chronic stages after SCI (42 and 84 dpi) reduces microglia proliferation and modifies microglial morphology evoking an overall limitation of secondary inflammation. Finally, transient GW2580-delivery at chronic stage after SCI modulates myelination processes. Together our study shows that there is a persistent microglia proliferation induced by SCI and that a pharmacological treatment at chronic stage after SCI modulates microglial responses. Thus, a transient oral GW2580-delivery at chronic stage after injury may provide a promising therapeutic strategy for chronic SCI patients.
Collapse
Affiliation(s)
| | - Gaetan Poulen
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
| | - Maida Cardoso
- UMR 5221, Univ. Montpellier, CNRS, Montpellier, France
| | | | | | | | | | | | - Florence Evelyne Perrin
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
8
|
Sasaki Y, Saitoh K, Kagohashi K, Ose T, Kawahara S, Kitai Y, Muromoto R, Sekine Y, Ichii M, Yoshimura A, Oritani K, Kashiwakura JI, Matsuda T. STAP-2-Derived Peptide Suppresses TCR-Mediated Signals to Initiate Immune Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:755-766. [PMID: 37417746 DOI: 10.4049/jimmunol.2200942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Signal-transducing adaptor protein-2 (STAP-2) is an adaptor protein that contains pleckstrin and Src homology 2-like domains, as well as a proline-rich region in its C-terminal region. Our previous study demonstrated that STAP-2 positively regulates TCR signaling by associating with TCR-proximal CD3ζ ITAMs and the lymphocyte-specific protein tyrosine kinase. In this study, we identify the STAP-2 interacting regions of CD3ζ ITAMs and show that the STAP-2-derived synthetic peptide (iSP2) directly interacts with the ITAM sequence and blocks the interactions between STAP-2 and CD3ζ ITAMs. Cell-penetrating iSP2 was delivered into human and murine T cells. iSP2 suppressed cell proliferation and TCR-induced IL-2 production. Importantly, iSP2 treatment suppressed TCR-mediated activation of naive CD4+ T cells and decreased immune responses in CD4+ T cell-mediated experimental autoimmune encephalomyelitis. It is likely that iSP2 is a novel immunomodulatory tool that modulates STAP-2-mediated activation of TCR signaling and represses the progression of autoimmune diseases.
Collapse
Affiliation(s)
- Yuto Sasaki
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kodai Saitoh
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kota Kagohashi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Toyoyuki Ose
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Shoya Kawahara
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuichi Sekine
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita, Japan
| | - Jun-Ichi Kashiwakura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Department of Life Science, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
He N, Mao XJ, Ding YM, Zuo T, Chen YY, Wang LL. New insights into the biological roles of immune cells in neural stem cells in post-traumatic injury of the central nervous system. Neural Regen Res 2023; 18:1908-1916. [PMID: 36926707 PMCID: PMC10233778 DOI: 10.4103/1673-5374.367836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/21/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
Traumatic injuries in the central nervous system, such as traumatic brain injury and spinal cord injury, are associated with tissue inflammation and the infiltration of immune cells, which simultaneously affect the self-renewal and differentiation of neural stem cells. However, the tissue repair process instigated by endogenous neural stem cells is incapable of restoring central nervous system injuries without external intervention. Recently, resident/peripheral immune cells have been demonstrated to exert significant effects on neural stem cells. Thus, the restoration of traumatic injuries in the central nervous system by the immune intervention in neural stem cells represents a potential therapeutic method. In this review, we discuss the roles and possible mechanisms of immune cells on the self-renewal and differentiation of neural stem cells along with the prognosis of central nervous system injuries based on immune intervention. Finally, we discuss remaining research challenges that need to be considered in the future. Further elucidation of these challenges will facilitate the successful application of neural stem cells in central nervous system injuries.
