1
|
Li J, Zhou W, Wang H, Huang M, Deng H. Exosomal circular RNAs in tumor microenvironment: An emphasis on signaling pathways and clinical opportunities. MedComm (Beijing) 2024; 5:e70019. [PMID: 39584047 PMCID: PMC11586091 DOI: 10.1002/mco2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Exosomes can regulate the malignant progression of tumors by carrying a variety of genetic information and transmitting it to target cells. Recent studies indicate that exosomal circular RNAs (circRNAs) regulate multiple biological processes in carcinogenesis, such as tumor growth, metastasis, epithelial-mesenchymal transition, drug resistance, autophagy, metabolism, angiogenesis, and immune escape. In the tumor microenvironment (TME), exosomal circRNAs can be transferred among tumor cells, endothelial cells, cancer-associated fibroblasts, immune cells, and microbiota, affecting tumor initiation and progression. Due to the high stability and widespread presence of exosomal circRNAs, they hold promise as biomarkers for tumor diagnosis and prognosis prediction in blood and urine. In addition, designing nanoparticles targeting exosomal circRNAs and utilizing exosomal circRNAs derived from immune cells or stem cells provide new strategies for cancer therapy. In this review, we examined the crucial role of exosomal circRNAs in regulating tumor-related signaling pathways and summarized the transmission of exosomal circRNAs between various types of cells and their impact on the TME. Finally, our review highlights the potential of exosomal circRNAs as diagnostic and prognostic prediction biomarkers, as well as suggesting new strategies for clinical therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Wencheng Zhou
- Department of Medical AestheticsWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Huiling Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyCancer CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
2
|
Chu YD, Chen MC, Yeh CT, Lai MW. Hijacking host extracellular vesicle machinery by hepatotropic viruses: current understandings and future prospects. J Biomed Sci 2024; 31:97. [PMID: 39369194 PMCID: PMC11453063 DOI: 10.1186/s12929-024-01063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/25/2024] [Indexed: 10/07/2024] Open
Abstract
Recent advances in studies exploring the roles of extracellular vesicles (EVs) in viral transmission and replication have illuminated hepatotropic viruses, such as hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), and hepatitis E (HEV). While previous investigations have uncovered these viruses' ability to exploit cellular EV pathways for replication and transmission, most have focused on the impacts of exosomal pathways. With an improved understanding of EVs, four main subtypes, including exosomes, microvesicles, large oncosomes, and apoptotic bodies, have been categorized based on size and biogenic pathways. However, there remains a noticeable gap in comprehensive reviews summarizing recent findings and outlining future perspectives for EV studies related to hepatotropic viruses. This review aims to consolidate insights into EV pathways utilized by hepatotropic viruses, offering guidance for the future research direction in this field. By comprehending the diverse range of hepatotropic virus-associated EVs and their role in cellular communication during productive viral infections, this review may offer valuable insights for targeting therapeutics and devising strategies to combat virulent hepatotropic virus infections and the associated incidence of liver cancer.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Mi-Chi Chen
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Zhang W, Xu C, Yang Z, Zhou J, Peng W, Zhang X, Li H, Qu S, Tao K. Circular RNAs in tumor immunity and immunotherapy. Mol Cancer 2024; 23:171. [PMID: 39169354 PMCID: PMC11337656 DOI: 10.1186/s12943-024-02082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Circular RNAs (circRNAs) are unique noncoding RNAs that have a closed and stable loop structure generated through backsplicing. Due to their conservation, stability and tissue specificity, circRNAs can potentially be used as diagnostic indicators and therapeutic targets for certain tumors. Many studies have shown that circRNAs can act as microRNA (miRNA) sponges, and engage in interactions with proteins and translation templates to regulate gene expression and signal transduction, thereby participating in the occurrence and development of a variety of malignant tumors. Immunotherapy has revolutionized the treatment of cancer. Early researches have indicated that circRNAs are involved in regulating tumor immune microenvironment and antitumor immunity. CircRNAs may have the potential to be important targets for increasing sensitivity to immunotherapy and expanding the population of patients who benefit from cancer immunotherapy. However, few studies have investigated the correlation between circRNAs and tumor immunity. In this review, we summarize the current researches on circRNAs involved in antitumor immune regulation through different mechanisms and their potential value in increasing immunotherapy efficacy with the goal of providing new targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhipeng Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jingshi Zhou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wei Peng
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Haimin Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shibin Qu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
4
|
Wan H, Zhong L, Xia T, Zhang D. Silencing Exosomal circ102927 Inhibits Foot Melanoma Metastasis via Regulating Invasiveness, Epithelial-Mesenchymal Transition and Apoptosis. Cancer Manag Res 2024; 16:825-839. [PMID: 39044746 PMCID: PMC11263183 DOI: 10.2147/cmar.s460315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
Background Exosomes contain abundant circular RNAs (circRNAs), playing an important role in intercellular communication. However, the function and underlying molecular mechanism of exosomal circRNAs in foot metastatic melanoma remain unclear. Methods Twelve differentially expressed exosomal circRNAs between patients with metastatic and primary foot melanoma were screened through high-throughput sequencing, and their expression levels were detected by the real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). CircRNA102927 silencing and overexpression A2058 cell line was constructed, and the effects of circRNA102927 on cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition (EMT) were assessed using cell counting kit-8 (CCK-8), flow cytometry, wound healing, Transwell, and Western blot assays, respectively. Results Twelve differentially expressed exosomal circRNAs were screened and ROC curve showed that six circRNAs could be used as the diagnostic biomarkers for metastatic melanoma. Melanoma-secreted exosomes induced the differentiation of CD4+ T cells into Treg cells. CircRNA102927 was highly expressed in metastatic melanomas. Functionally, circRNA102927 silencing inhibited proliferation, EMT, migration, and invasion in metastatic melanoma cells, while promoting apoptosis. Meanwhile, overexpression of circRNA102927 had the opposite effects. Conclusion Our investigation suggests that silencing exosomal circRNA102927 may suppress foot melanoma metastasis by inhibiting invasiveness, EMT and promoting apoptosis.
