1
|
Ma X, Lu T, Yang Y, Qin D, Tang Z, Cui Y, Wang R. DEAD-box helicase family proteins: emerging targets in digestive system cancers and advances in targeted drug development. J Transl Med 2024; 22:1120. [PMID: 39707322 DOI: 10.1186/s12967-024-05930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024] Open
Abstract
Cancer has become one of the major diseases threatening human health in the twenty-first century due to its incurability. In 2022, new cases of esophageal and gastrointestinal cancers accounted for 17.1% of all newly diagnosed cancer cases worldwide. Despite significant improvements in early cancer screening, clinical diagnostics, and treatments in recent years, the overall prognosis of digestive system cancer patients remains poor. The DEAD-box helicase family, a crucial member of the RNA helicase family, participates in almost every aspect of RNA metabolism, including transcription, splicing, translation, and degradation, and plays a key role in the occurrence and progression of various cancers. This article aims to summarize and discuss the role and potential clinical applications of DEAD-box helicase family proteins in digestive system cancers. The discussion includes the latest progress in the occurrence, development, and treatment of esophageal and gastrointestinal tumors; the main functions of DEAD-box helicase family proteins; their roles in digestive system cancers, including their relationships with clinical factors; effects on cancer proliferation, migration, and invasion; and involved signaling pathways; as well as the existing inhibitory strategies targeting DDX family proteins, are discussed. Additionally, outlooks on future research directions are provided.
Collapse
Affiliation(s)
- Xiaochao Ma
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Tianyu Lu
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Yue Yang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Da Qin
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Ze Tang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Youbin Cui
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China.
| | - Rui Wang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| |
Collapse
|
2
|
Jeena MT, Link J, Zhang J, Harley I, Turunen P, Graf R, Wagner M, Baptista LA, Jonker HRA, Cui L, Lieberwirth I, Landfester K, Rao J, Ng DYW, Weil T. Chaperone-Derived Copper(I)-Binding Peptide Nanofibers Disrupt Copper Homeostasis in Cancer Cells. Angew Chem Int Ed Engl 2024; 63:e202412477. [PMID: 39446574 PMCID: PMC11627128 DOI: 10.1002/anie.202412477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Copper (Cu) is a transition metal that plays crucial roles in cellular metabolism. Cu+ homeostasis is upregulated in many cancers and contributes to tumorigenesis. However, therapeutic strategies to target Cu+ homeostasis in cancer cells are rarely explored because small molecule Cu+ chelators have poor binding affinity in comparison to the intracellular Cu+ chaperones, enzymes, or ligands. To address this challenge, we introduce a Cu+ chaperone-inspired supramolecular approach to disrupt Cu+ homeostasis in cancer cells that induces programmed cell death. The Nap-FFMTCGGCR peptide self-assembles into nanofibers inside cancer cells with high binding affinity and selectivity for Cu+ due to the presence of the unique MTCGGC motif, which is conserved in intracellular Cu+ chaperones. Nap-FFMTCGGCR exhibits cytotoxicity towards triple negative breast cancer cells (MDA-MB-231), impairs the activity of Cu+ dependent co-chaperone super oxide dismutase1 (SOD1), and induces oxidative stress. In contrast, Nap-FFMTCGGCR has minimal impact on normal HEK 293T cells. Control peptides show that the self-assembly and Cu+ binding must work in synergy to successfully disrupt Cu+ homeostasis. We show that assembly-enhanced affinity for metal ions opens new therapeutic strategies to address disease-relevant metal ion homeostasis.
Collapse
Affiliation(s)
- M. T. Jeena
- Max-Planck-Institut für PolymerforschungAckermannweg 1055128MainzGermany
| | - Julian Link
- Max-Planck-Institut für PolymerforschungAckermannweg 1055128MainzGermany
| | - Jian Zhang
- Max-Planck-Institut für PolymerforschungAckermannweg 1055128MainzGermany
| | - Iain Harley
- Max-Planck-Institut für PolymerforschungAckermannweg 1055128MainzGermany
| | - Petri Turunen
- Zentrale Einrichtung für MikroskopieInstitut für Molekulare Biologie (IMB)Johannes Gutenberg-UniversitätAckermannweg 455128MainzGermany
| | - Robert Graf
- Max-Planck-Institut für PolymerforschungAckermannweg 1055128MainzGermany
| | - Manfred Wagner
- Max-Planck-Institut für PolymerforschungAckermannweg 1055128MainzGermany
| | | | - Hendrik R. A. Jonker
- Institut für Organische Chemie und Chemische BiologieBiomolekulares Magnetresonanz Zentrum (BMRZ)Goethe Universität Frankfurt60438Frankfurt am MainGermany
| | - Liyang Cui
- Department of RadiologyMolecular Imaging Program at StanfordSchool of MedicineStanford UniversityStanfordCA94305USA
| | - Ingo Lieberwirth
- Max-Planck-Institut für PolymerforschungAckermannweg 1055128MainzGermany
| | | | - Jianghong Rao
- Department of RadiologyMolecular Imaging Program at StanfordSchool of MedicineStanford UniversityStanfordCA94305USA
| | - David Y. W. Ng
- Max-Planck-Institut für PolymerforschungAckermannweg 1055128MainzGermany
| | - Tanja Weil
- Max-Planck-Institut für PolymerforschungAckermannweg 1055128MainzGermany
| |
Collapse
|
3
|
Wu Z, Yu M, Zeng Y, Huang Y, Zheng W. LRP11-AS1 mediates enterotoxigenic Bacteroides fragilis-related carcinogenesis in colorectal Cancer via the miR-149-3p/CDK4 pathway. Cancer Gene Ther 2024:10.1038/s41417-024-00862-9. [PMID: 39672916 DOI: 10.1038/s41417-024-00862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
Long noncoding RNAs (lncRNAs) are critical in tumorigenesis and show potential for tumor diagnosis and therapy. Enterotoxigenic Bacteroides fragilis (ETBF), known for producing enterotoxins, is implicated in human gut tumorigenesis, yet the underlying mechanisms are not fully elucidated. This study aims to clarify the molecular mechanisms by which lncRNAs contribute to ETBF-induced tumorigenesis, with a focus on LRP11-AS1's role in modulating ETBF's colorectal carcinogenesis. We found a marked increase in LRP11-AS1 expression in colorectal cancer (CRC) tissues compared to adjacent non-tumorous tissues. In vitro, CRC cells exposed to ETBF showed elevated LRP11-AS1 levels. Mechanistically, LRP11-AS1 was shown to enhance CDK4 expression by competitively binding to miR-149-3p. These results indicate that LRP11-AS1 may facilitate ETBF-related carcinogenesis in CRC and could serve as a therapeutic target and diagnostic biomarker for ETBF-associated CRC.