Collapse
Affiliation(s)
- Ning He
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xing-Jia Mao
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yue-Min Ding
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang Province, China
| | - Tong Zuo
- University of Chicago College, University of Chicago, Chicago, IL, USA
| | - Ying-Ying Chen
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Lin-Lin Wang
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
10
|
Shang Z, Wanyan P, Wang M, Zhang B, Cui X, Wang X. Bibliometric analysis of stem cells for spinal cord injury: current status and emerging frontiers. Front Pharmacol 2023; 14:1235324. [PMID: 37533634 PMCID: PMC10392836 DOI: 10.3389/fphar.2023.1235324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023] Open
Abstract
Background: This study aimed to conduct a bibliometric analysis of the literature on stem cell therapy for spinal cord injury to visualize the research status, identify hotspots, and explore the development trends in this field. Methods: We searched the Web of Science Core Collection database using relevant keywords ("stem cells" and "spinal cord injury") and retrieved the published literature between 2000 and 2022. Data such as journal title, author information, institutional affiliation, country, and keywords were extracted. Afterwards, we performed bibliometric analysis of the retrieved data using Bibliometrix, VOSviewer, and CiteSpace. Results: A total of 5375 articles related to stem cell therapy for spinal cord injury were retrieved, and both the annual publication volume and the cumulative publication volume showed an upward trend. neural regeneration research was the journal with the most publications and the fastest cumulative publication growth (162 articles), Okano Hideyuki was the author with the highest number of publications and citations (114 articles), Sun Yat-sen University was the institution with the highest number of publications (420 articles), and China was the country with the highest number of publications (5357 articles). However, different authors, institutions, and countries need to enhance their cooperation in order to promote the generation of significant academic achievements. Current research in this field has focused on stem cell transplantation, neural regeneration, motor function recovery, exosomes, and tissue engineering. Meanwhile, future research directions are primarily concerned with the molecular mechanisms, safety, clinical trials, exosomes, scaffolds, hydrogels, and inflammatory responses of stem cell therapy for spinal cord injuries. Conclusion: In summary, this study provided a comprehensive analysis of the current research status and frontiers of stem cell therapy for spinal cord injury. The findings provide a foundation for future research and clinical translation efforts of stem cell therapy in this field.
Collapse
Affiliation(s)
- Zhizhong Shang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Pingping Wanyan
- Department of Pathology and Pathophysiology, School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Department of Nephrology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Mingchuan Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Baolin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaoqian Cui
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xin Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Chengren Institute of Traditional Chinese Medicine, Lanzhou, Gansu, China
- Department of Spine, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
11
|
Cai M, Chen L, Wang T, Liang Y, Zhao J, Zhang X, Li Z, Wu H. Hydrogel scaffolds in the treatment of spinal cord injury: a review. Front Neurosci 2023; 17:1211066. [PMID: 37325033 PMCID: PMC10266534 DOI: 10.3389/fnins.2023.1211066] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Spinal cord injury (SCI) is a disease of the central nervous system often caused by accidents, and its prognosis is unsatisfactory, with long-term adverse effects on patients' lives. The key to its treatment lies in the improvement of the microenvironment at the injury and the reconstruction of axons, and tissue repair is a promising therapeutic strategy. Hydrogel is a three-dimensional mesh structure with high water content, which has the advantages of biocompatibility, degradability, and adjustability, and can be used to fill pathological defects by injectable flowing hydrophilic material in situ to accurately adapt to the size and shape of the injury. Hydrogels mimic the natural extracellular matrix for cell colonization, guide axon extension, and act as a biological scaffold, which can be used as an excellent carrier to participate in the treatment of SCI. The addition of different materials to make composite hydrogel scaffolds can further enhance their performance in all aspects. In this paper, we introduce several typical composite hydrogels and review the research progress of hydrogel for SCI to provide a reference for the clinical application of hydrogel therapy for SCI.
Collapse
Affiliation(s)
- Manqi Cai
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, China
| | - Liji Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Tao Wang
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, China
| | - Yinru Liang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jie Zhao
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xiaomin Zhang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Ziyi Li
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| | - Hongfu Wu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
12
|
Shafqat A, Albalkhi I, Magableh HM, Saleh T, Alkattan K, Yaqinuddin A. Tackling the glial scar in spinal cord regeneration: new discoveries and future directions. Front Cell Neurosci 2023; 17:1180825. [PMID: 37293626 PMCID: PMC10244598 DOI: 10.3389/fncel.2023.1180825] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Axonal regeneration and functional recovery are poor after spinal cord injury (SCI), typified by the formation of an injury scar. While this scar was traditionally believed to be primarily responsible for axonal regeneration failure, current knowledge takes a more holistic approach that considers the intrinsic growth capacity of axons. Targeting the SCI scar has also not reproducibly yielded nearly the same efficacy in animal models compared to these neuron-directed approaches. These results suggest that the major reason behind central nervous system (CNS) regeneration failure is not the injury scar but a failure to stimulate axon growth adequately. These findings raise questions about whether targeting neuroinflammation and glial scarring still constitute viable translational avenues. We provide a comprehensive review of the dual role of neuroinflammation and scarring after SCI and how future research can produce therapeutic strategies targeting the hurdles to axonal regeneration posed by these processes without compromising neuroprotection.