Collapse
Affiliation(s)
- Huiying Wan
- Department of Dermatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Ling Zhong
- Department of Dermatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Tian Xia
- Department of Pathology, Air Force Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|
5
|
Wang R, Wang S, Jiang H, Lan Y, Yu S. Prospects for the clinical application of exosomal circular RNA in squamous cell carcinoma. Front Oncol 2024; 14:1430684. [PMID: 38933443 PMCID: PMC11200112 DOI: 10.3389/fonc.2024.1430684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Squamous cell carcinoma (SCC) is a prevalent malignancy affecting multiple organs in the human body, including the oral cavity, esophagus, cervix, and skin. Given its significant incidence and mortality rates, researchers are actively seeking effective diagnostic and therapeutic strategies. In recent years, exosomes and their molecular cargo, particularly circular RNA (circRNA), have emerged as promising areas of investigation in SCC research. Exosomes are small vesicles released into the extracellular environment by cells that contain biomolecules that reflect the physiological state of the cell of origin. CircRNAs, known for their unique covalently closed loop structure and stability, have garnered special attention in oncology and are closely associated with tumorigenesis, progression, metastasis, and drug resistance. Interestingly, exosomal circRNAs have been identified as ideal biomarkers for noninvasive cancer diagnosis and prognosis assessment. This article reviews the progress in research on exosomal circRNAs, focusing on their expression patterns, functions, and potential applications as biomarkers in SCC, aiming to provide new insights and strategies for the diagnosis and treatment of SCC.
Collapse
Affiliation(s)
- Rongzhong Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Jiang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yingmei Lan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Shaobin Yu
- Division of Nephrology, National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Yu P, Han Y, Meng L, Tian Y, Jin Z, Luo J, Han C, Xu W, Kong L, Zhang C. Exosomes derived from pulmonary metastatic sites enhance osteosarcoma lung metastasis by transferring the miR-194/215 cluster targeting MARCKS. Acta Pharm Sin B 2024; 14:2039-2056. [PMID: 38799644 PMCID: PMC11119511 DOI: 10.1016/j.apsb.2024.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 05/29/2024] Open
Abstract
Osteosarcoma, a prevalent primary malignant bone tumor, often presents with lung metastases, severely impacting patient survival rates. Extracellular vesicles, particularly exosomes, play a pivotal role in the formation and progression of osteosarcoma-related pulmonary lesions. However, the communication between primary osteosarcoma and exosome-mediated pulmonary lesions remains obscure, with the potential impact of pulmonary metastatic foci on osteosarcoma progression largely unknown. This study unveils an innovative mechanism by which exosomes originating from osteosarcoma pulmonary metastatic sites transport the miR-194/215 cluster to the primary tumor site. This transportation enhances lung metastatic capability by downregulating myristoylated alanine-rich C-kinase substrate (MARCKS) expression. Addressing this phenomenon, in this study we employ cationic bovine serum albumin (CBSA) to form nanoparticles (CBSA-anta-194/215) via electrostatic interaction with antagomir-miR-194/215. These nanoparticles are loaded into nucleic acid-depleted exosomal membrane vesicles (anta-194/215@Exo) targeting osteosarcoma lung metastatic sites. Intervention with bioengineered exosome mimetics (anta-194/215@Exo) not only impedes osteosarcoma progression but also significantly prolongs the lifespan of tumor-bearing mice. These findings suggest that pulmonary metastatic foci-derived exosomes initiate primary osteosarcoma lung metastasis by transferring the miR-194/215 cluster targeting MARCKS, making the miR-194/215 cluster a promising therapeutic target for inhibiting the progression of patients with osteosarcoma lung metastases.
Collapse
Affiliation(s)
- Pei Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yubao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lulu Meng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yanyuan Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhiwei Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenjun Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
7
|
Ferro A, Saccu G, Mattivi S, Gaido A, Herrera Sanchez MB, Haque S, Silengo L, Altruda F, Durazzo M, Fagoonee S. Extracellular Vesicles as Delivery Vehicles for Non-Coding RNAs: Potential Biomarkers for Chronic Liver Diseases. Biomolecules 2024; 14:277. [PMID: 38540698 PMCID: PMC10967855 DOI: 10.3390/biom14030277] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 01/03/2025] Open
Abstract
In recent years, EVs have emerged as promising vehicles for coding and non-coding RNAs (ncRNAs), which have demonstrated remarkable potential as biomarkers for various diseases, including chronic liver diseases (CLDs). EVs are small, membrane-bound particles released by cells, carrying an arsenal of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and other ncRNA species, such as piRNAs, circRNAs, and tsRNAs. These ncRNAs act as key regulators of gene expression, splicing, and translation, providing a comprehensive molecular snapshot of the cells of origin. The non-invasive nature of EV sampling, typically via blood or serum collection, makes them highly attractive candidates for clinical biomarker applications. Moreover, EV-encapsulated ncRNAs offer unique advantages over traditional cell-free ncRNAs due to their enhanced stability within the EVs, hence allowing for their detection in circulation for extended periods and enabling more sensitive and reliable biomarker measurements. Numerous studies have investigated the potential of EV-enclosed ncRNAs as biomarkers for CLD. MiRNAs, in particular, have gained significant attention due to their ability to rapidly respond to changes in cellular stress and inflammation, hallmarks of CLD pathogenesis. Elevated levels of specific miRNAs have been consistently associated with various CLD subtypes, including metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction-associated steatohepatitis (MASH), and chronic hepatitis B and C. LncRNAs have also emerged as promising biomarkers for CLD. These transcripts are involved in a wide range of cellular processes, including liver regeneration, fibrosis, and cancer progression. Studies have shown that lncRNA expression profiles can distinguish between different CLD subtypes, providing valuable insights into disease progression and therapeutic response. Promising EV-enclosed ncRNA biomarkers for CLD included miR-122 (elevated levels of miR-122 are associated with MASLD progression and liver fibrosis), miR-21 (increased expression of miR-21 is linked to liver inflammation and fibrosis in CLD patients), miR-192 (elevated levels of miR-192 are associated with more advanced stages of CLD, including cirrhosis and HCC), LncRNA HOTAIR (increased HOTAIR expression is associated with MASLD progression and MASH development), and LncRNA H19 (dysregulation of H19 expression is linked to liver fibrosis and HCC progression). In the present review, we focus on the EV-enclosed ncRNAs as promising tools for the diagnosis and monitoring of CLD of various etiologies.
