1
|
Wang J, Zhao R, Liu Y, Hu T, Li X, He L, Guo Z, Chen C, Shi X. The correlation between Smac, IAPs and mitochondrial apoptosis, muscle tenderness during postmortem aging of Oula Tibetan sheep meat. Food Chem X 2024; 24:101887. [PMID: 39498258 PMCID: PMC11532436 DOI: 10.1016/j.fochx.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Oula Tibetan sheep meat has rich nutritional value but relatively poor tenderness. Recently, apoptosis of muscle cells has gradually become a research hotspot for improving meat tenderness during postmortem aging. Smac can promote the decrease of IAPs expression in tumor cells, thereby inducing mitochondrial apoptosis. However, the relationship between Smac, IAPs and mitochondrial apoptosis, muscle tenderness during postmortem meat aging is still unclear. Thus, the aim of this work was to explore the relationship between Smac, IAPs and mitochondrial apoptosis as well as muscle tenderness during postmortem meat aging. Smac concentration, IAPs concentration, pH value, ATP content, SDH activity, MPTP opening degree, MMP, caspase-3/9 activity, apoptotic rate, MFI and shear force value of Oula Tibetan sheep meat were measured at different aging times and correlation analysis was performed. Correlation analysis revealed that Smac, IAPs were markedly related to mitochondrial apoptosis and muscle tenderness during postmortem aging of Tibetan sheep meat. The results suggest that Smac may regulate IAPs to promote mitochondrial apoptosis and muscle tenderization in Oula Tibetan sheep meat during postmortem aging.
Collapse
Affiliation(s)
- Jingyu Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruina Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Tieying Hu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolong Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaobin Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Cheng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xixiong Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Khanahmadi M, Ebrahimi Fard M, Baghani M, Shayan M, Baghani M. Exploring STK3 in melanoma: a systematic review of signaling networks and therapeutic opportunities. Mol Biol Rep 2024; 52:8. [PMID: 39576434 DOI: 10.1007/s11033-024-10064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024]
Abstract
Melanoma is an aggressive cancer that disregards both the MAPK and Hippo signaling pathways. This systematic review explores STK3 function in the Hippo pathway to regulate networks and its therapeutic potential in melanoma. From 1991 to 2024, we studied how STK3 interacts with the MAPK/ERK pathway to promote apoptosis and inhibit tumor growth. STK3 controls cell growth, apoptosis, and metastasis via the Hippo and MAPK pathways. It is a melanoma tumor suppressor. Some ways to target STK3 are to directly activate it, stop downstream effectors like YAP/TAZ from working, or use existing BRAF inhibitors together with other methods. Despite advancements, challenges in STK3 drug development persist, warranting further investigation. This review examined the role of STK3 in the development of melanoma and identified potential vulnerabilities for therapeutic intervention.
Collapse
Affiliation(s)
- Maryam Khanahmadi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Ebrahimi Fard
- Department of Clinical Pharmacy, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Matin Baghani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Shayan
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Moein Baghani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Kazimierczak U, Przybyla A, Smielowska M, Kolenda T, Mackiewicz A. Targeting the Hippo Pathway in Cutaneous Melanoma. Cells 2024; 13:1062. [PMID: 38920690 PMCID: PMC11201827 DOI: 10.3390/cells13121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Melanoma is the most aggressive form of skin cancer. In the advanced stage of development, it is resistant to currently available therapeutic modalities. Increased invasiveness and metastatic potential depend on several proteins involved in various signal transduction pathways. Hippo signaling plays a vital role in malignant transformation. Dysfunctions of the Hippo pathway initiate the expression of tumor growth factors and are associated with tumor growth and metastasis formation. This review summarizes the recent achievements in studying the role of the Hippo pathway in melanoma pathogenesis and points to the potential specific targets for anti-melanoma therapy.