Collapse
Affiliation(s)
- Zhongguang Wu
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Mengqiu Yu
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Yu Zeng
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Yingfeng Huang
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Weidong Zheng
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
4
|
Hueso M, Mallén A, Navarro E. Generation of Transcript Length Variants and Reprogramming of mRNA Splicing During Atherosclerosis Progression in ApoE-Deficient Mice. Biomedicines 2024; 12:2703. [PMID: 39767610 PMCID: PMC11672872 DOI: 10.3390/biomedicines12122703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background. Variant 3'UTRs provide mRNAs with different binding sites for miRNAs or RNA-binding proteins (RBPs) allowing the establishment of new regulatory environments. Regulation of 3'UTR length impacts on the control of gene expression by regulating accessibility of miRNAs or RBPs to homologous sequences in mRNAs. Objective. Studying the dynamics of mRNA length variations in atherosclerosis (ATS) progression and reversion in ApoE-deficient mice exposed to a high-fat diet and treated with an αCD40-specific siRNA or with a sequence-scrambled siRNA as control. Methods. We gathered microarray mRNA expression data from the aortas of mice after 2 or 16 weeks of treatments, and used these data in a Bioinformatics analysis. Results. Here, we report the lengthening of the 5'UTR/3'UTRs and the shortening of the CDS in downregulated mRNAs during ATS progression. Furthermore, treatment with the αCD40-specific siRNA resulted in the partial reversion of the 3'UTR lengthening. Exon analysis showed that these length variations were actually due to changes in the number of exons embedded in mRNAs, and the further examination of transcripts co-expressed at weeks 2 and 16 in mice treated with the control siRNA revealed a process of mRNA isoform switching in which transcript variants differed in the patterns of alternative splicing or activated latent/cryptic splice sites. Conclusion. We document length variations in the 5'UTR/3'UTR and CDS of mRNAs downregulated during atherosclerosis progression and suggest a role for mRNA splicing reprogramming and transcript isoform switching in the generation of disease-related mRNA sequence diversity and variability.
Collapse
Affiliation(s)
- Miguel Hueso
- Experimental Nephrology Lab, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, C/Feixa Llarga s/n, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
- Department of Nephrology, Hospital Universitari and Bellvitge, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, C/Feixa Llarga s/n, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Adrián Mallén
- Experimental Nephrology Lab, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, C/Feixa Llarga s/n, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Estanis Navarro
- REMAR Group, Germans Trias i Pujol Research Institute (IGTP), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Spain
| |
Collapse
|
5
|
Moreira MP, Franco EP, Barros BAF, Anjos BRD, Almada DDG, Barbosa INT, Braga LDC, Cassali GD, Silva LM. Standard chemotherapy impacts on in vitro cellular heterogeneity in spheroids enriched with cancer stem cells (CSCs) derived from triple-negative breast cancer cell line. Biochem Biophys Res Commun 2024; 734:150765. [PMID: 39357337 DOI: 10.1016/j.bbrc.2024.150765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Triple-negative breast cancer is a heterogeneous disease with high recurrence and mortality, linked to cancer stem cells (CSCs). Our study characterized distinct cell subpopulations and signaling pathways to explore chemoresistance. We observed cellular heterogeneity among and within the cells regarding phenotyping and drug response. In untreated BT-549 cells, we noted plasticity properties in both CD44+/CD24+/CD146+ hybrid cells and CD44-/CD24+/CD146+ epithelial cells, enabling phenotypic conversion into CD44+/CD24-/CD146- epithelial-mesenchymal transition (EMT)-like like breast CSCs (BCSCs). Additionally, non-BCSCs may give rise to ALDH+ epithelial-like BCSCs. Enriched BCSCs demonstrated the potential to differentiation into CD44-/CD24-/CD146- cells and exhibited self-renewal capabilities. Similar phenotypic plasticity was not observed in untreated Hs 578T and HMT-3522 S1 cells. BT-549 cells were more resistant to paclitaxel/PTX than to doxorubicin/DOX, a phenomenon potentially linked to the presence of CD24+ cells prior to treatment. Under the CSCs-enriched spheroids model, BT-549 demonstrated extreme resistance to DOX, likely due to the enrichment of BCSCs CD44+/CD24-/CD146- and the tumor cells CD44-/CD24-/CD146-. Additionally, DOX treatment induced the enrichment of plastic and chemoresistant cells, further exacerbating resistance mechanisms. BT-549 exhibited high heterogeneity, leading to significant alterations in cell subpopulations under BCSCs enrichment, demonstrating increased phenotypic plasticity during EMT. This phenomenon appears to play a major role in DOX resistance, as indicated by the presence of the refractory cells CD44+/CD24-/CD146- BCSCs EMT-like, CD44-/CD24-/CD146- tumor cells, and elevated STAT3 expression. Gene expression data from BT-549 CSCs-enriched spheroids suggests that ferroptosis may be occurring via autophagic regulation triggered by RAB7A, highlighting this gene as a potential therapeutic target.
Collapse
Affiliation(s)
- Milene Pereira Moreira
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil.
| | - Eliza Pereira Franco
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Bárbara Avelar Ferreira Barros
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil; Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Bianca Rocha Dos Anjos
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil; Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Daniela de Gouvêa Almada
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Isabela Nery Tavares Barbosa
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Letícia da Conceição Braga
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Geovanni Dantas Cassali
- Laboratório de Patologia Comparada, Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Luciana Maria Silva
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| |
Collapse
|
6
|
Kusumawati P, Pranoto Y, Triwitono P, Latief FDE. The Effect of Grouper Bone Nano-Calcium (GBN) and Medium-Chain Triglyceride (MCT) Supplementation on the Ovariectomized Rats. J Nutr Metab 2024; 2024:4832594. [PMID: 39583771 PMCID: PMC11585367 DOI: 10.1155/jnme/4832594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
The objective of this research was to investigate the calcium bioavailability and the influence of substituting synthetic calcium carbonate (CaCO3) with grouper bone nano-calcium (GBN), and medium-chain triglyceride (MCT) with long-chain triglyceride (LCT) in the diet of ovariectomized rats maintained for 8 weeks. Twenty rats were randomly divided into four distinct groups: (1) The OX-C group: AIN-93M standard + synthetic CaCO3; (2) the OX-D group: AIN-93M standard + no calcium; (3) the OX-1 group: AIN-93M standard + GBN; and (4) the OX-2 group: AIN-93M with MCT as lipid source + GBN. The test parameters conducted encompassed the evaluation of the rat's body weight, levels of calcium, phosphorus, and alkaline phosphatase in rat blood serum, examination of the microstructure of rat tibiae by histomorphometry and femora bones by means of 3D micro-CT image analysis, and assessment of the strength of rat femora bones by the three-point bending. The results indicated that the GBN calcium diet groups (OX-1 and OX-2) were successful substitutes for synthetic CaCO3 of the OX-C group. GBN calcium diet groups have shown superiority in terms of trabeculae thickness (Tb.Th), bone volume (BV/TV), bone mineral density (BMD), and particularly in bone strength evaluations. The GBN calcium diet groups exhibited serum calcium, serum phosphorus, and alkaline phosphatase levels that were comparable to those of synthetic CaCO3 calcium. As the calcium-deficient group, OX-D revealed a much lower and distinct performance than other groups. This research demonstrated that MCT exhibit comparable performance to LCT; however, it did not establish that substituting LCT for MCT was superior.
