1
|
Sui X, Wang W, Zhang D, Xu J, Li J, Jia Y, Qin Y. Integrated analysis of ferroptosis and stemness based on single-cell and bulk RNA-sequencing data provide insights into the prognosis and treatment of esophageal carcinoma. Gene 2024; 927:148701. [PMID: 38885819 DOI: 10.1016/j.gene.2024.148701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Cancer stem cells (CSCs) play a significant role in the recurrence and drug resistance of esophageal carcinoma (ESCA). Ferroptosis is a promising anticancer therapeutic strategy that effectively targets CSCs exhibiting high tumorigenicity and treatment resistance. However, there is a lack of research on the combined role of ferroptosis-related genes (FRGs) and stemness signature in the prognosis of ESCA. METHODS The cellular compositions were characterized using single-cell RNA sequencing (scRNA-seq) data from 18 untreated ESCA samples. 50 ferroptosis-related stemness genes (FRSGs) were identified by integrating FRGs with stemness-related genes (SRGs), and then the cells were grouped by AUCell analysis. Next, functional enrichment, intercellular communication, and trajectory analyses were performed to characterize the different groups of cells. Subsequently, the stem-ferr-index was calculated using machine learning algorithms based on the expression profiles of the identified risk genes. Additionally, therapeutic drugs were predicted by analyzing the GDSC2 database. Finally, the expression and functional roles of the identified marker genes were validated through in vitro experiments. RESULTS The analysis of scRNA-seq data demonstrates the diversity and cellular heterogeneity of ESCA. Then, we identified 50 FRSGs and classified cells into high or low ferroptosis score stemness cells accordingly. Functional enrichment analysis conducted on the differentially up-regulated genes between these groups revealed predominant enrichment in pathways associated with intercellular communication and cell differentiation. Subsequently, we identified 9 risk genes and developed a prognostic signature, termed stem_ferr_index, based on these identified risk genes. We found that the stem-ferr-index was correlated with the clinical characteristics of patients, and patients with high stem-ferr-index had poor prognosis. Furthermore, we identified four drugs (Navitoclax, Foretinib, Axitinib, and Talazoparib) with potential efficacy targeting patients with a high stem_ferr_index. Additionally, we delineated two marker genes (STMN1 and SLC2A1). Particularly noteworthy, SLC2A1 exhibited elevated expression levels in ESCA tissues and cells. We provided evidence suggesting that SLC2A1 could influence the migration, invasion, and stemness of ESCA cells, and it was associated with sensitivity to Foretinib. CONCLUSION This study constructed a novel ferroptosis-related stemness signature, identified two marker genes for ESCA, and provided valuable insights for developing more effective therapeutic targets targeting ESCA CSCs in the future.
Collapse
Affiliation(s)
- Xin Sui
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Wenjia Wang
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Daidi Zhang
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Jiayao Xu
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Li
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Yongxu Jia
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Yanru Qin
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Li W, Zhong Q, Deng N, Wang H, Ouyang J, Guan Z, Zhou X, Li K, Sun X, Wang Y. Identification of a novel prognostic model for gastric cancer utilizing glutamine-related genes. Heliyon 2024; 10:e37985. [PMID: 39386842 PMCID: PMC11462029 DOI: 10.1016/j.heliyon.2024.e37985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Background Glutamine metabolism presents a promising avenue for cancer prevention and treatment, but the underlying mechanisms in gastric cancer (GC) progression remain elusive. Methods The TCGA-STAD and GEO GSE62254 datasets, containing gene expression, clinical information, and survival outcomes of GC, were meticulously examined. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were employed to excavate a key module (MEturquoise), which was used to intersect with glutamine metabolism-related genes (GMRGs) and differentially expressed genes (DEGs) to identify differentially expressed GMRGs (DE-GMRGs). LASSO and Cox Univariate analyses were implemented to determine risk model genes. Correlation of the risk model with clinical parameters, pathways, and tumor immune microenvironments, was analyzed, and its prognostic independence was validated by Cox analyses. Finally, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to validate the expression levels of MYB, LRFN4, LMNB2, and SLC1A5 in GC and para-carcinoma tissue. Results The excavation of 4521 DEGs led to the discovery of the key MEturquoise module, which exhibited robust correlations with GC traits. The intersection analysis identified 42 DE-GMRGs, among which six genes showed consistency. Further LASSO analysis established MYB, LRFN4, LMNB2, and SLC1A5 as pivotal risk model genes. The risk model demonstrated associations with oncogenic and metabolism-related pathways, inversely correlating with responses to immune checkpoint blockade therapies. This risk model, together with "age", was validated to be an independent prognostic factor for GC. RT-qPCR result indicated that MYB, LRFN4, LMNB2, and SLC1A5 expressions were remarkably up-regulated in GC tissues comparison with para-carcinoma tissue. Conclusion The present study has generated a novel risk module containing four DE-GMRGs for predicting the prognosis and the response to immune checkpoint blockade treatments for GC. This risk model provides new insights into the involvement of glutamine metabolism in GC, warranting further investigation.
