1
|
Wu PY, Hasanah U, Yang SH, Chen SY, Luo YH, Chen CC, Chen SC. Enhancing Cisplatin Efficacy in Hepatocellular Carcinoma with Selenocystine: The Suppression of DNA Repair and Inhibition of Proliferation in Hepatoma Cells. Chem Biol Interact 2024:111291. [PMID: 39461470 DOI: 10.1016/j.cbi.2024.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Cisplatin (cDDP) is a crucial chemotherapy drug for treating various cancers, including hepatocellular carcinoma (HCC). However, its effectiveness is often hindered by side effects and drug resistance. Selenocystine (SeC) demonstrates potential as an anticancer agent, particularly by inhibiting DNA repair mechanisms. This study explored the synergistic potential of SeC combined with cDDP for treating HCC. Our results show that SeC pretreatment followed by cDDP significantly suppresses HCC cell proliferation more effectively than either treatment alone, with minimal toxicity to normal liver cells. The combination induces significant DNA damage by inhibiting homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. Xenograft experiments confirmed that the combined therapy strongly inhibits tumor growth. SeC boost the effectiveness of cDDP by amplifying DNA damage and inhibiting DNA repair, presenting a promising approach to enhancing liver cancer treatment.
Collapse
Affiliation(s)
- Pei-Yi Wu
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Ulfah Hasanah
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Sheng-Hua Yang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Sin-Yi Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yueh-Hsia Luo
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Hu M, Yuan L, Zhu J. The Dual Role of NRF2 in Colorectal Cancer: Targeting NRF2 as a Potential Therapeutic Approach. J Inflamm Res 2024; 17:5985-6004. [PMID: 39247839 PMCID: PMC11380863 DOI: 10.2147/jir.s479794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Colorectal cancer (CRC), as the third most common bisexual cancer worldwide, requires urgent research on its underlying mechanisms and intervention methods. NRF2 is an important transcription factor involved in the regulation of redox homeostasis, protein degradation, DNA repair, and other cancer processes, playing an important role in cancer. In recent years, the complex role of NRF2 in CRC has been continuously revealed: on the one hand, it exhibits a chemopreventive effect on cancer by protecting normal cells from oxidative stress, and on the other hand, it also exhibits a protective effect on malignant cells. Therefore, this article explores the dual role of NRF2 and its related signaling pathways in CRC, including their chemical protective properties and promoting effects in the occurrence, development, metastasis, and chemotherapy resistance of CRC. In addition, this article focuses on exploring the regulation of NRF2 in CRC ferroptosis, as well as NRF2 drug modulators (activators and inhibitors) targeting CRC, including natural products, compounds, and traditional Chinese medicine formulations.
Collapse
Affiliation(s)
- Mengyun Hu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lingling Yuan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jie Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Oncology Department II, Chengdu, People's Republic of China
| |
Collapse
|
3
|
Cheng M, Yuan C, Ju Y, Liu Y, Shi B, Yang Y, Jin S, He X, Zhang L, Min D. Quercetin Attenuates Oxidative Stress and Apoptosis in Brain Tissue of APP/PS1 Double Transgenic AD Mice by Regulating Keap1/Nrf2/HO-1 Pathway to Improve Cognitive Impairment. Behav Neurol 2024; 2024:5698119. [PMID: 39233848 PMCID: PMC11374423 DOI: 10.1155/2024/5698119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/02/2024] [Accepted: 06/20/2024] [Indexed: 09/06/2024] Open
Abstract
Objective: The objective of the study is to investigate whether quercetin ameliorates Alzheimer's disease (AD)-like pathology in APP/PS1 double transgenic mice and its hypothesized mechanism, contributing to the comprehension of AD pathogenesis. Methods: A total of 30 APP/PS1 transgenic mice were randomized into model group (APP/PS1), quercetin group (APP/PS1+Q), and donepezil hydrochloride group (APP/PS1+DON). Simultaneously, there were 10 C57 mice of the same age served as a control group. Three months posttreatment, the effects of quercetin on AD mice were evaluated using the Morris water maze (MWM) test, Y maze experiment, immunohistochemistry, immunofluorescence, and western blotting. Results: Results from the water maze and Y maze indicated that quercetin significantly improved cognitive impairment in APP/PS1 transgenic AD mice. Additionally, serum enzyme-linked immunosorbent assay (ELISA) results demonstrated that quercetin elevated MDA, superoxide dismutase (SOD), CAT, GSH, acetylcholine (ACh), and acetylcholinesterase (AChE) levels in AD mice. Hematoxylin-eosin (HE) staining, Nissl staining, and hippocampal tissue thioflavine staining revealed that quercetin reduced neuronal damage and Aβ protein accumulation in AD mice. Western blot validated protein expression in the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/HO-1 pathway associated with oxidative stress and apoptosis, confirming quercetin's potential molecular mechanism of enhancing AD mouse cognition. Furthermore, western blot findings indicate that quercetin significantly alters protein expression in the Keap1/Nrf2/HO-1 pathway. Moreover, molecular docking analysis suggests that Keap1, NQO1, HO-1, caspase-3, Bcl-2, and Bax proteins in the Keap1/Nrf2/HO-1 pathway may be potential regulatory targets of quercetin. These findings will provide a molecular basis for quercetin's clinical application in AD treatment. Conclusion: Quercetin can improve cognitive impairment and AD-like pathology in APP/PS1 double transgenic mice, potentially related to quercetin's activation of the Keap1/Nrf2/HO-1 pathway and reduction of cell apoptosis.