Collapse
Affiliation(s)
- Arianna Ferro
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Gabriele Saccu
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Simone Mattivi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Andrea Gaido
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Maria Beatriz Herrera Sanchez
- 2i3T, Società per la Gestione Dell’incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, 10126 Turin, Italy;
- Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy; (L.S.); (F.A.)
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab Emirates
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Lorenzo Silengo
- Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy; (L.S.); (F.A.)
| | - Fiorella Altruda
- Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy; (L.S.); (F.A.)
| | - Marilena Durazzo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Sharmila Fagoonee
- Institute for Biostructure and Bioimaging, National Research Council (CNR), Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy
| |
Collapse
|
8
|
Niu L, Wang Q, Feng F, Yang W, Xie Z, Zheng G, Zhou W, Duan L, Du K, Li Y, Tian Y, Chen J, Xie Q, Fan A, Dan H, Liu J, Fan D, Hong L, Zhang J, Zheng J. Small extracellular vesicles-mediated cellular interactions between tumor cells and tumor-associated macrophages: Implication for immunotherapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166917. [PMID: 37820821 DOI: 10.1016/j.bbadis.2023.166917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
The tumor microenvironment consists of cancer cells and various stromal cells, including macrophages, which exhibit diverse phenotypes with either pro-inflammatory (M1) or anti-inflammatory (M2) effects. The interaction between cancer cells and macrophages plays a crucial role in tumor progression. Small extracellular vesicles (sEVs), which facilitate intercellular communication, are known to play a vital role in this process. This review provides a comprehensive summary of how sEVs derived from cancer cells, containing miRNAs, lncRNAs, proteins, and lipids, can influence macrophage polarization. Additionally, we discuss the impact of macrophage-secreted sEVs on tumor malignant transformation, including effects on proliferation, metastasis, angiogenesis, chemoresistance, and immune escape. Furthermore, we address the therapeutic advancements and current challenges associated with macrophage-associated sEVs, along with potential solutions.
Collapse
Affiliation(s)
- Liaoran Niu
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fan Feng
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wanli Yang
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhenyu Xie
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gaozan Zheng
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Zhou
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lili Duan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kunli Du
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yiding Li
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ye Tian
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Junfeng Chen
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qibin Xie
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Aqiang Fan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hanjun Dan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jinqiang Liu
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Liu Hong
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Jian Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Jianyong Zheng
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Aviation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
9
|
Diallo LH, Mariette J, Laugero N, Touriol C, Morfoisse F, Prats AC, Garmy-Susini B, Lacazette E. Specific Circular RNA Signature of Endothelial Cells: Potential Implications in Vascular Pathophysiology. Int J Mol Sci 2024; 25:680. [PMID: 38203852 PMCID: PMC10779679 DOI: 10.3390/ijms25010680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Circular RNAs (circRNAs) are a recently characterized family of gene transcripts forming a covalently closed loop of single-stranded RNA. The extent of their potential for fine-tuning gene expression is still being discovered. Several studies have implicated certain circular RNAs in pathophysiological processes within vascular endothelial cells and cancer cells independently. However, to date, no comparative study of circular RNA expression in different types of endothelial cells has been performed and analysed through the lens of their central role in vascular physiology and pathology. In this work, we analysed publicly available and original RNA sequencing datasets from arterial, veinous, and lymphatic endothelial cells to identify common and distinct circRNA expression profiles. We identified 4713 distinct circRNAs in the compared endothelial cell types, 95% of which originated from exons. Interestingly, the results show that the expression profile of circular RNAs is much more specific to each cell type than linear RNAs, and therefore appears to be more suitable for distinguishing between them. As a result, we have discovered a specific circRNA signature for each given endothelial cell type. Furthermore, we identified a specific endothelial cell circRNA signature that is composed four circRNAs: circCARD6, circPLXNA2, circCASC15 and circEPHB4. These circular RNAs are produced by genes that are related to endothelial cell migration pathways and cancer progression. More detailed studies of their functions could lead to a better understanding of the mechanisms involved in physiological and pathological (lymph)angiogenesis and might open new ways to tackle tumour spread through the vascular system.