Collapse
Affiliation(s)
- Weidong Li
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Qixing Zhong
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Naisheng Deng
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Haitao Wang
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Jun Ouyang
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Zhifen Guan
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Xinhao Zhou
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Kai Li
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Xueying Sun
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, 1142, New Zealand
| | - Yao Wang
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| |
Collapse
|
3
|
Shen Z, Yu N, Zhang Y, Jia M, Sun Y, Li Y, Zhao L. The potential roles of HIF-1α in epithelial-mesenchymal transition and ferroptosis in tumor cells. Cell Signal 2024; 122:111345. [PMID: 39134249 DOI: 10.1016/j.cellsig.2024.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
In tumors, the rapid proliferation of cells and the imperfect blood supply system lead to hypoxia, which can regulate the adaptation of tumor cells to the hypoxic environment through hypoxia-inducible factor-1α (HIF-1α) and promote tumor development in multiple ways. Recent studies have found that epithelial-mesenchymal transition (EMT) and ferroptosis play important roles in the progression of tumor cells. The activation of HIF-1α is considered a key factor in inducing EMT in tumor cells. When HIF-1α is activated, it can regulate EMT-related genes, causing tumor cells to gradually lose their epithelial characteristics and acquire more invasive mesenchymal traits. The occurrence of EMT allows tumor cells to better adapt to changes in the surrounding tissue, enhancing their migratory and invasive capabilities, thus promoting tumor progression. At the same time, HIF-1α also plays a crucial regulatory role in ferroptosis in tumor cells. In a hypoxic environment, HIF-1α may affect processes such as iron metabolism and oxidative stress responses, inducing ferroptosis in tumor cells. This article briefly reviews the dual role of HIF-1α in EMT and ferroptosis in tumor cells, helping to gain a deeper understanding of the regulatory pathways of HIF-1α in the development of tumor cells, providing a new perspective for understanding the pathogenesis of tumors. The regulation of HIF-1α may become an important strategy for future tumor therapy.
Collapse
Affiliation(s)
- Zhongjun Shen
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Na Yu
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Yanfeng Zhang
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Mingbo Jia
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Ying Sun
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Yao Li
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Liyan Zhao
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China.