Collapse
Affiliation(s)
- Meijia Cheng
- Affiliated Hospital of Liaoning University of Traditional Chinese MedicineExperimental Center of Traditional Chinese Medicine, Shenyang 110032, China
| | - Changbin Yuan
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Yetao Ju
- Affiliated Hospital of Liaoning University of Traditional Chinese MedicineExperimental Center of Traditional Chinese Medicine, Shenyang 110032, China
| | - Yongming Liu
- Affiliated Hospital of Liaoning University of Traditional Chinese MedicineExperimental Center of Traditional Chinese Medicine, Shenyang 110032, China
| | - Baorui Shi
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Yali Yang
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Sian Jin
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Xiaoming He
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Li Zhang
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Dongyu Min
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and ApplicationsLiaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| |
Collapse
|
4
|
Tian Y, Tang L, Wang X, Ji Y, Tu Y. Nrf2 in human cancers: biological significance and therapeutic potential. Am J Cancer Res 2024; 14:3935-3961. [PMID: 39267682 PMCID: PMC11387866 DOI: 10.62347/lzvo6743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
The nuclear factor-erythroid 2-related factor 2 (Nrf2) is able to control the redox balance in the cells responding to oxidative damage and other stress signals. The Nrf2 upregulation can elevate the levels of antioxidant enzymes to support against damage and death. In spite of protective function of Nrf2 in the physiological conditions, the stimulation of Nrf2 in the cancer has been in favour of tumorigenesis. Since the dysregulation of molecular pathways and mutations/deletions are common in tumors, Nrf2 can be a promising therapeutic target. The Nrf2 overexpression can prevent cell death in tumor and by increasing the survival rate of cancer cells, ensures the carcinogenesis. Moreover, the induction of Nrf2 can promote the invasion and metastasis of tumor cells. The Nrf2 upregulation stimulates EMT to increase cancer metastasis. Furthermore, regarding the protective function of Nrf2, its stimulation triggers chemoresistance. The natural products can regulate Nrf2 in the cancer therapy and reverse drug resistance. Moreover, nanostructures can specifically target Nrf2 signaling in cancer therapy. The current review discusses the potential function of Nrf2 in the proliferation, metastasis and drug resistance. Then, the capacity of natural products and nanostructures for suppressing Nrf2-mediated cancer progression is discussed.