Collapse
Affiliation(s)
- Leïla Halidou Diallo
- U1297-I2MC, INSERM, University of Toulouse, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse, France; (L.H.D.); (N.L.); (F.M.); (A.-C.P.); (B.G.-S.)
| | - Jérôme Mariette
- MIAT, University of Toulouse, INRAE, 31326 Castanet-Tolosan, France;
| | - Nathalie Laugero
- U1297-I2MC, INSERM, University of Toulouse, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse, France; (L.H.D.); (N.L.); (F.M.); (A.-C.P.); (B.G.-S.)
| | - Christian Touriol
- UMR1037 INSERM, University of Toulouse, 2 Avenue Hubert Curien, 31100 Toulouse, France;
| | - Florent Morfoisse
- U1297-I2MC, INSERM, University of Toulouse, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse, France; (L.H.D.); (N.L.); (F.M.); (A.-C.P.); (B.G.-S.)
| | - Anne-Catherine Prats
- U1297-I2MC, INSERM, University of Toulouse, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse, France; (L.H.D.); (N.L.); (F.M.); (A.-C.P.); (B.G.-S.)
| | - Barbara Garmy-Susini
- U1297-I2MC, INSERM, University of Toulouse, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse, France; (L.H.D.); (N.L.); (F.M.); (A.-C.P.); (B.G.-S.)
| | - Eric Lacazette
- U1297-I2MC, INSERM, University of Toulouse, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse, France; (L.H.D.); (N.L.); (F.M.); (A.-C.P.); (B.G.-S.)
| |
Collapse
|
10
|
Liu J, Hu X, Xin W, Wang X. Exosomal Non-coding RNAs: A New Approach to Melanoma Diagnosis and Therapeutic Strategy. Curr Med Chem 2024; 31:6084-6109. [PMID: 37877505 DOI: 10.2174/0109298673267553231017053329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Malignant melanoma (MM) is a highly aggressive cancer with a poor prognosis. Currently, although a variety of therapies are available for treating melanoma, MM is still a serious threat to the patient's life due to numerous factors, such as the recurrence of tumors, the emergence of drug resistance, and the lack of effective therapeutic agents. Exosomes are biologically active lipid-bilayer extracellular vesicles secreted by diverse cell types that mediate intercellular signal communication. Studies found that exosomes are involved in cancer by carrying multiple bioactive molecules, including non-- coding RNAs (ncRNAs). The ncRNAs have been reported to play an important role in regulating proliferation, angiogenesis, immune regulation, invasion, metastasis, and treatment resistance of tumors. However, the functional role of exosomal ncRNAs in MM remains unknown. Therefore, this review summarizes the current state of melanoma diagnosis, treatment, and the application of exosomal ncRNAs in MM patients, which may provide new insights into the mechanisms involved in melanoma progression and serve as biomarkers for diagnosis and therapeutic targets.
Collapse
Affiliation(s)
- Jie Liu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Xiaoping Hu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China, 300052
| | - Xianbin Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Baotou Medical College, Baotou 014030, China
| |
Collapse
|
11
|
Ma Z, Chen Y, Qiu J, Guo R, Cai K, Zheng Y, Zhang Y, Li X, Zan L, Li A. CircBTBD7 inhibits adipogenesis via the miR-183/SMAD4 axis. Int J Biol Macromol 2023; 253:126740. [PMID: 37689299 DOI: 10.1016/j.ijbiomac.2023.126740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/13/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023]
Abstract
Adipogenesis is a complex biological process. However, the regulatory mechanism of circRNAs in adipogenesis is still unclear. In this study, we identified a novel circRNA, circBTBD7, which was highly expressed in adipose tissue and peaked at two days after differentiation in bovine primary adipocytes. When circBTBD7 was knocked down in bovine primary adipocytes, the lipid droplets accumulation was significantly increased. Furthermore, the expression of adipocyte differentiation markers (PPARγ and C/EBPα) and lipogenic genes (FABP4, FASN and ACCα) were significantly upregulated. Moreover, circBTBD7 was mainly located in the cytoplasm, which indicated it was probably to act as competitive endogenous RNAs (ceRNAs). Subsequently, the dual luciferase reporter assay showed that circBTBD7 could bind to miR-183. Further, miR-183 promoted adipogenesis by inhibiting SMAD4. What's more, the rescue assays showed that circBTBD7 attenuated the inhibition of SMAD4 expression by sponging miR-183. In summary, these results suggested that circBTBD7 inhibited adipogenesis via the miR-183/SMAD4 axis.
Collapse
Affiliation(s)
- Zheng Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yun Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ju Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Rui Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Keli Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yan Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yuyao Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xueqing Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
12
|
Xu G, Liu G, Wang Z, Li Y, Fang W. Circular RNAs: Promising Treatment Targets and Biomarkers of Ischemic Stroke. Int J Mol Sci 2023; 25:178. [PMID: 38203348 PMCID: PMC10779226 DOI: 10.3390/ijms25010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Ischemic stroke is one of the most significant causes of morbidity and mortality worldwide. However, there is a dearth of effective drugs and treatment methods for ischemic stroke. Significant numbers of circular RNAs (circRNAs) exhibit abnormal expression following ischemic stroke and are considered potential therapeutic targets. CircRNAs have emerged as promising biomarkers due to their stable expression in peripheral blood and their potential significance in ischemic stroke diagnosis and prognosis. This review provides a summary of 31 circRNAs involved in the pathophysiological processes of apoptosis, autophagy, inflammation, oxidative stress, and angiogenesis following ischemic stroke. Furthermore, we discuss the mechanisms of action of said circRNAs and their potential clinical applications. Ultimately, circRNAs exhibit promise as both therapeutic targets and biomarkers for ischemic stroke.