| |
Collapse
|
4
|
Yeon Kim S, Tang M, Lu T, Chih SY, Li W. Ferroptosis in glioma therapy: advancements in sensitizing strategies and the complex tumor-promoting roles. Brain Res 2024; 1840:149045. [PMID: 38821335 PMCID: PMC11323215 DOI: 10.1016/j.brainres.2024.149045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Ferroptosis, an iron-dependent form of non-apoptotic regulated cell death, is induced by the accumulation of lipid peroxides on cellular membranes. Over the past decade, ferroptosis has emerged as a crucial process implicated in various physiological and pathological systems. Positioned as an alternative modality of cell death, ferroptosis holds promise for eliminating cancer cells that have developed resistance to apoptosis induced by conventional therapeutics. This has led to a growing interest in leveraging ferroptosis for cancer therapy across diverse malignancies. Gliomas are tumors arising from glial or precursor cells, with glioblastoma (GBM) being the most common malignant primary brain tumor that is associated with a dismal prognosis. This review provides a summary of recent advancements in the exploration of ferroptosis-sensitizing methods, with a specific focus on their potential application in enhancing the treatment of gliomas. In addition to summarizing the therapeutic potential, this review also discusses the intricate interplay of ferroptosis and its potential tumor-promoting roles within gliomas. Recognizing these dual roles is essential, as they could potentially complicate the therapeutic benefits of ferroptosis. Exploring strategies aimed at circumventing these tumor-promoting roles could enhance the overall therapeutic efficacy of ferroptosis in the context of glioma treatment.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Miaolu Tang
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Tong Lu
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Stephen Y Chih
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
5
|
Biegański M, Szeliga M. Disrupted glutamate homeostasis as a target for glioma therapy. Pharmacol Rep 2024:10.1007/s43440-024-00644-y. [PMID: 39259492 DOI: 10.1007/s43440-024-00644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS). Gliomas, malignant brain tumors with a dismal prognosis, alter glutamate homeostasis in the brain, which is advantageous for their growth, survival, and invasion. Alterations in glutamate homeostasis result from its excessive production and release to the extracellular space. High glutamate concentration in the tumor microenvironment destroys healthy tissue surrounding the tumor, thus providing space for glioma cells to expand. Moreover, it confers neuron hyperexcitability, leading to epilepsy, a common symptom in glioma patients. This mini-review briefly describes the biochemistry of glutamate production and transport in gliomas as well as the activation of glutamate receptors. It also summarizes the current pre-clinical and clinical studies identifying pharmacotherapeutics targeting glutamate transporters and receptors emerging as potential therapeutic strategies for glioma.
Collapse
Affiliation(s)
- Mikołaj Biegański
- Immunooncology Students' Science Association, Medical University of Warsaw, Żwirki i Wigury 61, Warszawa, 02-091, Poland
| | - Monika Szeliga
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, Warszawa, 02-106, Poland.
| |
Collapse
|
6
|
Liu YC, Liu SY, Lin YC, Liu CJ, Chang KW, Lin SC. The disruption of NEAT1-miR-125b-5p-SLC1A5 cascade defines the oncogenicity and differential immune profile in head and neck squamous cell carcinoma. Cell Death Discov 2024; 10:392. [PMID: 39223142 PMCID: PMC11369192 DOI: 10.1038/s41420-024-02158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Metabolic reprogramming sustains malignant head and neck squamous cell carcinoma (HNSCC) to overcome stressful microenvironments, and increased glutamine uptake is a common metabolic hallmark in cancers. Since metabolic reprogramming has been recognized as a new therapeutic target for tumor cells, understanding the regulatory axis of glutamine uptake in HNSCC and its potential downstream effects in its pathogenesis of HNSCC would be incredibly beneficial. Bioinformatic analysis of the Cancer Genome Atlas (TCGA)-HNSCC dataset and RNAseq analysis performed on HNSCC indicated that SLC1A5 was the most dysregulated transporter among the seven homologous glutamate or neutral amino acid transporters in the SLC1A family. To further clarify the role of SLC1A5 in HNSCC, we knocked down SLC1A5 expression. This knockdown decelerated cell growth, induced G0/G1 arrest, diminished tumorigenicity, and increased cleavage caspase3, LC3B, and intracellular Fe2+. Inhibitors against apoptosis, autophagy, or ferroptosis rescued the cell viability repressed by SLC1A5 knockdown. SLC1A5 knockdown also suppressed glutamine uptake, enhanced oxidative stress, and increased sensitivity to cisplatin. CRISPR/dCas9-mediated SLC1A5 induction conferred cisplatin resistance and reduced apoptosis, autophagy, and ferroptosis. Reporter assays and western blot data demonstrated that miR-125b-5p targets and attenuates SLC1A5, while the si-NEAT1 increases miR-125b-5p expression. Analysis of the TCGA-HNSCC databases showed concordant upregulation of NEAT1 and downregulation of miR-125b-5p, along with SLC1A5 upregulation in tumors. Analysis of transcriptomic data revealed that tumors harboring higher SLC1A5 expression had significantly lower immune scores in CD8+, monocytes, and dendritic cells, and higher scores in M0 and M1 macrophages. Disruptions in immune modulation, metabolism, and oxidative stress components were associated with SLC1A5 aberrations in HNSCC. This study concludes that the NEAT1/miR-125b-5p/SLC1A5 cascade modulates diverse activities in oncogenicity, treatment efficacy, and immune cell profiles in head and neck/oral carcinoma.