Collapse
|
13
|
Single-cell RNA sequencing in orthopedic research. Bone Res 2023; 11:10. [PMID: 36828839 PMCID: PMC9958119 DOI: 10.1038/s41413-023-00245-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 02/26/2023] Open
Abstract
Although previous RNA sequencing methods have been widely used in orthopedic research and have provided ideas for therapeutic strategies, the specific mechanisms of some orthopedic disorders, including osteoarthritis, lumbar disc herniation, rheumatoid arthritis, fractures, tendon injuries, spinal cord injury, heterotopic ossification, and osteosarcoma, require further elucidation. The emergence of the single-cell RNA sequencing (scRNA-seq) technique has introduced a new era of research on these topics, as this method provides information regarding cellular heterogeneity, new cell subtypes, functions of novel subclusters, potential molecular mechanisms, cell-fate transitions, and cell‒cell interactions that are involved in the development of orthopedic diseases. Here, we summarize the cell subpopulations, genes, and underlying mechanisms involved in the development of orthopedic diseases identified by scRNA-seq, improving our understanding of the pathology of these diseases and providing new insights into therapeutic approaches.
Collapse
|
14
|
Wang J, Xu L, Peng D, Zhu Y, Gu Z, Yao Y, Li H, Cao X, Fu CY, Zheng M, Song X, Ding Y, Shen Y, Zhong J, Chen YY, Hu J, Wang LL. IFN-γ-STAT1-mediated CD8 + T-cell-neural stem cell cross talk controls astrogliogenesis after spinal cord injury. Inflamm Regen 2023; 43:12. [PMID: 36782279 PMCID: PMC9926765 DOI: 10.1186/s41232-023-00263-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) causes nearly all patients to suffer from protracted disabilities. An emerging therapeutic strategy involving the recruitment of endogenous neural stem cells (NSCs) has been developed. However, endogenous NSCs in the adult spinal cord differentiate into mostly astrocytes after traumatic injury, forming glial scars, which is a major cause of regeneration failure in SCI. Thus, understanding which factors drive the activation and differentiation of endogenous NSCs after SCI is critical for developing therapeutic drugs. METHODS The infiltration, state, and location of CD8+ T cells in spinal cord after traumatic injury were analyzed by flow cytometry and immunofluorescence (IF) staining. The Basso Mouse Scale (BMS) scores and rotarod testing were used for motor behavioral analysis. NSCs were co-cultured with CD8+ T cells. EdU assay was used to detect proliferative cells. Western blotting was used to analyze the expression levels of STAT1, p-STAT1, and p27. ChIP-seq and ChIP-qRT-PCR analyses were used to detect the downstream of STAT1. Nestin-CreERT2::Ai9 transgenic mice were used to genetic lineage tracing of Nestin+ NSCs after SCI in vivo. RESULTS A prolonged increase of activated CD8+ T cells occurs in the injured spinal cords. The behavioral analysis demonstrated that the administration of an anti-CD8 antibody promotes the recovery of locomotor function. Then, we discovered that CD8+ T cells suppressed the proliferation of NSCs and promoted the differentiation of NSCs into astrocytes by the IFN-γ-STAT1 pathway in vitro. ChIP-seq and ChIP-qRT-PCR analysis revealed that STAT1 could directly bind to the promoters of astrocyte marker genes GFAP and Aldh1l1. Genetic lineage tracing of Nestin+ NSCs demonstrated that most NSCs differentiated into astrocytes following SCI. Depleting CD8+ T cells reduced the differentiation of NSCs into astrocytes and instead promoted the differentiation of NSCs into oligodendrocytes. CONCLUSION In conclusion, CD8+ T cells suppressed the proliferation of NSCs and promoted the differentiation of NSCs into astrocytes by the IFN-γ-STAT1-GFAP/Aldhl1l axis. Our study identifies INF-γ as a critical mediator of CD8+ T-cell-NSC cross talk and a potential node for therapeutic intervention in SCI.