Collapse
Affiliation(s)
- Yu Tian
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
- School of Public Health, Benedictine University Lisle, Illinois, USA
| | - Lixin Tang
- Department of Respiratory, Chongqing Public Health Medical Center Chongqing, China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts, USA
| | - Yanqin Ji
- Department of Administration, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
| |
Collapse
|
5
|
Verdina A, Garufi A, D’Orazi V, D’Orazi G. HIPK2 in Colon Cancer: A Potential Biomarker for Tumor Progression and Response to Therapies. Int J Mol Sci 2024; 25:7678. [PMID: 39062921 PMCID: PMC11277226 DOI: 10.3390/ijms25147678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Colon cancer, one of the most common and fatal cancers worldwide, is characterized by stepwise accumulation of specific genetic alterations in tumor suppressor genes or oncogenes, leading to tumor growth and metastasis. HIPK2 (homeodomain-interacting protein kinase 2) is a serine/threonine protein kinase and a "bona fide" oncosuppressor protein. Its activation inhibits tumor growth mainly by promoting apoptosis, while its inactivation increases tumorigenicity and resistance to therapies of many different cancer types, including colon cancer. HIPK2 interacts with many molecular pathways by means of its kinase activity or transcriptional co-repressor function modulating cell growth and apoptosis, invasion, angiogenesis, inflammation and hypoxia. HIPK2 has been shown to participate in several molecular pathways involved in colon cancer including p53, Wnt/β-catenin and the newly identified nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2). HIPK2 also plays a role in tumor-host interaction in the tumor microenvironment (TME) by inducing angiogenesis and cancer-associated fibroblast (CAF) differentiation. The aim of this review is to assess the role of HIPK2 in colon cancer and the underlying molecular pathways for a better understanding of its involvement in colon cancer carcinogenesis and response to therapies, which will likely pave the way for novel colon cancer therapies.
Collapse
Affiliation(s)
- Alessandra Verdina
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
| | - Alessia Garufi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
| | - Valerio D’Orazi
- Department of Surgery, Sapienza University, 00185 Rome, Italy;
| | - Gabriella D’Orazi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| |
Collapse
|
6
|
Qiao O, Zhang L, Han L, Wang X, Li Z, Bao F, Hao H, Hou Y, Duan X, Li N, Gong Y. Rosmarinic acid plus deferasirox inhibits ferroptosis to alleviate crush syndrome-related AKI via Nrf2/Keap1 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155700. [PMID: 38704914 DOI: 10.1016/j.phymed.2024.155700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Myoglobin (Mb) induced death of renal tubular epithelial cells (RTECs) is a major pathological factor in crush syndrome-related acute kidney injury (CS-AKI). It is unclear whether ferroptosis is involved and could be a target for treatment. PURPOSE This study aimed to evaluate the potential therapeutic effects of combining the natural small molecule rosemarinic acid (RA) and the iron chelator deferasirox (Dfe) on CS-AKI through inhibition of ferroptosis. METHODS Sequencing data were downloaded from the GEO database, and differential expression analysis was performed using the R software limma package. The CS-AKI mouse model was constructed by squeezing the bilateral thighs of mice for 16 h with 1.5 kg weight. TCMK1 and NRK-52E cells were induced with 200 μM Mb and then treated with RA combined with Dfe (Dfe + RA, both were 10 μM). Functional and pathological changes in mouse kidney were evaluated by glomerular filtration rate (GFR) and HE pathology. Immunofluorescence assay was used to detect Mb levels in kidney tissues. The expression levels of ACSL4, GPX4, Keap1, and Nrf2 were analyzed by WB. RESULTS We found that AKI mice in the GSE44925 cohort highly expressed the ferroptosis markers ACSL4 and PTGS2. CS-AKI mice showed a rapid decrease in GFR, up-regulation of ACSL4 expression in kidney tissue, and down-regulation of GPX4 expression, indicating activation of the ferroptosis pathway. Mb was found to deposit in renal tubules, and it has been proven to cause ferroptosis in TCMK1 and NRK-52E cells in vitro. We found that Dfe had a strong iron ion scavenging effect and inhibited ACSL4 expression. RA could disrupt the interaction between Keap1 andNrf2, stabilize Nrf2, and promote its nuclear translocation, thereby exerting antioxidant effects. The combination of Dfe and RA effectively reversed Mb induced ferroptosis in RTECs. CONCLUSION In conclusion, we found that RA combined with Dfe attenuated CS-AKI by inhibiting Mb-induced ferroptosis in RTECs via activating the Nrf2/Keap1 pathway.
Collapse
Affiliation(s)
- Ou Qiao
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China
| | - Li Zhang
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China
| | - Lu Han
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China
| | - Xinyue Wang
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China
| | - Zizheng Li
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China
| | - Fengjiao Bao
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China
| | - Herui Hao
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China
| | - Yingjie Hou
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China
| | - Xiaohong Duan
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China
| | - Ning Li
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China; Key Laboratory for Disaster Medicine Technology, Tianjin, China.
| | - Yanhua Gong
- Medical School, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, China; Key Laboratory for Disaster Medicine Technology, Tianjin, China.