Collapse
Affiliation(s)
- Ying-Chieh Liu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - So-Yu Liu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Cheng Lin
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Taipei Mackay Memorial Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Wei Y, Xu Y, Sun Q, Hong Y, Liang S, Jiang H, Zhang X, Zhang S, Chen Q. Targeting ferroptosis opens new avenues in gliomas. Int J Biol Sci 2024; 20:4674-4690. [PMID: 39309434 PMCID: PMC11414377 DOI: 10.7150/ijbs.96476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Gliomas are one of the most challenging tumors to treat due to their malignant phenotype, brain parenchymal infiltration, intratumoral heterogeneity, and immunosuppressive microenvironment, resulting in a high recurrence rate and dismal five-year survival rate. The current standard therapies, including maximum tumor resection, chemotherapy with temozolomide, and radiotherapy, have exhibited limited efficacy, which is caused partially by the resistance of tumor cell death. Recent studies have revealed that ferroptosis, a newly defined programmed cell death (PCD), plays a crucial role in the occurrence and progression of gliomas and significantly affects the efficacy of various treatments, representing a promising therapeutic strategy. In this review, we provide a comprehensive overview of the latest progress in ferroptosis, its involvement and regulation in the pathophysiological process of gliomas, various treatment hotspots, the existing obstacles, and future directions worth investigating. Our review sheds light on providing novel insights into manipulating ferroptosis to provide potential targets and strategies of glioma treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| |
Collapse
|
8
|
Sun LL, He HY, Li W, Jin WL, Wei YJ. The solute carrier transporters (SLCs) family in nutrient metabolism and ferroptosis. Biomark Res 2024; 12:94. [PMID: 39218897 PMCID: PMC11367818 DOI: 10.1186/s40364-024-00645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Ferroptosis is a novel form of programmed cell death caused by damage to lipid membranes due to the accumulation of lipid peroxides in response to various stimuli, such as high levels of iron, oxidative stress, metabolic disturbance, etc. Sugar, lipid, amino acid, and iron metabolism are crucial in regulating ferroptosis. The solute carrier transporters (SLCs) family, known as the "metabolic gating" of cells, is responsible for transporting intracellular nutrients and metabolites. Recent studies have highlighted the significant role of SLCs family members in ferroptosis by controlling the transport of various nutrients. Here, we summarized the function and mechanism of SLCs in ferroptosis regulated by ion, metabolic control of nutrients, and multiple signaling pathways, with a focus on SLC-related transporters that primarily transport five significant components: glucose, amino acid, lipid, trace metal ion, and other ion. Furthermore, the potential clinical applications of targeting SLCs with ferroptosis inducers for various diseases, including tumors, are discussed. Overall, this paper delves into the novel roles of the SLCs family in ferroptosis, aiming to enhance our understanding of the regulatory mechanisms of ferroptosis and identify new therapeutic targets for clinical applications.
Collapse
Affiliation(s)
- Li-Li Sun
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hai-Yan He
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Yi-Ju Wei
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
9
|
Ma M, Fei X, Jiang D, Chen H, Xie X, Wang Z, Huang Q. Research Progress on the Mechanism of Histone Deacetylases in Ferroptosis of Glioma. Oncol Rev 2024; 18:1432131. [PMID: 39193375 PMCID: PMC11348391 DOI: 10.3389/or.2024.1432131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Glioma is the most prevalent primary malignant tumor of the central nervous system. While traditional treatment modalities such as surgical resection, radiotherapy, and chemotherapy have made significant advancements in glioma treatment, the prognosis for glioma patients remains often unsatisfactory. Ferroptosis, a novel form of programmed cell death, plays a crucial role in glioma and is considered to be the most functionally rich programmed cell death process. Histone deacetylases have emerged as a key focus in regulating ferroptosis in glioma. By inhibiting the activity of histone deacetylases, histone deacetylase inhibitors elevate acetylation levels of both histones and non-histone proteins, thereby influencing various cellular processes. Numerous studies have demonstrated that histone deacetylases are implicated in the development of glioma and hold promise for its treatment. This article provides an overview of research progress on the mechanism by which histone deacetylases contribute to ferroptosis in glioma.