Collapse
Affiliation(s)
| | | | | | - Yunman Li
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (G.X.); (G.L.); (Z.W.)
| | - Weirong Fang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (G.X.); (G.L.); (Z.W.)
| |
Collapse
|
13
|
Ghafouri I, Pakravan K, Razmara E, Montazeri M, Rouhollah F, Babashah S. Colorectal cancer-secreted exosomal circ_001422 plays a role in regulating KDR expression and activating mTOR signaling in endothelial cells by targeting miR-195-5p. J Cancer Res Clin Oncol 2023; 149:12227-12240. [PMID: 37432457 DOI: 10.1007/s00432-023-05095-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND As non-coding RNAs, exosomal circular RNAs (circRNAs) regulate colorectal cancer (CRC) progression, although the functional mechanisms by which such molecules affect the tumor microenvironment are still elusive. Herein, we aimed to explore the potential clinical significance of a signature of five serum-derived circRNAs in CRC and investigated the mechanisms underlying endothelial cell angiogenesis mediated by CRC-secreted exosomal circ_001422. METHODS The expression of a signature of five serum-derived circRNAs (circ_0004771, circ_0101802, circ_0082333, circ_0072309, and circ_001422) were measured by RT-qPCR, and their associations with tumor staging and lymph node metastasis were further evaluated in CRC patients. In silico analysis was used to show the relationship between circ_001422, miR-195-5p, and KDR, validated by dual-luciferase reporter and Western blotting assays. CRC cell-derived exosomes were isolated and characterized by scanning electron microscopy and Western blotting. Endothelial cell uptake of PKH26-labeled exosomes was demonstrated using a spectral confocal microscope. In vitro genetic strategies were used to exogenously alter the expression level of circ_001422 and miR-195-5p expression. Cell proliferation assay, transwell migration assay, and capillary tube formation assay were conducted to explore the role of CRC-secreted exosomal circ_001422 in endothelial cell function in vitro. RESULTS The expression levels of serum-derived circ_0004771, circ_0101802, circ_0082333, and circ_001422 were significantly higher in CRC and were positively correlated with the lymph node metastasis status. However, circ_0072309 showed a significant down-regulation in CRC than in healthy individuals. Furthermore, a higher expression level of circ_001422 in both cellular and exosomal fractions was found in HCT-116 CRC cells. We found that HCT-116 exosomes considerably enhanced proliferation and migration of endothelial cells through shuttling of circ_001422. We also observed that exosomes derived from HCT-116 cell, but not non-aggressive Caco-2 CRC cells, increased in vitro tubulogenesis of endothelial cells. Importantly, knockdown of circ_001422 impaired the capability of endothelial cells to form the capillary-like tube structures. CRC-secreted circ_001422 acted as an endogenous miR-195-5p sponge to inhibit miR-195-5p activity, which led to increased KDR expression and mTOR signaling activation in endothelial cells. Importantly, ectopic expression of miR-195-5p mimicked the effect of circ_001422 silencing on KDR/mTOR signaling in endothelial cells. CONCLUSION This study attributed a biomarker role for circ_001422 in CRC diagnosis and proposed a novel mechanism whereby circ_001422 up-regulates KDR through sponging miR-195-5p. These interactions may give rise to the activation of mTOR signaling and may be a possible clarification for the pro-angiogenesis effects of CRC-secreted exosomal circ_001422 on endothelial cells.
Collapse
Affiliation(s)
- Iren Ghafouri
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-154, Iran
| | - Maryam Montazeri
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rouhollah
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-154, Iran.
| |
Collapse
|
14
|
Ye F, Liang Y, Wang Y, Le Yang R, Luo D, Li Y, Jin Y, Han D, Chen B, Zhao W, Wang L, Chen X, Ma T, Kong X, Yang Q. Cancer-associated fibroblasts facilitate breast cancer progression through exosomal circTBPL1-mediated intercellular communication. Cell Death Dis 2023; 14:471. [PMID: 37495592 PMCID: PMC10372047 DOI: 10.1038/s41419-023-05986-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Breast cancer is the major common malignancy worldwide among women. Previous studies reported that cancer-associated fibroblasts (CAFs) showed pivotal roles in regulating tumor progression via exosome-mediated cellular communication. However, the detailed mechanism underlying the exosomal circRNA from CAFs in breast cancer progression remains ambiguous. Here, exosomal circRNA profiling of breast cancer-derived CAFs and normal fibroblasts (NFs) was detected by high-throughput sequencing, and upregulated circTBPL1 expression was identified in CAF exosomes. The exosomal circTBPL1 from CAFs could be transferred to breast cancer cells and promoted cell proliferation, migration, and invasion. Consistently, circTBPL1 knockdown in CAFs attenuated their tumor-promoting ability. Further exploration identified miR-653-5p as an inhibitory target of circTBPL1, and ectopic expression of miR-653-5p could partially reverse the malignant phenotypes induced by circTBPL1 overexpression in breast cancer. Additionally, TPBG was selected as a downstream target gene, and circTBPL1 could protect TPBG from miR-653-5p-mediated degradation, leading to enhanced breast cancer progression. Significantly, the accelerated tumor progression triggered by exosomal circTBPL1 from CAFs was confirmed in xenograft models. Taken together, these results revealed that exosomal circTBPL1 derived from CAFs contributed to cancer progression via miR-653-5p/TPBG pathway, indicating the potential of exosomal circTBPL1 as a biomarker and novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Fangzhou Ye
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Yajie Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Robert Le Yang
- Shandong Experimental High School, 250001, Jinan, Shandong, P. R. China
| | - Dan Luo
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Yuhan Jin
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Xi Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Tingting Ma
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Xiaoli Kong
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China.