Collapse
Affiliation(s)
- Pipin Kusumawati
- Department of Food and Agriculture Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Sekolah Tinggi Pariwisata Ambarrukmo, Banguntapan, Bantul, Yogyakarta 55198, Indonesia
| | - Yudi Pranoto
- Department of Food and Agriculture Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Priyanto Triwitono
- Department of Food and Agriculture Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Fourier Dzar Eljabbar Latief
- Micro-CT Laboratory, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
| |
Collapse
|
7
|
Pandkar MR, Shukla S. Epigenetics and alternative splicing in cancer: old enemies, new perspectives. Biochem J 2024; 481:1497-1518. [PMID: 39422322 DOI: 10.1042/bcj20240221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
In recent years, significant strides in both conceptual understanding and technological capabilities have bolstered our comprehension of the factors underpinning cancer initiation and progression. While substantial insights have unraveled the molecular mechanisms driving carcinogenesis, there has been an overshadowing of the critical contribution made by epigenetic pathways, which works in concert with genetics. Mounting evidence demonstrates cancer as a complex interplay between genetics and epigenetics. Notably, epigenetic elements play a pivotal role in governing alternative pre-mRNA splicing, a primary contributor to protein diversity. In this review, we have provided detailed insights into the bidirectional communication between epigenetic modifiers and alternative splicing, providing examples of specific genes and isoforms affected. Notably, succinct discussion on targeting epigenetic regulators and the potential of the emerging field of epigenome editing to modulate splicing patterns is also presented. In summary, this review offers valuable insights into the intricate interplay between epigenetics and alternative splicing in cancer, paving the way for novel approaches to understanding and targeting this critical process.
Collapse
Affiliation(s)
- Madhura R Pandkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
8
|
Wu C, Zhai Y, Ji J, Yang X, Ye L, Lu G, Shi X, Zhai G. Advances in tumor stroma-based targeted delivery. Int J Pharm 2024; 664:124580. [PMID: 39142464 DOI: 10.1016/j.ijpharm.2024.124580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The tumor stroma plays a crucial role in tumor progression, and the interactions between the extracellular matrix, tumor cells, and stromal cells collectively influence tumor progression and the efficacy of therapeutic agents. Currently, utilizing components of the tumor stroma for drug delivery is a noteworthy strategy. A number of targeted drug delivery systems designed based on tumor stromal components are entering clinical trials. Therefore, this paper provides a thorough examination of the function of tumor stroma in the advancement of targeted drug delivery systems. One approach is to use tumor stromal components for targeted drug delivery, which includes certain stromal components possessing inherent targeting capabilities like HA, laminin, along with targeting stromal cells homologously. Another method entails directly focusing on tumor stromal components to reshape the tumor stroma and facilitate drug delivery. These drug delivery systems exhibit great potential in more effective cancer therapy strategies, such as precise targeting, enhanced penetration, improved safety profile, and biocompatibility. Ultimately, the deployment of these drug delivery systems can deepen our comprehension of tumor stroma and the advanced development of corresponding drug delivery systems.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
9
|
Zhu Z, Xie Y, Yin M, Peng L, Zhu H. A novel m7G-related miRNA prognostic signature for predicting clinical outcome and immune microenvironment in colon cancer. J Cancer 2024; 15:6086-6102. [PMID: 39440054 PMCID: PMC11493006 DOI: 10.7150/jca.99173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Background: Colon cancer (CC) is a highly prevalent malignancy worldwide, characterized by elevated mortality rates and poor prognosis. N7-methylguanosine (m7G) methylation is an emerging RNA modification type and involved in the development of many tumors. Despite this, the correlation between m7G-related miRNAs and CC remains to be elucidated. This research aimed to investigate the clinical significance of m7G-related miRNAs in predicting both the prognosis and tumor microenvironment (TME) of CC. Method: We retrieved transcriptome data and associated clinical information from a publicly accessible database. Using univariate Cox and LASSO regression analyses, we established a signature of m7G-related miRNAs. Additionally, we used CIBERSORT and ssGSEA algorithms to explore the association between the prognostic risk score and the TME in CC patients. By considering the risk signature and immune infiltration, we identified differentially expressed genes that contribute to the prognosis of CC. Finally, the expression patterns of prognostic miRNAs were verified using quantitative reverse transcriptase PCR (qRT-PCR) in cell lines. Results: We constructed a prognostic risk signature based on seven m7G-related miRNAs (miR-136-5p, miR-6887-3p, miR-195-5p, miR-149-3p, miR-4433a-5p, miR-31-5p, and miR-129-2-3p). Subsequently, we observed remarkable differences in patient outcomes between the high- and low-risk groups. The area under the curve (AUC) for 1-, 3-, and 5-year survivals in the ROC curve were 0.735, 0.707, and 0.632, respectively. Furthermore, our results showed that the risk score can serve as an independent prognostic biomarker for overall survival prediction. In terms of immune analysis, the results revealed a significant association between the risk signature and immune infiltration, as well as immune checkpoint expression. Finally, our study showed that CCDC160 and RLN3 is the gene most relevant to immune cells and function in CC. Conclusion: Our study conducted a comprehensive and systematic analysis of m7G-associated miRNAs to construct prognostic profiles of CC. We developed a prognostic risk model based on m7G-miRNAs, with the resulting risk scores demonstrating considerable potential as prognostic biomarkers. These findings provide substantial evidence for the critical role of m7G-related miRNAs in colon cancer and may offer new immunotherapeutic targets for patients with this disease.
Collapse
Affiliation(s)
| | | | | | - Lei Peng
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Afify AY, Ashry MH, Hassan H. Sex differences in survival outcomes of early-onset colorectal cancer. Sci Rep 2024; 14:22041. [PMID: 39327445 PMCID: PMC11427454 DOI: 10.1038/s41598-024-71999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most fatal cancers in the United States. Although the overall incidence and mortality rates are declining, an alarming rise in early-onset colorectal cancer (EOCRC), defined as CRC diagnosis in patients aged < 50 years, was previously reported. Our study focuses on analyzing sex-specific differences in survival among EOCRC patients and comparing sex-specific predictors of survival in both males and females in the United States. We retrieved and utilized data from the Surveillance, Epidemiology, and End Results (SEER) program. EOCRC patients, between the ages of 20 and 49, were exclusively included. We conducted thorough survival analyses using Kaplan-Meier curves, log-rank tests, Cox regression models, and propensity score matching to control for potential biases. Our study included 58,667 EOCRC patients (27,662 females, 31,005 males) diagnosed between 2000 and 2017. The baseline characteristics at the time of diagnosis were significantly heterogeneous between males and females. Males exhibited significantly worse overall survival (OS), cancer-specific survival (CSS), and noncancer-specific survival (NCSS) in comparison to females in both the general cohort, and the matched cohort. Predictors of survival outcomes generally followed a similar pattern in both sexes except for minor differences. In conclusion, we identified sex as an independent prognostic factor of EOCRC, suggesting disparities in survival between sexes. Further understanding of the epidemiological and genetic bases of these differences could facilitate targeted, personalized therapeutic approaches for EOCRC.
Collapse
Affiliation(s)
- Abdelrahman Yousry Afify
- School of Medicine, New Giza University (NGU), Giza, Egypt.