Collapse
Affiliation(s)
- Jingyu Wang
- grid.412465.0Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009 China
| | - Lintao Xu
- grid.412465.0Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009 China
| | - Deqing Peng
- grid.417401.70000 0004 1798 6507Department of Neurosurgery, Center for Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital Hangzhou Medical College), Hangzhou, Zhejiang China
| | - Yongjian Zhu
- grid.412465.0Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009 China
| | - Zhaowen Gu
- grid.412465.0Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009 China
| | - Ying Yao
- grid.412465.0Department of Neurointensive Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 China
| | - Heyangzi Li
- grid.13402.340000 0004 1759 700XDepartment of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Xi Cao
- grid.13402.340000 0004 1759 700XDepartment of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Chun-yan Fu
- grid.13402.340000 0004 1759 700XDepartment of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Mingzhi Zheng
- grid.506977.a0000 0004 1757 7957School of Basic Medical Sciences & Forensic Medicine of Hangzhou Medical College, Hangzhou, 310053 China
| | - Xinghui Song
- grid.13402.340000 0004 1759 700XCentral Laboratory, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 China
| | - Yueming Ding
- grid.13402.340000 0004 1759 700XSchool of Medicine, Zhejiang University City College, Hangzhou, 310015 China
| | - Yueliang Shen
- grid.13402.340000 0004 1759 700XDepartment of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Jinjie Zhong
- grid.13402.340000 0004 1759 700XDepartment of Basic Medicine Sciences and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Ying-ying Chen
- grid.13402.340000 0004 1759 700XDepartment of Basic Medicine Sciences and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Jue Hu
- School of Basic Medical Sciences & Forensic Medicine of Hangzhou Medical College, Hangzhou, 310053, China.
| | - Lin-lin Wang
- grid.13402.340000 0004 1759 700XDepartment of Basic Medicine Sciences and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China
| |
Collapse
|
15
|
Huang T, Wu J, Mu J, Gao J. Advanced Therapies for Traumatic Central Nervous System Injury: Delivery Strategy Reinforced Efficient Microglial Manipulation. Mol Pharm 2023; 20:41-56. [PMID: 36469398 DOI: 10.1021/acs.molpharmaceut.2c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traumatic central nervous system (CNS) injuries, including spinal cord injury and traumatic brain injury, are challenging enemies of human health. Microglia, the main component of the innate immune system in CNS, can be activated postinjury and are key participants in the pathological procedure and development of CNS trauma. Activated microglia can be typically classified into pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Reducing M1 polarization while promoting M2 polarization is thought to be promising for CNS injury treatment. However, obstacles such as the low permeability of the blood-brain barrier and short retention time in circulation limit the therapeutic outcomes of administrated drugs, and rational delivery strategies are necessary for efficient microglial regulation. To this end, proper administration methods and delivery systems like nano/microcarriers and scaffolds are investigated to augment the therapeutic effects of drugs, while some of these delivery systems have self-efficacies in microglial manipulation. Besides, systems based on cell and cell-derived exosomes also show impressive effects, and some underlying targeting mechanisms of these delivery systems have been discovered. In this review, we introduce the roles of microglia play in traumatic CNS injuries, discuss the potential targets for the polarization regulation of microglial phenotype, and summarize recent studies and clinical trials about delivery strategies on enhancing the effect of microglial regulation and therapeutic outcome, as well as targeting mechanisms post CNS trauma.