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China.
- Research Institute of Breast Cancer, Shandong University, 250012, Jinan, Shandong, P. R. China.
| |
Collapse
|
15
|
Zhu H, Zhang P, Shi J, Kou D, Bai X. Exosome-delivered circRPS5 inhibits the progression of melanoma via regulating the miR-151a/NPTX1 axis. PLoS One 2023; 18:e0287347. [PMID: 37384727 PMCID: PMC10310028 DOI: 10.1371/journal.pone.0287347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/04/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been reported to exert critical functions in tumorigenesis and development. However, the underlying mechanism by which circRNAs regulate melanoma progression remain to be elucidated. METHODS The differentially expressed circRNAs were first identified by circRNA-seq, and circRNAs were validated via qRT-PCR and Sanger sequencing. Then, the impact of circRPS5, miR-151a and NPTX1 expression on the progression of melanoma cell were determined by gain- and loss-of-function assays. The relationship between circRPS5, miR-151a, and NPTX1 was predicted by StarBase website and authenticated by luciferase reporter assay. The melanoma cells-derived exosomes were characterized using nanoparticle tracking analysis (NTA) and western blot. RESULTS CircRPS5 was significantly downregulated in melanoma tissues and cell lines. Functionally, circRPS5 suppressed the proliferation, migration, and invasion of melanoma cells, and induced cell cycle arrest and apoptosis in vitro. Mechanistically, circRPS5 harbor miR-151a, acting as miRNA sponge, and then miR-151a targeted the 3'-UTR of NPTX1. Finally, circRPS5 was mainly incorporated into exosomes to inhibit the progression of melanoma cells. CONCLUSIONS This finding reveal circRPS5 suppressed the progression of melanoma through miR-151a/NPTX1 pathway, and may provide a promising therapeutic strategies for melanoma.
Collapse
Affiliation(s)
- Haijun Zhu
- Department of Plastic Surgery, The Central Hospital of Wuhan, Tong ji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Zhang
- Department of Plastic Surgery, The Central Hospital of Wuhan, Tong ji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Shi
- Department of Plastic Surgery, The Central Hospital of Wuhan, Tong ji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deqiang Kou
- Department of Plastic Surgery, The Central Hospital of Wuhan, Tong ji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinping Bai
- Department of Plastic Surgery, The Central Hospital of Wuhan, Tong ji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Zhang F, Jiang J, Qian H, Yan Y, Xu W. Exosomal circRNA: emerging insights into cancer progression and clinical application potential. J Hematol Oncol 2023; 16:67. [PMID: 37365670 DOI: 10.1186/s13045-023-01452-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Exosomal circRNA serves a novel genetic information molecule, facilitating communication between tumor cells and microenvironmental cells, such as immune cells, fibroblasts, and other components, thereby regulating critical aspects of cancer progression including immune escape, tumor angiogenesis, metabolism, drug resistance, proliferation and metastasis. Interestingly, microenvironment cells have new findings in influencing tumor progression and immune escape mediated by the release of exosomal circRNA. Given the intrinsic stability, abundance, and broad distribution of exosomal circRNAs, they represent excellent diagnostic and prognostic biomarkers for liquid biopsy. Moreover, artificially synthesized circRNAs may open up new possibilities for cancer therapy, potentially bolstered by nanoparticles or plant exosome delivery strategies. In this review, we summarize the functions and underlying mechanisms of tumor cell and non-tumor cell-derived exosomal circRNAs in cancer progression, with a special focus on their roles in tumor immunity and metabolism. Finally, we examine the potential application of exosomal circRNAs as diagnostic biomarkers and therapeutic targets, highlighting their promise for clinical use.
Collapse
Affiliation(s)
- Fan Zhang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, People's Republic of China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, People's Republic of China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hui Qian
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yongmin Yan
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, People's Republic of China.
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, No. 2 North Yongning Road, Changzhou, 213017, Jiangsu, People's Republic of China.
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, People's Republic of China.
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
Greening DW, Xu R, Ale A, Hagemeyer CE, Chen W. Extracellular vesicles as next generation immunotherapeutics. Semin Cancer Biol 2023; 90:73-100. [PMID: 36773820 DOI: 10.1016/j.semcancer.2023.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Extracellular vesicles (EVs) function as a mode of intercellular communication and molecular transfer to elicit diverse biological/functional response. Accumulating evidence has highlighted that EVs from immune, tumour, stromal cells and even bacteria and parasites mediate the communication of various immune cell types to dynamically regulate host immune response. EVs have an innate capacity to evade recognition, transport and transfer functional components to target cells, with subsequent removal by the immune system, where the immunological activities of EVs impact immunoregulation including modulation of antigen presentation and cross-dressing, immune activation, immune suppression, and immune surveillance, impacting the tumour immune microenvironment. In this review, we outline the recent progress of EVs in immunorecognition and therapeutic intervention in cancer, including vaccine and targeted drug delivery and summarise their utility towards clinical translation. We highlight the strategies where EVs (natural and engineered) are being employed as a therapeutic approach for immunogenicity, tumoricidal function, and vaccine development, termed immuno-EVs. With seminal studies providing significant progress in the sequential development of engineered EVs as therapeutic anti-tumour platforms, we now require direct assessment to tune and improve the efficacy of resulting immune responses - essential in their translation into the clinic. We believe such a review could strengthen our understanding of the progress in EV immunobiology and facilitate advances in engineering EVs for the development of novel EV-based immunotherapeutics as a platform for cancer treatment.