| |
Collapse
|
7
|
Baiskhanova D, Schäfer H. The Role of Nrf2 in the Regulation of Mitochondrial Function and Ferroptosis in Pancreatic Cancer. Antioxidants (Basel) 2024; 13:696. [PMID: 38929135 PMCID: PMC11201043 DOI: 10.3390/antiox13060696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) represents the master regulator of the cellular antioxidant response and plays a critical role in tumorigenesis. This includes a preventive effect of Nrf2 on cell death through ferroptosis, which represents an essential mechanism of therapy resistance in malignant tumors, such as pancreatic ductal adenocarcinoma (PDAC) as one of the most aggressive and still incurable tumors. Addressing this issue, we provide an overview on Nrf2 mediated antioxidant response with particular emphasis on its effect on mitochondria as the organelle responsible for the execution of ferroptosis. We further outline how deregulated Nrf2 adds to the progression and therapy resistance of PDAC, especially with respect to the role of ferroptosis in anti-cancer drug mediated cell killing and how this is impaired by Nrf2 as an essential mechanism of drug resistance. Our review further discusses recent approaches for Nrf2 inhibition by natural and synthetic compounds to overcome drug resistance based on enhanced ferroptosis. Finally, we provide an outlook on therapeutic strategies based on Nrf2 inhibition combined with ferroptosis inducing drugs.
Collapse
Affiliation(s)
- Dinara Baiskhanova
- Laboratory of Molecular Gastroenterology and Tumor Biology, Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany;
| | | |
Collapse
|
8
|
Gorska-Arcisz M, Popeda M, Braun M, Piasecka D, Nowak JI, Kitowska K, Stasilojc G, Okroj M, Romanska HM, Sadej R. FGFR2-triggered autophagy and activation of Nrf-2 reduce breast cancer cell response to anti-ER drugs. Cell Mol Biol Lett 2024; 29:71. [PMID: 38745155 PMCID: PMC11092031 DOI: 10.1186/s11658-024-00586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Genetic abnormalities in the FGFR signalling occur in 40% of breast cancer (BCa) patients resistant to anti-ER therapy, which emphasizes the potential of FGFR-targeting strategies. Recent findings indicate that not only mutated FGFR is a driver of tumour progression but co-mutational landscapes and other markers should be also investigated. Autophagy has been recognized as one of the major mechanisms underlying the role of tumour microenvironment in promotion of cancer cell survival, and resistance to anti-ER drugs. The selective autophagy receptor p62/SQSTM1 promotes Nrf-2 activation by Keap1/Nrf-2 complex dissociation. Herein, we have analysed whether the negative effect of FGFR2 on BCa cell response to anti-ER treatment involves the autophagy process and/or p62/Keap1/Nrf-2 axis. METHODS The activity of autophagy in ER-positive MCF7 and T47D BCa cell lines was determined by analysis of expression level of autophagy markers (p62 and LC3B) and monitoring of autophagosomes' maturation. Western blot, qPCR and proximity ligation assay were used to determine the Keap1/Nrf-2 interaction and Nrf-2 activation. Analysis of 3D cell growth in Matrigel® was used to assess BCa cell response to applied treatments. In silico gene expression analysis was performed to determine FGFR2/Nrf-2 prognostic value. RESULTS We have found that FGFR2 signalling induced autophagy in AMPKα/ULK1-dependent manner. FGFR2 activity promoted dissociation of Keap1/Nrf-2 complex and activation of Nrf-2. Both, FGFR2-dependent autophagy and activation of Nrf-2 were found to counteract the effect of anti-ER drugs on BCa cell growth. Moreover, in silico analysis showed that high expression of NFE2L2 (gene encoding Nrf-2) combined with high FGFR2 expression was associated with poor relapse-free survival (RFS) of ER+ BCa patients. CONCLUSIONS This study revealed the unknown role of FGFR2 signalling in activation of autophagy and regulation of the p62/Keap1/Nrf-2 interdependence, which has a negative impact on the response of ER+ BCa cells to anti-ER therapies. The data from in silico analyses suggest that expression of Nrf-2 could act as a marker indicating potential benefits of implementation of anti-FGFR therapy in patients with ER+ BCa, in particular, when used in combination with anti-ER drugs.