Collapse
Affiliation(s)
- Meng Ma
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Xifeng Fei
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Dongyi Jiang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Hanchun Chen
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Xiangtong Xie
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Zhimin Wang
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Qiang Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Luo M, Luan X, Yang C, Chen X, Yuan S, Cao Y, Zhang J, Xie J, Luo Q, Chen L, Li S, Xiang W, Zhou J. Revisiting the potential of regulated cell death in glioma treatment: a focus on autophagy-dependent cell death, anoikis, ferroptosis, cuproptosis, pyroptosis, immunogenic cell death, and the crosstalk between them. Front Oncol 2024; 14:1397863. [PMID: 39184045 PMCID: PMC11341384 DOI: 10.3389/fonc.2024.1397863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Gliomas are primary tumors that originate in the central nervous system. The conventional treatment options for gliomas typically encompass surgical resection and temozolomide (TMZ) chemotherapy. However, despite aggressive interventions, the median survival for glioma patients is merely about 14.6 months. Consequently, there is an urgent necessity to explore innovative therapeutic strategies for treating glioma. The foundational study of regulated cell death (RCD) can be traced back to Karl Vogt's seminal observations of cellular demise in toads, which were documented in 1842. In the past decade, the Nomenclature Committee on Cell Death (NCCD) has systematically classified and delineated various forms and mechanisms of cell death, synthesizing morphological, biochemical, and functional characteristics. Cell death primarily manifests in two forms: accidental cell death (ACD), which is caused by external factors such as physical, chemical, or mechanical disruptions; and RCD, a gene-directed intrinsic process that coordinates an orderly cellular demise in response to both physiological and pathological cues. Advancements in our understanding of RCD have shed light on the manipulation of cell death modulation - either through induction or suppression - as a potentially groundbreaking approach in oncology, holding significant promise. However, obstacles persist at the interface of research and clinical application, with significant impediments encountered in translating to therapeutic modalities. It is increasingly apparent that an integrative examination of the molecular underpinnings of cell death is imperative for advancing the field, particularly within the framework of inter-pathway functional synergy. In this review, we provide an overview of various forms of RCD, including autophagy-dependent cell death, anoikis, ferroptosis, cuproptosis, pyroptosis and immunogenic cell death. We summarize the latest advancements in understanding the molecular mechanisms that regulate RCD in glioma and explore the interconnections between different cell death processes. By comprehending these connections and developing targeted strategies, we have the potential to enhance glioma therapy through manipulation of RCD.
Collapse
Affiliation(s)
- Maowen Luo
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xingzhao Luan
- Department of Neurosurgery, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Chaoge Yang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Xiaofan Chen
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Suxin Yuan
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Youlin Cao
- Department of Neurosurgery, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Jing Zhang
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Jiaying Xie
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Qinglian Luo
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Shenjie Li
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Wei Xiang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Jie Zhou
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| |
Collapse
|
11
|
Wen MG, Zheng HX, Zhao YZ, Xia P. Distinct roles and molecular mechanisms of nicotine and benzo(a)pyrene in ferroptosis of lung adenocarcinoma and lung squamous cell carcinoma. Tob Induc Dis 2024; 22:TID-22-121. [PMID: 38947555 PMCID: PMC11214278 DOI: 10.18332/tid/189490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
INTRODUCTION The essence of ferroptosis is the accumulation of membrane lipid peroxides caused by increased iron, which disrupts the redox balance within cells and triggers cell death. Abnormal metabolism of iron significantly increases the risk of lung cancer and induces treatment resistance. However, the roles and mechanisms of smocking in ferroptosis in patients with lung cancer are still unclear. METHODS Our study was a secondary bioinformatics analysis followed by an experimental cell culture analysis. In this study, we identified the different ferroptosis-related genes and established the signature in lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) patients with different smocking status, based on The Cancer Genome Atlas (TCGA) database. Fanyl diphosphate fanyl transferase 1 (FDFT1) in LUSC patients and solute carrier one family member 5 (SLC1A5) in LUAD patients were confirmed to be related to ferroptosis. Next, we checked the roles of two main components of smoke, nicotine, and benzo(a)pyrene (BaP), in ferroptosis of non-small-cell lung cancer (NSCLC) cells. RESULTS We confirmed that nicotine inhibited reactive oxygen species (ROS) levels and induced glutathione peroxidase (GPX4) expression, while the opposite roles of BaP were observed in NSCLC cells. Mechanically, nicotine protected NSCLC cells from ferroptosis through upregulation of epidermal growth factor receptor (EGFR) and SLC1A5 expression. BaP-induced ferroptosis in NSCLC cells depends on FDFT1 expression. CONCLUSIONS In this study, the ferroptosis-associated gene signature was identified in LUAD and LUSC patients with different smoking status. We confirmed nicotine-protected LUAD and LUSC cells from ferroptosis by upregulating EGFR and SLC1A5 expression. BaP-induced ferroptosis in these cells depends on FDFT1 expression.