Collapse
Affiliation(s)
- David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, Australia; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia; Central Clinical School, Monash University, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| | - Rong Xu
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anukreity Ale
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Christoph E Hagemeyer
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Weisan Chen
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia
| |
Collapse
|
18
|
Pan Y, Liu Y, Wei W, Yang X, Wang Z, Xin W. Extracellular Vesicles as Delivery Shippers for Noncoding RNA-Based Modulation of Angiogenesis: Insights from Ischemic Stroke and Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205739. [PMID: 36592424 DOI: 10.1002/smll.202205739] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Ischemic stroke and systemic cancer are two of the leading causes of mortality. Hypoxia is a central pathophysiological component in ischemic stroke and cancer, representing a joint medical function. This function includes angiogenesis regulation. Vascular remodeling coupled with axonal outgrowth following cerebral ischemia is critical in improving poststroke neurological functional recovery. Antiangiogenic strategies can inhibit cancer vascularization and play a vital role in impeding cancer growth, invasion, and metastasis. Although there are significant differences in the cause of angiogenesis across both pathophysiological conditions, emerging evidence states that common signaling structures, such as extracellular vesicles (EVs) and noncoding RNAs (ncRNAs), are involved in this context. EVs, heterogeneous membrane vesicles encapsulating proteomic genetic information from parental cells, act as multifunctional regulators of intercellular communication. Among the multifaceted roles in modulating biological responses, exhaustive evidence shows that ncRNAs are selectively sorted into EVs, modulating common specific aspects of cancer development and stroke prognosis, namely, angiogenesis. This review will discuss recent advancements in the EV-facilitated/inhibited progression of specific elements of angiogenesis with a particular concern about ncRNAs within these vesicles. The review is concluded by underlining the clinical opportunities of EV-derived ncRNAs as diagnostic, prognostic, and therapeutic agents.
Collapse
Affiliation(s)
- Yongli Pan
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurology, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Wei Wei
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, 621000, China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| |
Collapse
|
19
|
Zandieh MA, Farahani MH, Rajabi R, Avval ST, Karimi K, Rahmanian P, Razzazan M, Javanshir S, Mirzaei S, Paskeh MDA, Salimimoghadam S, Hushmandi K, Taheriazam A, Pandey V, Hashemi M. Epigenetic regulation of autophagy by non-coding RNAs in gastrointestinal tumors: Biological functions and therapeutic perspectives. Pharmacol Res 2023; 187:106582. [PMID: 36436707 DOI: 10.1016/j.phrs.2022.106582] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Cancer is the manifestation of changes and mutations in genetic and epigenetic levels. Non-coding RNAs (ncRNAs) are commonly dysregulated in disease pathogenesis, and their role in cancer has been well-documented. The ncRNAs regulate various molecular pathways and mechanisms in cancer that can lead to induction/inhibition of carcinogenesis. Autophagy is a molecular "self-digestion" mechanism its function can be pro-survival or pro-death in tumor cells. The aim of the present review is to evaluate the role of ncRNAs in regulating autophagy in gastrointestinal tumors. The role of the ncRNA/autophagy axis in affecting the progression of gastric, liver, colorectal, pancreatic, esophageal, and gallbladder cancers is investigated. Both ncRNAs and autophagy mechanisms can function as oncogenic or onco-suppressor and this interaction can determine the growth, invasion, and therapy response of gastrointestinal tumors. ncRNA/autophagy axis can reduce/increase the proliferation of gastrointestinal tumors via the glycolysis mechanism. Furthermore, related molecular pathways of metastasis, such as EMT and MMPs, are affected by the ncRNA/autophagy axis. The response of gastrointestinal tumors to chemotherapy and radiotherapy can be suppressed by pro-survival autophagy, and ncRNAs are essential regulators of this mechanism. miRNAs can regulate related genes and proteins of autophagy, such as ATGs and Beclin-1. Furthermore, lncRNAs and circRNAs down-regulate miRNA expression via sponging to modulate the autophagy mechanism. Moreover, anti-cancer agents can affect the expression level of ncRNAs regulating autophagy in gastrointestinal tumors. Therefore, translating these findings into clinics can improve the prognosis of patients.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Vijay Pandey
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
20
|
Involvement of circRNAs in the Development of Heart Failure. Int J Mol Sci 2022; 23:ijms232214129. [PMID: 36430607 PMCID: PMC9697219 DOI: 10.3390/ijms232214129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
In recent years, interest in non-coding RNAs as important physiological regulators has grown significantly. Their participation in the pathophysiology of cardiovascular diseases is extremely important. Circular RNA (circRNA) has been shown to be important in the development of heart failure. CircRNA is a closed circular structure of non-coding RNA fragments. They are formed in the nucleus, from where they are transported to the cytoplasm in a still unclear mechanism. They are mainly located in the cytoplasm or contained in exosomes. CircRNA expression varies according to the type of tissue. In the brain, almost 12% of genes produce circRNA, while in the heart it is only 9%. Recent studies indicate a key role of circRNA in cardiomyocyte hypertrophy, fibrosis, autophagy and apoptosis. CircRNAs act mainly by interacting with miRNAs through a "sponge effect" mechanism. The involvement of circRNA in the development of heart failure leads to the suggestion that they may be promising biomarkers and useful targets in the treatment of cardiovascular diseases. In this review, we will provide a brief introduction to circRNA and up-to-date understanding of their role in the mechanisms leading to the development of heart failure.