- Internal Medicine Department, Cairo University Hospitals, Cairo, Egypt.
| | - Mohamed Hady Ashry
- School of Medicine, New Giza University (NGU), Giza, Egypt
- Medical Research Platform, Giza, Egypt
| | - Hamsa Hassan
- Medical Research Platform, Giza, Egypt
- Egypt-Japan University of Science and Technology (EJUST), New Borg El Arab, Alexandria, Egypt
- Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Li S, Feng T, Yuan H, Li Q, Zhao G, Li K. DEAD-box RNA helicases in the multistep process of tumor metastasis. Mol Biol Rep 2024; 51:1006. [PMID: 39306810 DOI: 10.1007/s11033-024-09912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/03/2024] [Indexed: 01/04/2025]
Abstract
RNA helicases constitute a large family of proteins that share a catalytic core with high structural similarity. DEAD-box (DDX) proteins belong to the largest RNA helicase subfamily, and DDX members have been implicated in all facets of RNA metabolism, from transcription to translation, miRNA maturation, and RNA delay and degradation. Interestingly, an increasing number of studies have suggested a relationship between DDX proteins and cancer initiation and progression. The expression levels of many DDX proteins are elevated in a majority of cancers, and recent studies have demonstrated that some DDX proteins have a potent positive effect on promoting the metastasis of malignant cells. Metastasis is a complex, multistep cascade process that includes local invasion, intravasation and survival in the circulation, arrest at a distant organ site, extravasation and metastatic colonization; here, we review this process and present the suggested functions and mechanisms of DDX family proteins in particular steps of the invasion‒metastasis cascade.
Collapse
Affiliation(s)
- Shan Li
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Tianyu Feng
- Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Sichuan Clinical Research Center for Laboratory Medicine, West China Hospital, Sichuan University, Chengdu City, People's Republic of China
| | - Hang Yuan
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Qin Li
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Gang Zhao
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China.
| | - Kai Li
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China.
| |
Collapse
|
12
|
Vujosevic S, Limoli C, Kozak I. Hallmarks of aging in age-related macular degeneration and age-related neurological disorders: novel insights into common mechanisms and clinical relevance. Eye (Lond) 2024:10.1038/s41433-024-03341-5. [PMID: 39289517 DOI: 10.1038/s41433-024-03341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Age-related macular degeneration (AMD) and age-related neurological diseases (ANDs), such as Alzheimer's and Parkinson's Diseases, are increasingly prevalent conditions that significantly contribute to global morbidity, disability, and mortality. The retina, as an accessible part of the central nervous system (CNS), provides a unique window to study brain aging and neurodegeneration. By examining the associations between AMD and ANDs, this review aims to highlight novel insights into fundamental mechanisms of aging and their role in neurodegenerative disease progression. This review integrates knowledge from the emerging field of aging research, which identifies common denominators of biological aging, specifically loss of proteostasis, impaired macroautophagy, mitochondrial dysfunction, and inflammation. Finally, we emphasize the clinical relevance of these pathways and the potential for cross-disease therapies that target common aging hallmarks. Identifying these shared pathways could open avenues to develop therapeutic strategies targeting mechanisms common to multiple degenerative diseases, potentially attenuating disease progression and promoting the healthspan.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
- Eye Clinic, IRCCS MultiMedica, Milan, Italy.
| | - Celeste Limoli
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
- University of Milan, Milan, Italy
| | - Igor Kozak
- Moorfields Eye Hospital Centre, Abu Dhabi, UAE
- Ophthalmology and Vision Science, University of Arizona, Tucson, USA
| |
Collapse
|
13
|
Jawale D, Khandibharad S, Singh S. Innate Immune Response and Epigenetic Regulation: A Closely Intertwined Tale in Inflammation. Adv Biol (Weinh) 2024:e2400278. [PMID: 39267219 DOI: 10.1002/adbi.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Indexed: 09/17/2024]
Abstract
Maintenance of delicate homeostasis is very important in various diseases because it ensures appropriate immune surveillance against pathogens and prevents excessive inflammation. In a disturbed homeostatic condition, hyperactivation of immune cells takes place and interplay between these cells triggers a plethora of signaling pathways, releasing various pro-inflammatory cytokines such as Tumor necrosis factor alpha (TNFα), Interferon-gamma (IFNƴ), Interleukin-6 (IL-6), and Interleukin-1 beta (IL-1β), which marks cytokine storm formation. To be precise, dysregulated balance can impede or increase susceptibility to various pathogens. Pathogens have the ability to hijack the host immune system by interfering with the host's chromatin architecture for their survival and replication in the host cell. Cytokines, particularly IL-6, Interleukin-17 (IL-17), and Interleukin-23 (IL-23), play a key role in orchestrating innate immune responses and shaping adaptive immunity. Understanding the interplay between immune response and the role of epigenetic modification to maintain immune homeostasis and the structural aspects of IL-6, IL-17, and IL-23 can be illuminating for a novel therapeutic regimen to treat various infectious diseases. In this review, the light is shed on how the orchestration of epigenetic regulation facilitates immune homeostasis.
Collapse
Affiliation(s)
- Diksha Jawale
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| | - Shweta Khandibharad
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| | - Shailza Singh
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| |
Collapse
|
14
|
Nie X, Zhang T, Huang X, Gu C, Zuo W, Fu LJ, Dong Y, Liu H. Novel therapeutic targets: bifidobacterium-mediated urea cycle regulation in colorectal cancer. Cell Biol Toxicol 2024; 40:64. [PMID: 39096436 PMCID: PMC11297826 DOI: 10.1007/s10565-024-09889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/03/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND AND PURPOSE Colorectal cancer (CRC) is a widespread malignancy with a complex and not entirely elucidated pathogenesis. This study aims to explore the role of Bifidobacterium in the urea cycle (UC) and its influence on the progression of CRC, a topic not extensively studied previously. EXPERIMENTAL APPROACH Utilizing both bioinformatics and experimental methodologies, this research involved analyzing bacterial abundance in CRC patients in comparison to healthy individuals. The study particularly focused on the abundance of BA. Additionally, transcriptomic data analysis and cellular experiments were conducted to investigate the impact of Bifidobacterium on ammonia metabolism and mitochondrial function, specifically examining its regulation of the key UC gene, ALB. KEY RESULTS The analysis revealed a significant decrease in Bifidobacterium abundance in CRC patients. Furthermore, Bifidobacterium was found to suppress ammonia metabolism and induce mitochondrial dysfunction through the regulation of the ALB gene, which is essential in the context of UC. These impacts contributed to the suppression of CRC cell proliferation, a finding corroborated by animal experimental results. CONCLUSIONS AND IMPLICATIONS This study elucidates the molecular mechanism by which Bifidobacterium impacts CRC progression, highlighting its role in regulating key metabolic pathways. These findings provide potential targets for novel therapeutic strategies in CRC treatment, emphasizing the importance of microbiota in cancer progression.