Collapse
Affiliation(s)
- Min G. Wen
- Department of Community Nursing, College of Nursing, Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Hui X. Zheng
- Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Ying Z. Zhao
- Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Pu Xia
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, People's Republic of China
| |
Collapse
|
12
|
Hushmandi K, Einollahi B, Saadat SH, Lee EHC, Farani MR, Okina E, Huh YS, Nabavi N, Salimimoghadam S, Kumar AP. Amino acid transporters within the solute carrier superfamily: Underappreciated proteins and novel opportunities for cancer therapy. Mol Metab 2024; 84:101952. [PMID: 38705513 PMCID: PMC11112377 DOI: 10.1016/j.molmet.2024.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Solute carrier (SLC) transporters, a diverse family of membrane proteins, are instrumental in orchestrating the intake and efflux of nutrients including amino acids, vitamins, ions, nutrients, etc, across cell membranes. This dynamic process is critical for sustaining the metabolic demands of cancer cells, promoting their survival, proliferation, and adaptation to the tumor microenvironment (TME). Amino acids are fundamental building blocks of cells and play essential roles in protein synthesis, nutrient sensing, and oncogenic signaling pathways. As key transporters of amino acids, SLCs have emerged as crucial players in maintaining cellular amino acid homeostasis, and their dysregulation is implicated in various cancer types. Thus, understanding the intricate connections between amino acids, SLCs, and cancer is pivotal for unraveling novel therapeutic targets and strategies. SCOPE OF REVIEW In this review, we delve into the significant impact of amino acid carriers of the SLCs family on the growth and progression of cancer and explore the current state of knowledge in this field, shedding light on the molecular mechanisms that underlie these relationships and highlighting potential avenues for future research and clinical interventions. MAJOR CONCLUSIONS Amino acids transportation by SLCs plays a critical role in tumor progression. However, some studies revealed the tumor suppressor function of SLCs. Although several studies evaluated the function of SLC7A11 and SLC1A5, the role of some SLC proteins in cancer is not studied well. To exert their functions, SLCs mediate metabolic rewiring, regulate the maintenance of redox balance, affect main oncogenic pathways, regulate amino acids bioavailability within the TME, and alter the sensitivity of cancer cells to therapeutics. However, different therapeutic methods that prevent the function of SLCs were able to inhibit tumor progression. This comprehensive review provides insights into a rapidly evolving area of cancer biology by focusing on amino acids and their transporters within the SLC superfamily.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
13
|
Chen J, Ou L, Liu W, Gao F. Exploring the molecular mechanisms of ferroptosis-related genes in periodontitis: a multi-dataset analysis. BMC Oral Health 2024; 24:611. [PMID: 38802844 PMCID: PMC11129485 DOI: 10.1186/s12903-024-04342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
PURPOSE This study aims to elucidate the biological functions of ferroptosis-related genes in periodontitis, along with their correlation to tumor microenvironment (TME) features such as immune infiltration. It aims to provide potential diagnostic markers of ferroptosis for clinical management of periodontitis. METHODS Utilizing the periodontitis-related microarray dataset GSE16134 from the Gene Expression Omnibus (GEO) and a set of 528 ferroptosis-related genes identified in prior studies, this research unveils differentially expressed ferroptosis-related genes in periodontitis. Subsequently, a protein-protein interaction network was constructed. Subtyping of periodontitis was explored, followed by validation through immune cell