Collapse
|
21
|
Matsuzaka Y, Yashiro R. Regulation of Extracellular Vesicle-Mediated Immune Responses against Antigen-Specific Presentation. Vaccines (Basel) 2022; 10:1691. [PMID: 36298556 PMCID: PMC9607341 DOI: 10.3390/vaccines10101691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Extracellular vesicles (EVs) produced by various immune cells, including B and T cells, macrophages, dendritic cells (DCs), natural killer (NK) cells, and mast cells, mediate intercellular communication and have attracted much attention owing to the novel delivery system of molecules in vivo. DCs are among the most active exosome-secreting cells of the immune system. EVs produced by cancer cells contain cancer antigens; therefore, the development of vaccine therapy that does not require the identification of cancer antigens using cancer-cell-derived EVs may have significant clinical implications. In this review, we summarise the molecular mechanisms underlying EV-based immune responses and their therapeutic effects on tumour vaccination.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi 181-8611, Tokyo, Japan
| |
Collapse
|
22
|
A Review and In Silico Analysis of Tissue and Exosomal Circular RNAs: Opportunities and Challenges in Thyroid Cancer. Cancers (Basel) 2022; 14:cancers14194728. [PMID: 36230649 PMCID: PMC9564022 DOI: 10.3390/cancers14194728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Thyroid cancer is the most common endocrine neoplasm. Recently, knowledge of the molecular genetic changes of thyroid cancer has dramatically improved. Understanding the roles of these molecular changes in thyroid cancer tumorigenesis and progression is essential in developing a successful treatment strategy and improving disease outcomes. As a family of non-coding RNAs, circular RNAs (circRNAs) have been involved in several aspects of the physiological and pathological processes of the cells. The roles of circRNAs in cancer development and progress are evident. In the current review, we aimed to explore the clinical potential of circRNAs as potential diagnostic, prognostic, and therapeutic targets in thyroid cancer. Furthermore, screening the genome-wide circRNAs and performing functional enrichment analyses for all associated dysregulated circRNAs in thyroid cancer have been done. Given the unique advantages circRNAs have, such as superior stability, higher abundance, and presence in different body fluids, this family of non-coding RNAs could be promising diagnostic and prognostic biomarkers and potential therapeutic targets for thyroid cancer. Abstract Thyroid cancer (TC) is the most common endocrine tumor. The genetic and epigenetic molecular alterations of TC have become more evident in recent years. However, a deeper understanding of the roles these molecular changes play in TC tumorigenesis and progression is essential in developing a successful treatment strategy and improving patients’ prognoses. Circular RNAs (circRNAs), a family of non-coding RNAs, have been implicated in several aspects of carcinogenesis in multiple cancers, including TC. In the current review, we aimed to explore the clinical potential of circRNAs as putative diagnostic, prognostic, and therapeutic targets in TC. The current analyses, including genome-wide circRNA screening and functional enrichment for all deregulated circRNA expression signatures, show that circRNAs display atypical contributions, such as sponging for microRNAs, regulating transcription and translation processes, and decoying for proteins. Given their exceptional clinical advantages, such as higher stability, wider abundance, and occurrence in several body fluids, circRNAs are promising prognostic and theranostic biomarkers for TC.
Collapse
|
23
|
Chen T. Circulating Non-Coding RNAs as Potential Diagnostic Biomarkers in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2022; 9:1029-1040. [PMID: 36132427 PMCID: PMC9484560 DOI: 10.2147/jhc.s380237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is currently the second leading cause of cancer-related deaths worldwide, with high morbidity and mortality. The clinical diagnosis of HCC mainly depends on imaging technology, such as ultrasound and computed tomography, and serum biomarkers, such as alpha-fetoprotein (AFP). However, HCC is still hard to diagnose at an early stage due to the low sensitivity of the above mentioned traditional methods. Typically, HCC is diagnosed at an advanced stage when limited treatment options are available. It is urgent to identify effective biomarkers for the early diagnosis of HCC. Increasing evidence uncovered ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), could be used in HCC diagnosis. The aim of this review is to summarize our understanding of circulating miRNAs, lncRNAs and circRNAs as fluid-based non-invasive biomarkers, and aiming at providing new insights into the diagnosis of HCC.
Collapse
Affiliation(s)
- Tingsong Chen
- The Second Department of Oncology, the Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
24
|
Role of circular RNAs in disease progression and diagnosis of cancers: An overview of recent advanced insights. Int J Biol Macromol 2022; 220:973-984. [PMID: 35977596 DOI: 10.1016/j.ijbiomac.2022.08.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
Abstract
Tumor microenvironment (TME) is a crucial regulator of tumor progression and cells in the TME release a number of molecules that are responsible for anaplasticity, invasion, metastasis of tumor, establishing stem cell niches, up-regulation and down-regulation of various pathways in cancer cells, interfering with immune surveillance and immune escape. Moreover, they can serve as diagnostic markers, and determine effective therapies. Among them, CircRNAs have gained special attention due to their involvement in mutated pathways in cancers. By functioning as a molecular sponge for miRNAs, binding with proteins, and directing selective splicing. CircRNAs modify the immunological environment of cancers to promote their growth. Besides of critical role in tumor growth, circRNAs are emerging as potential candidates as biomarkers for diagnosis cancer therapy. Also, circRNAs vaccination even offers a novel approach to tumor immunotherapy. Over the recent years, studies are advocating that circRNAs have tissue specific tumor specific expression patterns, which indicates their potential clinical utility. Especially, circRNAs have emerged as potential predictive and prognostic biomarkers. Although, there has been significant progress in deciphering the role of circRNA in cancers, literature lacks comprehensive overview on this topic. Keeping in view of these significant discoveries, this review systematically discusses circRNA and their role in the tumor in different dimensions.
Collapse
|