Collapse
Affiliation(s)
- Xusheng Nie
- Department of Gastroenterology, Yunyang County People's Hospital, Chongqing, 404599, China
| | - Tingting Zhang
- Department of Pediatrics, Rongchang District People's Hospital, Chongqing, 402460, China
| | - Xiumei Huang
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.3, North Guangchang Road, Changyuan Street, Rongchang District, Chongqing, 402460, China
| | - Chongqi Gu
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.3, North Guangchang Road, Changyuan Street, Rongchang District, Chongqing, 402460, China
| | - Wei Zuo
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Li-Juan Fu
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Yiping Dong
- Department of Digital Medicine, Department of Bioengineering and Imaging, Army Medical University, Chongqing, 400038, China
| | - Hao Liu
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.3, North Guangchang Road, Changyuan Street, Rongchang District, Chongqing, 402460, China.
| |
Collapse
|
15
|
Huang F, Wang Y, Shao Y, Zhang R, Li M, Liu L, Zhao Q. M2 Macrophage Classification of Colorectal Cancer Reveals Intrinsic Connections with Metabolism Reprogramming and Clinical Characteristics. Pharmgenomics Pers Med 2024; 17:383-399. [PMID: 39011168 PMCID: PMC11249104 DOI: 10.2147/pgpm.s458798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Immune cell interactions and metabolic changes are crucial in determining the tumor microenvironment and affecting various clinical outcomes. However, the clinical significance of metabolism evolution of immune cell evolution in colorectal cancer (CRC) remains unexplored. Methods Single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing data were acquired from TCGA and GEO datasets. For the analysis of macrophage differentiation trajectories, we employed the R packages Seurat and Monocle. Consensus clustering was further applied to identify the molecular classification. Immunohistochemical results from AOM and AOM/DSS models were used to validate macrophage expression. Subsequently, GSEA, ESTIMATE scores, prognosis, clinical characteristics, mutational burden, immune cell infiltration, and the variance in gene expression among different clusters were compared. We constructed a prognostic model and nomograms based on metabolic gene signatures identified through the MEGENA framework. Results We found two heterogeneous groups of M2 macrophages with various clinical outcomes through the evolutionary process. The prognosis of Cluster 2 was poorer. Further investigation showed that Cluster 2 constituted a metabolically active group while Cluster 1 was comparatively metabolically inert. Metabolic variations in M2 macrophages during tumor development are related to tumor prognosis. Additionally, Cluster 2 showed the most pronounced genomic instability and had highly elevated metabolic pathways, notably those associated with the ECM. We identified eight metabolic genes (PRELP, NOTCH3, CNOT6, ASRGL1, SRSF1, PSMD4, RPL31, and CNOT7) to build a predictive model validated in CRC datasets. Then, a nomogram based on the M2 risk score improved predictive performance. Furthermore, our study demonstrated that immune checkpoint inhibitor therapy may benefit patients with low-risk. Discussion Our research reveals underlying relationships between metabolic phenotypes and immunological profiles and suggests a unique M2 classification technique for CRC. The identified gene signatures may be key factors linking immunity and tumor metabolism, warranting further investigations.
Collapse
Affiliation(s)
- Fengxing Huang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China
| | - Youwei Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China
| | - Yu Shao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China
| | - Runan Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China
| | - Mengting Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China
| |
Collapse
|
16
|
Li Q, Yuan H, Zhao G, Ou D, Zhang J, Li L, Li S, Feng T, Gu R, Kou Q, Wang Q, Li S, Wang G, Zhao M, Yu H, Qu J, Lin P, Li K. DDX39B protects against sorafenib-induced ferroptosis by facilitating the splicing and cytoplasmic export of GPX4 pre-mRNA in hepatocellular carcinoma. Biochem Pharmacol 2024; 225:116251. [PMID: 38701867 DOI: 10.1016/j.bcp.2024.116251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Hepatocellular carcinoma (HCC) is the main histological subtype of primary liver cancer and remains one of the most common solid malignancies globally. Ferroptosis was recently defined as an iron-catalyzed form of regulated necrosis. Because cancer cells exhibit higher iron requirements than noncancer cells, treatment with ferroptosis-inducing compounds may be a feasible strategy for cancer therapy. However, cancer cells develop acquired resistance to evade ferroptosis, and the mechanisms responsible for ferroptosis resistance are not fully clarified. In the current study, we reported that DDX39B was downregulated during sorafenib-induced ferroptosis in a dose- and time-dependent manner. Exogenous introduction of DDX39B ensured the survival of HCC cells upon exposure to sorafenib, while the opposite phenomenon was observed in DDX39B-silenced HCC cells. Mechanistically, we demonstrated that DDX39B increased GPX4 levels by promoting the splicing and cytoplasmic translocation of GPX4 pre-mRNA, which was sufficient to detoxify sorafenib-triggered excess lipid ROS production, lipid peroxidation accumulation, ferrous iron levels, and mitochondrial damage. Inhibition of DDX39B ATPase activity by CCT018159 repressed the splicing and cytoplasmic export of GPX4 pre-mRNA and synergistically assisted sorafenib-induced ferroptotic cell death in HCC cells. Taken together, our data uncover a novel role for DDX39B in ferroptosis resistance by modulating the maturation of GPX4 mRNA via a posttranscriptional approach and suggest that DDX39B inhibition may be a promising therapeutic strategy to enhance the sensitivity and vulnerability of HCC cells to sorafenib.
Collapse
Affiliation(s)
- Qin Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hang Yuan
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Gang Zhao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Deqiong Ou
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jie Zhang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Liang Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Siqi Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Tianyu Feng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Rui Gu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qiming Kou
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qijing Wang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Shan Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Guanru Wang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Minghui Zhao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Huayang Yu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jie Qu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ping Lin
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
| | - Kai Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
17
|
Singh A, Cheng D, Swaminathan J, Yang Y, Zheng Y, Gordon N, Gopalakrishnan V. REST-dependent downregulation of von Hippel-Lindau tumor suppressor promotes autophagy in SHH-medulloblastoma. Sci Rep 2024; 14:13596. [PMID: 38866867 PMCID: PMC11169471 DOI: 10.1038/s41598-024-63371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
The RE1 silencing transcription factor (REST) is a driver of sonic hedgehog (SHH) medulloblastoma genesis. Our previous studies showed that REST enhances cell proliferation, metastasis and vascular growth and blocks neuronal differentiation to drive progression of SHH medulloblastoma tumors. Here, we demonstrate that REST promotes autophagy, a pathway that is found to be significantly enriched in human medulloblastoma tumors relative to normal cerebella. In SHH medulloblastoma tumor xenografts, REST elevation is strongly correlated with increased expression of the hypoxia-inducible factor 1-alpha (HIF1α)-a positive regulator of autophagy, and with reduced expression of the von Hippel-Lindau (VHL) tumor suppressor protein - a component of an E3 ligase complex that ubiquitinates HIF1α. Human SHH-medulloblastoma tumors with higher REST expression exhibit nuclear localization of HIF1α, in contrast to its cytoplasmic localization in low-REST tumors. In vitro, REST knockdown promotes an increase in VHL levels and a decrease in cytoplasmic HIF1α protein levels, and autophagy flux. In contrast, REST elevation causes a decline in VHL levels, as well as its interaction with HIF1α, resulting in a reduction in HIF1α ubiquitination and an increase in autophagy flux. These data suggest that REST elevation promotes autophagy in SHH medulloblastoma cells by modulating HIF1α ubiquitination and stability in a VHL-dependent manner. Thus, our study is one of the first to connect VHL to REST-dependent control of autophagy in a subset of medulloblastomas.