Collapse
Affiliation(s)
- Tianchen Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahe Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer, Pharmacology and Toxicology Research of Zhejiang Province, Affiliated, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jiafu Mu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Jinhua Institute of Zhejiang University, Jinhua 321002, China
| |
Collapse
|
16
|
Zhang Q, Yu B, Zhang Y, Tian Y, Yang S, Chen Y, Wu H. Combination of single-cell and bulk RNA seq reveals the immune infiltration landscape and targeted therapeutic drugs in spinal cord injury. Front Immunol 2023; 14:1068359. [PMID: 36742334 PMCID: PMC9894719 DOI: 10.3389/fimmu.2023.1068359] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Background In secondary spinal cord injury (SCI), the immune microenvironment of the injured spinal cord plays an important role in spinal regeneration. Among the immune microenvironment components, macrophages/microglia play a dual role of pro-inflammation and anti-inflammation in the subacute stage of SCI. Therefore, discovering the immune hub genes and targeted therapeutic drugs of macrophages/microglia after SCI has crucial implications in neuroregeneration. This study aimed to identify immune hub genes and targeted therapeutic drugs for the subacute phase of SCI. Methods Bulk RNA sequencing (bulk-RNA seq) datasets (GSE5296 and GSE47681) and single-cell RNA sequencing (scRNA-seq) dataset (GSE189070) were obtained from the Gene Expression Omnibus database. In the bulk RNA-seq, the R package 'limma,' 'WGCNA,' and 'CIBERSORT' were used to jointly screen key immune genes. Subsequently, the R package 'Seurat' and the R package 'celldex' were used to divide and annotate the cell clusters, respectively. After using the Autodock software to dock immune hub genes and drugs that may be combined, the effectiveness of the drug was verified using an in vivo experiment with the T9 SCI mouse model. Results In the bulk-RNA seq, B2m, Itgb5, and Vav1 were identified as immune hub genes. Ten cell clusters were identified in scRNA-seq, and B2m and Itgb5 were mainly located in the microglia, while Vav1 was mainly located in macrophages. Molecular docking results showed that the proteins corresponding to these immune genes could accurately bind to decitabine. In decitabine-treated mice, the pro-inflammatory factor (TNF-α, IL-1β) levels were decreased while anti-inflammatory factor (IL-4, IL-10) levels were increased at 2 weeks post-SCI, and macrophages/microglia transformed from M1 to M2. At 6 weeks post-SCI, the neurological function score and electromyography of the decitabine treatment group were also improved. Conclusion In the subacute phase of SCI, B2m, Itgb5, and Vav1 in macrophages/microglia may be key therapeutic targets to promote nerve regeneration. In addition, low-dose decitabine may promote spinal cord regeneration by regulating the polarization state of macrophages/microglia.
Collapse
Affiliation(s)
- Qing Zhang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Beibei Yu
- Department of Neurourgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Yongfeng Zhang
- Department of Neurourgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Yunze Tian
- Department of Neurourgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Shijie Yang
- Department of Neurourgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Yongfeng Chen
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haining Wu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
17
|
Cao Y, Zhu S, Yu B, Yao C. Single-cell RNA sequencing for traumatic spinal cord injury. FASEB J 2022; 36:e22656. [PMID: 36374259 DOI: 10.1096/fj.202200943r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/28/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Traumatic spinal cord injury (tSCI) is a severe injury of the central nervous system (CNS) with complicated pathological microenvironment that results in hemorrhage, inflammation, and scar formation. The microenvironment of the injured spinal cord comprises heterogeneous neurons, glial cells, inflammatory cells, and stroma-related cells. Increasing evidence has indicated that the altered cellular and molecular microenvironment following tSCI is a key factor impeding functional recovery. Single-cell RNA sequencing (scRNA-seq) has provided deep insights into the dynamic cellular and molecular changes in the microenvironment by comprehensively characterizing the diversity of spinal cord cell types. Specifically, scRNA-seq enables the exploration of the molecular mechanisms underlying tSCI by elucidating intercellular communication in spinal cord samples between normal and injury conditions at a single-cell resolution. Here, we first described the pathological and physiological processes after tSCI and gave a brief introduction of the scRNA-seq technology. We then focused on the recent scRNA-seq researches in tSCI, which characterized diverse cell-type populations and specific cell-cell interactions in tSCI. In addition, we also highlighted some potential directions for the research of scRNA-seq in tSCI in the future.
Collapse
Affiliation(s)
- Yuqi Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shunxing Zhu
- Laboratory Animals Center, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
18
|
He N, Shen G, Jin X, Li H, Wang J, Xu L, Chen J, Cao X, Fu C, Shi D, Song X, Liu S, Li Y, Zhao T, Li J, Zhong J, Shen Y, Zheng M, Chen YY, Wang LL. Resveratrol suppressed microglia activation and promoted functional recovery of traumatic spinal cord via improving intestinal microbiota. Pharmacol Res 2022; 183:106377. [DOI: 10.1016/j.phrs.2022.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023]
|