Collapse
Affiliation(s)
- Monika Gorska-Arcisz
- Laboratory of Enzymology and Molecular Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Marta Popeda
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Dominika Piasecka
- Laboratory of Enzymology and Molecular Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Joanna I Nowak
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| | - Kamila Kitowska
- Laboratory of Enzymology and Molecular Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Grzegorz Stasilojc
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Marcin Okroj
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Hanna M Romanska
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland.
| | - Rafal Sadej
- Laboratory of Enzymology and Molecular Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland.
| |
Collapse
|
9
|
Zhu C, Lu Y, Wang S, Song J, Ding Y, Wang Y, Dong C, Liu J, Qiu W, Qi W. Nortriptyline hydrochloride, a potential candidate for drug repurposing, inhibits gastric cancer by inducing oxidative stress by triggering the Keap1-Nrf2 pathway. Sci Rep 2024; 14:6050. [PMID: 38480798 PMCID: PMC10937941 DOI: 10.1038/s41598-024-56431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Effective drugs for the treatment of gastric cancer (GC) are still lacking. Nortriptyline Hydrochloride (NTP), a commonly used antidepressant medication, has been demonstrated by numerous studies to have antitumor effects. This study first validated the ability of NTP to inhibit GC and preliminarily explored its underlying mechanism. To begin with, NTP inhibits the activity of AGS and HGC27 cells (Human-derived GC cells) in a dose-dependent manner, as well as proliferation, cell cycle, and migration. Moreover, NTP induces cell apoptosis by upregulating BAX, BAD, and c-PARP and downregulating PARP and Bcl-2 expression. Furthermore, the mechanism of cell death caused by NTP is closely related to oxidative stress. NTP increases intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels, decreasing the mitochondrial membrane potential (MMP) and inducing glucose (GSH) consumption. While the death of GC cells can be partially rescued by ROS inhibitor N-acetylcysteine (NAC). Mechanistically, NTP activates the Kelch-like ECH-associated protein (Keap1)-NF-E2-related factor 2 (Nrf2) pathway, which is an important pathway involved in oxidative stress. RNA sequencing and proteomics analysis further revealed molecular changes at the mRNA and protein levels and provided potential targets and pathways through differential gene expression analysis. In addition, NTP can inhibited tumor growth in nude mouse subcutaneous tumor models constructed respectively using AGS and MFC (mouse-derived GC cells), providing preliminary evidence of its effectiveness in vivo. In conclusion, our study demonstrated that NTP exhibits significant anti-GC activity and is anticipated to be a candidate for drug repurposing.
Collapse
Affiliation(s)
- Chunyang Zhu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangyang Lu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jialin Song
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yixin Ding
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen Dong
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiani Liu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Weiwei Qi
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
10
|
Al-Kuraishy HM, Al-Gareeb AI, Eldahshan OA, Abdelkhalek YM, El Dahshan M, Ahmed EA, Sabatier JM, Batiha GES. The possible role of nuclear factor erythroid-2-related factor 2 activators in the management of Covid-19. J Biochem Mol Toxicol 2024; 38:e23605. [PMID: 38069809 DOI: 10.1002/jbt.23605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/06/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
COVID-19 is caused by a novel SARS-CoV-2 leading to pulmonary and extra-pulmonary manifestations due to oxidative stress (OS) development and hyperinflammation. COVID-19 is primarily asymptomatic though it may cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS), systemic inflammation, and thrombotic events in severe cases. SARS-CoV-2-induced OS triggers the activation of different signaling pathways, which counterbalances this complication. One of these pathways is nuclear factor erythroid 2-related factor 2 (Nrf2), which induces a series of cellular interactions to mitigate SARS-CoV-2-mediated viral toxicity and OS-induced cellular injury. Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm in COVID-19. Therefore, Nrf2 activators may play an essential role in reducing SARS-CoV-2 infection-induced inflammation by suppressing NLRP3 inflammasome in COVID-19. Furthermore, Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Thus this mini-review tries to clarify the possible role of the Nrf2 activators in the management of COVID-19. Nrf2 activators could be an effective therapeutic strategy in the management of Covid-19. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | | | - Magdy El Dahshan