Collapse
Affiliation(s)
- Ashutosh Singh
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Donghang Cheng
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Jyothishmathi Swaminathan
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Yanwen Yang
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Yan Zheng
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Nancy Gordon
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Vidya Gopalakrishnan
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center and UTHealth Graduate School for Biomedical Sciences, 6767 Bertner Ave, S3.8344 Mitchell BSRB, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Ma RT, Wang Y, Ji F, Chen JN, Wang TJ, Liu Y, Hou MX, Guo ZG. YTHDF1's grip on CRC vasculature: insights into LINC01106 and miR-449b-5p-VEGFA axis. Cancer Cell Int 2024; 24:195. [PMID: 38835070 DOI: 10.1186/s12935-024-03360-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Investigating the unexplored territory of lncRNA m6A modification in colorectal cancer (CRC) vasculature, this study focuses on LINC01106 and YTHDF1. METHODS Clinical assessments reveal upregulated LINC01106 promoting vascular generation via the miR-449b-5p-VEGFA pathway. RESULTS YTHDF1, elevated in CRC tissues, emerges as an adverse prognostic factor. Functional experiments showcase YTHDF1's inhibitory effects on CRC cell dynamics. Mechanistically, Me-CLIP identifies m6A-modified LINC01106, validated as a YTHDF1 target through Me-RIP. CONCLUSIONS This study sheds light on the YTHDF1-mediated m6A modification of LINC01106, presenting it as a key player in suppressing CRC vascular generation.
Collapse
Affiliation(s)
- Rui-Ting Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
- The Affiliated Hospital of Inner Mongolia Medical University, No.1, North Channel Road, Huimin District, Hohhot, 010050, China
| | - Yuanyuan Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Feng Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Jian-Nan Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Tian-Jun Wang
- Nanjing Medical University, Nanjing, Jiangsu, 210097, China
| | - Yan Liu
- The Affiliated Hospital of Inner Mongolia Medical University, No.1, North Channel Road, Huimin District, Hohhot, 010050, China
| | - Ming-Xing Hou
- The Affiliated Hospital of Inner Mongolia Medical University, No.1, North Channel Road, Huimin District, Hohhot, 010050, China.
| | - Zhi-Gang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.
- The Academy of Life Sciences, Nanjing Normal University, Nanjing, 210097, China.
| |
Collapse
|
19
|
Tenney L, Pham VN, Brewer TF, Chang CJ. A mitochondrial-targeted activity-based sensing probe for ratiometric imaging of formaldehyde reveals key regulators of the mitochondrial one-carbon pool. Chem Sci 2024; 15:8080-8088. [PMID: 38817555 PMCID: PMC11134394 DOI: 10.1039/d4sc01183j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Formaldehyde (FA) is both a highly reactive environmental genotoxin and an endogenously produced metabolite that functions as a signaling molecule and one-carbon (1C) store to regulate 1C metabolism and epigenetics in the cell. Owing to its signal-stress duality, cells have evolved multiple clearance mechanisms to maintain FA homeostasis, acting to avoid the established genotoxicity of FA while also redirecting FA-derived carbon units into the biosynthesis of essential nucleobases and amino acids. The highly compartmentalized nature of FA exposure, production, and regulation motivates the development of chemical tools that enable monitoring of transient FA fluxes with subcellular resolution. Here we report a mitochondrial-targeted, activity-based sensing probe for ratiometric FA detection, MitoRFAP-2, and apply this reagent to monitor endogenous mitochondrial sources and sinks of this 1C unit. We establish the utility of subcellular localization by showing that MitoRFAP-2 is sensitive enough to detect changes in mitochondrial FA pools with genetic and pharmacological modulation of enzymes involved in 1C and amino acid metabolism, including the pervasive, less active genetic mutant aldehyde dehydrogenase 2*2 (ALDH2*2), where previous, non-targeted versions of FA sensors are not. Finally, we used MitoRFAP-2 to comparatively profile basal levels of FA across a panel of breast cancer cell lines, finding that FA-dependent fluorescence correlates with expression levels of enzymes involved in 1C metabolism. By showcasing the ability of MitoRFAP-2 to identify new information on mitochondrial FA homeostasis, this work provides a starting point for the design of a broader range of chemical probes for detecting physiologically important aldehydes with subcellular resolution and a useful reagent for further studies of 1C biology.
Collapse
Affiliation(s)
- Logan Tenney
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Vanha N Pham
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Thomas F Brewer
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Christopher J Chang
- Department of Chemistry, University of California Berkeley CA 94720 USA
- Department of Molecular and Cell Biology, University of California Berkeley CA 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley CA 94720 USA
| |
Collapse
|
20
|
Lai C, Xu L, Dai S. The nuclear export protein exportin-1 in solid malignant tumours: From biology to clinical trials. Clin Transl Med 2024; 14:e1684. [PMID: 38783482 PMCID: PMC11116501 DOI: 10.1002/ctm2.1684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Exportin-1 (XPO1), a crucial protein regulating nuclear-cytoplasmic transport, is frequently overexpressed in various cancers, driving tumor progression and drug resistance. This makes XPO1 an attractive therapeutic target. Over the past few decades, the number of available nuclear export-selective inhibitors has been increasing. Only KPT-330 (selinexor) has been successfully used for treating haematological malignancies, and KPT-8602 (eltanexor) has been used for treating haematologic tumours in clinical trials. However, the use of nuclear export-selective inhibitors for the inhibition of XPO1 expression has yet to be thoroughly investigated in clinical studies and therapeutic outcomes for solid tumours. METHODS We collected numerous literatures to explain the efficacy of XPO1 Inhibitors in preclinical and clinical studies of a wide range of solid tumours. RESULTS In this review, we focus on the nuclear export function of XPO1 and results from clinical trials of its inhibitors in solid malignant tumours. We summarized the mechanism of action and therapeutic potential of XPO1 inhibitors, as well as adverse effects and response biomarkers. CONCLUSION XPO1 inhibition has emerged as a promising therapeutic strategy in the fight against cancer, offering a novel approach to targeting tumorigenic processes and overcoming drug resistance. SINE compounds have demonstrated efficacy in a wide range of solid tumours, and ongoing research is focused on optimizing their use, identifying response biomarkers, and developing effective combination therapies. KEY POINTS Exportin-1 (XPO1) plays a critical role in mediating nucleocytoplasmic transport and cell cycle. XPO1 dysfunction promotes tumourigenesis and drug resistance within solid tumours. The therapeutic potential and ongoing researches on XPO1 inhibitors in the treatment of solid tumours. Additional researches are essential to address safety concerns and identify biomarkers for predicting patient response to XPO1 inhibitors.
Collapse
Affiliation(s)
- Chuanxi Lai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Lingna Xu
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Sheng Dai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
21
|
Seo Y, Rhim J, Kim JH. RNA-binding proteins and exoribonucleases modulating miRNA in cancer: the enemy within. Exp Mol Med 2024; 56:1080-1106. [PMID: 38689093 PMCID: PMC11148060 DOI: 10.1038/s12276-024-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 05/02/2024] Open
Abstract
Recent progress in the investigation of microRNA (miRNA) biogenesis and the miRNA processing machinery has revealed previously unknown roles of posttranscriptional regulation in gene expression. The molecular mechanistic interplay between miRNAs and their regulatory factors, RNA-binding proteins (RBPs) and exoribonucleases, has been revealed to play a critical role in tumorigenesis. Moreover, recent studies have shown that the proliferation of hepatocellular carcinoma (HCC)-causing hepatitis C virus (HCV) is also characterized by close crosstalk of a multitude of host RBPs and exoribonucleases with miR-122 and its RNA genome, suggesting the importance of the mechanistic interplay among these factors during the proliferation of HCV. This review primarily aims to comprehensively describe the well-established roles and discuss the recently discovered understanding of miRNA regulators, RBPs and exoribonucleases, in relation to various cancers and the proliferation of a representative cancer-causing RNA virus, HCV. These have also opened the door to the emerging potential for treating cancers as well as HCV infection by targeting miRNAs or their respective cellular modulators.