Collapse
Affiliation(s)
- Urszula Kazimierczak
- Department of Cancer Immunology, Poznan University of Medical Sciences, Rokietnicka Street 8, 61-806 Poznan, Poland
| | - Anna Przybyla
- Department of Cancer Immunology, Poznan University of Medical Sciences, Rokietnicka Street 8, 61-806 Poznan, Poland
| | - Marianna Smielowska
- Department of Genome Engineering, The Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, Rokietnicka Street 8, 61-806 Poznan, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Garbary Street 15, 61-866 Poznan, Poland
| |
Collapse
|
4
|
Jonischkies K, del Angel M, Demiray YE, Loaiza Zambrano A, Stork O. The NDR family of kinases: essential regulators of aging. Front Mol Neurosci 2024; 17:1371086. [PMID: 38803357 PMCID: PMC11129689 DOI: 10.3389/fnmol.2024.1371086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Aging is defined as a progressive decline of cognitive and physiological functions over lifetime. Since the definition of the nine hallmarks of aging in 2013 by López-Otin, numerous studies have attempted to identify the main regulators and contributors in the aging process. One interesting group of proteins whose participation has been implicated in several aging hallmarks are the nuclear DBF2-related (NDR) family of serine-threonine AGC kinases. They are one of the core components of the Hippo signaling pathway and include NDR1, NDR2, LATS1 and LATS2 in mammals, along with its highly conserved metazoan orthologs; Trc in Drosophila melanogaster, SAX-1 in Caenorhabditis elegans, CBK1, DBF20 in Saccharomyces cerevisiae and orb6 in Saccharomyces pombe. These kinases have been independently linked to the regulation of widely diverse cellular processes disrupted during aging such as the cell cycle progression, transcription, intercellular communication, nutrient homeostasis, autophagy, apoptosis, and stem cell differentiation. However, a comprehensive overview of the state-of-the-art knowledge regarding the post-translational modifications of and by NDR kinases in aging has not been conducted. In this review, we summarize the current understanding of the NDR family of kinases, focusing on their relevance to various aging hallmarks, and emphasize the growing body of evidence that suggests NDR kinases are essential regulators of aging across species.
Collapse
Affiliation(s)
- Kevin Jonischkies
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Miguel del Angel
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Yunus Emre Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Allison Loaiza Zambrano
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany
| |
Collapse
|
5
|
Bin Y, Deng W, Hu H, Zeng Q, Chen J, Xu Y, Dai Y, Liao A, Xiao W. RASSF1A inhibits epithelial-mesenchymal transition of gastric cancer cells by downregulating P-JNK. Cell Biol Int 2023; 47:573-583. [PMID: 36404583 DOI: 10.1002/cbin.11958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 10/18/2022] [Accepted: 10/30/2022] [Indexed: 11/22/2022]
Abstract
Gastric cancer (GC) is one of the most common gastrointestinal tumors. In this study, we assessed the biological role of Ras association domain family 1 isoform A (RASSF1A) in GC cells. Expressions of RASSF1A and the relationship of RASSF1A with epithelial-mesenchymal transformation (EMT)-related proteins were assessed in five cell lines using Western blot. GC cells with RASSF1A overexpression were used to study sensitivity to cisplatin, migration, invasion, and the expression of EMT-associated biomarkers. GC cells showed profound downregulation of RASSF1A expression compared with normal human gastric mucosal cells. High RASSF1A expression was associated with increased overall survival. Overexpression of RASSF1A regulates GC cells activity and the expression of EMT-associated biomarkers. RASSF1A regulates E-cadherin and Vimentin through P-JNK pathway. Our results revealed that RASSF1A can inhibit the proliferation, migration, and invasion of GC cells via E-cadherin. Our study provides insights for further research on GC.
Collapse
Affiliation(s)
- Yuling Bin
- The First Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenbing Deng
- The First Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hongsai Hu
- Department of Gastroenterology, ZhuZhou Central Hospital, Zhuzhou, Hunan, China
| | - Qiong Zeng
- Department of Geratology, LouDi Central Hospital, Loudi, Hunan, China
| | - Juan Chen
- The First Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yanqing Xu
- Department of Gastroenterology, AnXiang People's Hospital, Anxiang, Hunan, China
| | - Yong Dai
- The First Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Aijun Liao
- The First Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weisheng Xiao
- The First Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|