- Department of Internal Medicine, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, Aix-Marseille Université, Marseille, France
| | - Gaber E-S Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Egypt
| |
Collapse
|
11
|
Bossio S, Perri A, Gallo R, De Bartolo A, Rago V, La Russa D, Di Dio M, La Vignera S, Calogero AE, Vitale G, Aversa A. Alpha-Lipoic Acid Reduces Cell Growth, Inhibits Autophagy, and Counteracts Prostate Cancer Cell Migration and Invasion: Evidence from In Vitro Studies. Int J Mol Sci 2023; 24:17111. [PMID: 38069431 PMCID: PMC10707055 DOI: 10.3390/ijms242317111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Alpha-lipoic acid (ALA) is a natural antioxidant dithiol compound, exerting antiproliferative and antimetastatic effects in various cancer cell lines. In our study, we demonstrated that ALA reduces the cell growth of prostate cancer cells LNCaP and DU-145. Western blot results revealed that in both cancer cells, ALA, by upregulating pmTOR expression, reduced the protein content of two autophagy initiation markers, Beclin-1 and MAPLC3. Concomitantly, MTT assays showed that chloroquine (CQ) exposure, a well-known autophagy inhibitor, reduced cells' viability. This was more evident for treatment using the combination ALA + CQ, suggesting that ALA can reduce cells' viability by inhibiting autophagy. In addition, in DU-145 cells we observed that ALA affected the oxidative/redox balance system by deregulating the KEAP1/Nrf2/p62 signaling pathway. ALA decreased ROS production, SOD1 and GSTP1 protein expression, and significantly reduced the cytosolic and nuclear content of the transcription factor Nrf2, concomitantly downregulating p62, suggesting that ALA disrupted p62-Nrf2 feedback loop. Conversely, in LNCaP cells, ALA exposure upregulated both SOD1 and p62 protein expression, but did not affect the KEAP1/Nrf2/p62 signaling pathway. In addition, wound-healing, Western blot, and immunofluorescence assays evidenced that ALA significantly reduced the motility of LNCaP and DU-145 cells and downregulated the protein expression of TGFβ1 and vimentin and the deposition of fibronectin. Finally, a soft agar assay revealed that ALA decreased the colony formation of both the prostate cancer cells by affecting the anchorage independent growth. Collectively, our in vitro evidence demonstrated that in prostate cancer cells, ALA reduces cell growth and counteracts both migration and invasion. Further studies are needed in order to achieve a better understanding of the underlined molecular mechanisms.
Collapse
Affiliation(s)
- Sabrina Bossio
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy; (S.B.); (A.P.)
| | - Anna Perri
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy; (S.B.); (A.P.)
| | - Raffaella Gallo
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy;
| | - Anna De Bartolo
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, University of Calabria, 87036 Rende, Italy;
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Michele Di Dio
- Division of Urology, Department of Surgery, Annunziata Hospital, 87100 Cosenza, Italy;
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (S.L.V.); (A.E.C.)
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (S.L.V.); (A.E.C.)
| | - Giovanni Vitale
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20133 Milan, Italy;
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy; (S.B.); (A.P.)
| |
Collapse
|
12
|
PDIA4 confers resistance to ferroptosis via induction of ATF4/SLC7A11 in renal cell carcinoma. Cell Death Dis 2023; 14:193. [PMID: 36906674 PMCID: PMC10008556 DOI: 10.1038/s41419-023-05719-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023]
Abstract
The prognosis of renal cell carcinoma (RCC) remains poor due to metastases and resistance to chemotherapy. Salinomycin (Sal) exhibits the potential of antitumor, while the underlying mechanism is not completely clear. Here, we found that Sal induced ferroptosis in RCCs and identified Protein Disulfide Isomerase Family A Member 4 (PDIA4) as a mediator of Sal's effect on ferroptosis. Sal suppressed PDIA4 by increasing its autophagic degradation. Downregulation of PDIA4 increased the sensitivity to ferroptosis, while ectopic overexpression of PDIA4 conferred ferroptosis resistance to RCCs. Our data showed that downregulation of PDIA4 suppressed activating transcription factor 4 (ATF4) and its downstream protein SLC7A11 (solute carrier family 7 member 11), thereby aggravating ferroptosis. In vivo, the administration of Sal promoted ferroptosis and suppressed tumor progress in the xenograft mouse model of RCC. Bioinformatical analyses based on clinical tumor samples and database indicated a positive correlation exists between PDIA4 and PERK/ATF4/SLC7A11 signaling pathway, as well as the malignant prognosis of RCCs. Together, our findings reveal that PDIA4 promotes ferroptosis resistance in RCCs. Treatment of Sal sensitizes RCC to ferroptosis via suppressing PDIA4, suggesting the potential therapeutical application in RCCs.
Collapse
|