Collapse
Affiliation(s)
- Yoona Seo
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jiho Rhim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jong Heon Kim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea.
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea.
| |
Collapse
|
22
|
Ascenzi F, Esposito A, Bruschini S, Salvati V, De Vitis C, De Arcangelis V, Ricci G, Catizione A, di Martino S, Buglioni S, Bassi M, Venuta F, De Nicola F, Massacci A, Grassucci I, Pallocca M, Ricci A, Fanciulli M, Ciliberto G, Mancini R. Identification of a set of genes potentially responsible for resistance to ferroptosis in lung adenocarcinoma cancer stem cells. Cell Death Dis 2024; 15:303. [PMID: 38684666 PMCID: PMC11059184 DOI: 10.1038/s41419-024-06667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Scientific literature supports the evidence that cancer stem cells (CSCs) retain inside low reactive oxygen species (ROS) levels and are, therefore, less susceptible to cell death, including ferroptosis, a type of cell death dependent on iron-driven lipid peroxidation. A collection of lung adenocarcinoma (LUAD) primary cell lines derived from malignant pleural effusions (MPEs) of patients was used to obtain 3D spheroids enriched for stem-like properties. We observed that the ferroptosis inducer RSL3 triggered lipid peroxidation and cell death in LUAD cells when grown in 2D conditions; however, when grown in 3D conditions, all cell lines underwent a phenotypic switch, exhibiting substantial resistance to RSL3 and, therefore, protection against ferroptotic cell death. Interestingly, this phenomenon was reversed by disrupting 3D cells and growing them back in adherence, supporting the idea of CSCs plasticity, which holds that cancer cells have the dynamic ability to transition between a CSC state and a non-CSC state. Molecular analyses showed that ferroptosis resistance in 3D spheroids correlated with an increased expression of antioxidant genes and high levels of proteins involved in iron storage and export, indicating protection against oxidative stress and low availability of iron for the initiation of ferroptosis. Moreover, transcriptomic analyses highlighted a novel subset of genes commonly modulated in 3D spheroids and potentially capable of driving ferroptosis protection in LUAD-CSCs, thus allowing to better understand the mechanisms of CSC-mediated drug resistance in tumors.
Collapse
Affiliation(s)
- Francesca Ascenzi
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital-Sapienza University of Rome, Rome, Italy
| | - Antonella Esposito
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Sara Bruschini
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital-Sapienza University of Rome, Rome, Italy
- SAFU Laboratory, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Salvati
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital-Sapienza University of Rome, Rome, Italy
| | - Valeria De Arcangelis
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital-Sapienza University of Rome, Rome, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Università Degli Studi Della Campania Luigi Vanvitelli, Naples, Italy
| | - Angiolina Catizione
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Simona di Martino
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Simonetta Buglioni
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | | | - Federico Venuta
- Thoracic Surgery Unit, Sapienza University of Rome, Rome, Italy
| | | | - Alice Massacci
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Grassucci
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Matteo Pallocca
- Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Alberto Ricci
- Respiratory Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Maurizio Fanciulli
- SAFU Laboratory, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital-Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
23
|
Park M, Park S, Choi Y, Cho YL, Kim MJ, Park YJ, Chung SW, Lee H, Lee SJ. The mechanism underlying correlation of particulate matter-induced ferroptosis with inflammasome activation and iron accumulation in macrophages. Cell Death Discov 2024; 10:144. [PMID: 38491062 PMCID: PMC10943117 DOI: 10.1038/s41420-024-01874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/18/2024] Open
Abstract
Particulate matter (PM) is a global environmental hazard, which affects human health through free radical production, cell death induction, and immune responses. PM activates inflammasomes leading to excessive inflammatory responses and induces ferroptosis, a type of cell death. Despite ongoing research on the correlation among PM-induced ferroptosis, immune response, and inflammasomes, the underlying mechanism of this relationship has not been elucidated. In this study, we demonstrated the levels of PM-induced cell death and immune responses in murine macrophages, J774A.1 and RAW264.7, depending on the size and composition of particulate matter. PM2.5, with extraction ions, induced significant levels of cell death and immune responses; it induces lipid peroxidation, iron accumulation, and reactive oxygen species (ROS) production, which characterize ferroptosis. In addition, inflammasome-mediated cell death occurred owing to the excessive activation of inflammatory responses. PM-induced iron accumulation activates ferroptosis and inflammasome formation through ROS production; similar results were observed in vivo. These results suggest that the link between ferroptosis and inflammasome formation induced by PM, especially PM2.5 with extraction ions, is established through the iron-ROS axis. Moreover, this study can effectively facilitate the development of a new therapeutic strategy for PM-induced immune and respiratory diseases.
Collapse
Affiliation(s)
- Minkyung Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Sujeong Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Yumin Choi
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Young-Lai Cho
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Min Jeong Kim
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Su Wol Chung
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon, 51140, South Korea
| | - Seon-Jin Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34113, South Korea.
| |
Collapse
|
24
|
Qian L, Wang G, Li B, Su H, Qin L. Regulation of lipid metabolism by APOE4 in intrahepatic cholangiocarcinoma via the enhancement of ABCA1 membrane expression. PeerJ 2024; 12:e16740. [PMID: 38274331 PMCID: PMC10809977 DOI: 10.7717/peerj.16740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a malignancy with a dismal prognosis, thus the discovery of promising diagnostic markers and treatment targets is still required. In this study, 1,852 differentially expressed genes (DEGs) were identified in the GSE45001 dataset for weighted gene co-expression network analysis (WGCNA), and the turquoise module was confirmed as the key module. Next, the subnetworks of the 1,009 genes in the turquoise module analyzed by MCODE, MCC, and BottleNeck algorithms identified nine overlapping genes (CAT, APOA1, APOC2, HSD17B4, EHHADH, APOA2, APOE4, ACOX1, AGXT), significantly associated with lipid metabolism pathways, such as peroxisome and cholesterol metabolism. Among them, APOE4 exhibited a potential tumor-suppressive role in ICC and high diagnostic value for ICC in both GSE45001 and GSE32879 datasets. In vitro experiments demonstrated Apolipoprotein E4 (APOE4) overexpression suppressed ICC cell proliferation, migration, and invasion, knockdown was the opposite trend. And in ICC modulated lipid metabolism, notably decreasing levels of TG, LDL-C, and HDL-C, while concurrently increasing the expressions of TC. Further, APOE4 also downregulated lipid metabolism-related genes, suggesting a key regulatory role in maintaining cellular homeostasis, and regulating the expression of the membrane protein ATP-binding cassette transporter A1 (ABCA1). These findings highlighted the coordinated regulation of lipid metabolism by APOE4 and ABCA1 in ICC progression, providing new insights into ICC mechanisms and potential therapeutic strategies.
Collapse
Affiliation(s)
- Liqiang Qian
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Gang Wang
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Haoyuan Su
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
25
|
Yoon J, Kim S, Lee M, Kim Y. Mitochondrial nucleic acids in innate immunity and beyond. Exp Mol Med 2023; 55:2508-2518. [PMID: 38036728 PMCID: PMC10766607 DOI: 10.1038/s12276-023-01121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 12/02/2023] Open
Abstract
Mitochondria participate in a wide range of cellular processes. One essential function of mitochondria is to be a platform for antiviral signaling proteins during the innate immune response to viral infection. Recently, studies have revealed that mitochondrion-derived DNAs and RNAs are recognized as non-self molecules and act as immunogenic ligands. More importantly, the cytosolic release of these mitochondrial nucleic acids (mt-NAs) is closely associated with the pathogenesis of human diseases accompanying aberrant immune activation. The release of mitochondrial DNAs (mtDNAs) via BAX/BAK activation and/or VDAC1 oligomerization activates the innate immune response and inflammasome assembly. In addition, mitochondrial double-stranded RNAs (mt-dsRNAs) are sensed by pattern recognition receptors in the cytosol to induce type I interferon expression and initiate apoptotic programs. Notably, these cytosolic mt-NAs also mediate adipocyte differentiation and contribute to mitogenesis and mitochondrial thermogenesis. In this review, we summarize recent studies of innate immune signaling pathways regulated by mt-NAs, human diseases associated with mt-NAs, and the emerging physiological roles of mt-NAs.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sujin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea.
- KAIST Institute for BioCentury (KIB), KAIST, Daejeon, 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology (KIHST), KAIST, Daejeon, 34141, Republic of Korea.
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
26
|
Zheng B, Chen X, Ling Q, Cheng Q, Ye S. Role and therapeutic potential of DEAD-box RNA helicase family in colorectal cancer. Front Oncol 2023; 13:1278282. [PMID: 38023215 PMCID: PMC10654640 DOI: 10.3389/fonc.2023.1278282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed and the second cancer-related death worldwide, leading to more than 0.9 million deaths every year. Unfortunately, this disease is changing rapidly to a younger age, and in a more advanced stage when diagnosed. The DEAD-box RNA helicase proteins are the largest family of RNA helicases so far. They regulate almost every aspect of RNA physiological processes, including RNA transcription, editing, splicing and transport. Aberrant expression and critical roles of the DEAD-box RNA helicase proteins have been found in CRC. In this review, we first summarize the protein structure, cellular distribution, and diverse biological functions of DEAD-box RNA helicases. Then, we discuss the distinct roles of DEAD-box RNA helicase family in CRC and describe the cellular mechanism of actions based on recent studies, with an aim to provide future strategies for the treatment of CRC.
Collapse
Affiliation(s)
- Bichun Zheng
- Department of Anorectal Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | | | | | | | | |
Collapse
|
27
|
Zhong G, Luo X, Li J, Liao Y, Gui G, Sheng J. Update on the association of miR-149 rs2292832 C>T polymorphism with gastric cancer risk: A meta-analysis study of gastrointestinal cancers. Medicine (Baltimore) 2023; 102:e35202. [PMID: 37747007 PMCID: PMC10519566 DOI: 10.1097/md.0000000000035202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/07/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
OBJECTIVE Single nucleotide polymorphisms in microRNAs are believed to affect the occurrence and progression of cancer by altering the expression and biological functions of microRNAs. Several studies investigated the role of the miR-149 rs2292832 C>T polymorphism on the risk of gastric cancer (GC), but got conflicting results. METHODS We performed a comprehensive and systematic search through the PubMed MEDLINE, Google Scholar, Science Direct, Scopus, CNKI, and Web of science, 8 studies were included in the meta-analysis to determine whether miR-149 rs2292832 C>T polymorphism contributed to the risk of GC. RESULTS Pooled data indicated that miR-149 rs2292832 C>T polymorphism was not associated with GC risk. In the stratified analysis by ethnicity, miR-149 rs2292832 C>T polymorphism significantly increased GC risk under the allele comparison model (odds ratio [OR] = 1.27, 95% CI = 1.04-1.55, Pheterogeneity = 0.18, P = .02), recessive model (OR = 1.44, 95% CI = 1.04-2.01, Pheterogeneity = 0.19, P = .03) among Caucasians; but decreased GC risk under the allele comparison model (OR = 0.89, 95% CI = 0.81-0.98, Pheterogeneity = 0.22, P = .02) and dominant model (OR = 0.82, 95% CI = 0.72-0.93, Pheterogeneity = 0.15, P = .01) among Asian. CONCLUSION Our meta-analysis suggests a positive correlation between miR-149 rs2292832 C>T polymorphism and GC development among Caucasians, but negative correlation among Asian population.
Collapse
Affiliation(s)
- Guping Zhong
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, Jiangxi, China
| | - Xiaojin Luo
- Department of Urology, The People’s Hospital of Yichun City, Yichun, Jiangxi, China
| | - Ji Li
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, Jiangxi, China
| | - Yuanhang Liao
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, Jiangxi, China
| | - Guan Gui
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, Jiangxi, China
| | - Jianwen Sheng
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, Jiangxi, China
| |
Collapse
|
28
|
Yao C, Zeng L, Liu Q, Qiu X, Chen C. LncRNA FAM225B Regulates PDIA4-Mediated Ovarian Cancer Cell Invasion and Migration via Modulating Transcription Factor DDX17. Breast J 2023; 2023:3970444. [PMID: 37720188 PMCID: PMC10501846 DOI: 10.1155/2023/3970444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/11/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023]
Abstract
Objective This study aimed to explore the roles and mechanisms of lncRNA FAM225B and PDIA4 in ovarian cancer. Methods RT-qPCR and Western blot assays were performed to detect the expression levels of the lncRNAs FAM225B, DDX17, and PDIA4 in the serum of patients with ovarian cancer and cell lines. Cells were transfected with lncRNA FAM225B- and PDIA4-related vectors to determine the malignant phenotypes using functional experiments. The mutual binding of lncRNA FAM225B and DDX17 was verified using RNA pull-down and RIP assays. Results The expression of lncRNAs FAM225B and PDIA4 was decreased in the serum of patients with ovarian cancer and cell lines. Restoration of lncRNA FAM225B or PDIA4 reduced cell proliferation, migration, and invasion abilities and elevated the apoptosis rate, whereas suppression of lncRNA FAM225B or PDIA4 exhibited an inverse trend. RNA pull-down and RIP assays revealed a direct interaction between lncRNA FAM225B and DDX17. ChIP assay revealed a relationship between DDX17 and the PDIA4 promoter. LncRNA FAM225B and DDX17 positively regulate PDIA4 expression. Downregulation of PDIA4 expression counteracts the suppressive effect of lncRNA FAM225B overexpression in ovarian cancer cells. Conclusion This research study supports the fact that lncRNA FAM225B in ovarian cancer can upregulate PDIA4 by directly binding to DDX17, inhibiting the activities of ovarian cancer cells.
Collapse
Affiliation(s)
- Chanjiao Yao
- No. 2 Obstetrics and Gynecology Department, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Lingjuan Zeng
- No. 2 Obstetrics and Gynecology Department, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Qin Liu
- No. 2 Obstetrics and Gynecology Department, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xiaoxin Qiu
- Obstetrics and Gynecology Department, Hunan Provincial People's Hospital Xingsha Branch (People's Hospital of Changsha County), Changsha, China
| | - Chunyan Chen
- No. 2 Obstetrics and Gynecology Department, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| |
Collapse
|