infiltration and gene set enrichment analyses. Two algorithms, randomForest and SVM(Support Vector Machine), were employed to reveal potential ferroptosis diagnostic markers for periodontitis. The diagnostic efficacy, immune correlation, and potential transcriptional regulatory networks of these markers were further assessed. Finally, potential targeted drugs for differentially expressed ferroptosis markers in periodontitis were predicted. RESULTS A total of 36 ferroptosis-related genes (30 upregulated, 6 downregulated) were identified from 829 differentially expressed genes between 9 periodontitis samples and the control group. Subsequent machine learning algorithm screening highlighted 4 key genes: SLC1A5(Solute Carrier Family 1 Member 5), SLC2A14(Solute Carrier Family 1 Member 14), LURAP1L(Leucine Rich Adaptor Protein 1 Like), and HERPUD1(Homocysteine Inducible ER Protein With Ubiquitin Like Domain 1). Exploration of these 4 key genes, supported by time-correlated ROC analysis, demonstrated reliability, while immune infiltration results indicated a strong correlation between key genes and immune factors. Furthermore, Gene Set Enrichment Analysis (GSEA) was conducted for the four key genes, revealing enrichment in GO/KEGG pathways that have a significant impact on periodontitis. Finally, the study predicted potential transcriptional regulatory networks and targeted drugs associated with these key genes in periodontitis. CONCLUSIONS The ferroptosis-related genes identified in this study, including SLC1A5, SLC2A14, LURAP1L, and HERPUD1, may serve as novel diagnostic and therapeutic targets for periodontitis. They are likely involved in the occurrence and development of periodontitis through mechanisms such as immune infiltration, cellular metabolism, and inflammatory chemotaxis, potentially linking the ferroptosis pathway to the progression of periodontitis. Targeted drugs such as flurofamide, L-733060, memantine, tetrabenazine, and WAY-213613 hold promise for potential therapeutic interventions in periodontitis associated with these ferroptosis-related genes.
Collapse
Affiliation(s)
- Jili Chen
- Department of Periodontics, Panyu Branch, Stomatological Hospital, School of Stomatology, Southern Medical University, No.366 Jiangnan Dadao Nan, Haizhu District, Guangzhou, Guangdong, 510220, China
| | - Lijia Ou
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, 410006, China
| | - Weizhen Liu
- Department of Periodontics, Panyu Branch, Stomatological Hospital, School of Stomatology, Southern Medical University, No.366 Jiangnan Dadao Nan, Haizhu District, Guangzhou, Guangdong, 510220, China
| | - Feng Gao
- Department of Periodontics, Panyu Branch, Stomatological Hospital, School of Stomatology, Southern Medical University, No.366 Jiangnan Dadao Nan, Haizhu District, Guangzhou, Guangdong, 510220, China.
| |
Collapse
|
14
|
Wang B, Pei J, Xu S, Liu J, Yu J. A glutamine tug-of-war between cancer and immune cells: recent advances in unraveling the ongoing battle. J Exp Clin Cancer Res 2024; 43:74. [PMID: 38459595 PMCID: PMC10921613 DOI: 10.1186/s13046-024-02994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
Glutamine metabolism plays a pivotal role in cancer progression, immune cell function, and the modulation of the tumor microenvironment. Dysregulated glutamine metabolism has been implicated in cancer development and immune responses, supported by mounting evidence. Cancer cells heavily rely on glutamine as a critical nutrient for survival and proliferation, while immune cells require glutamine for activation and proliferation during immune reactions. This metabolic competition creates a dynamic tug-of-war between cancer and immune cells. Targeting glutamine transporters and downstream enzymes involved in glutamine metabolism holds significant promise in enhancing anti-tumor immunity. A comprehensive understanding of the intricate molecular mechanisms underlying this interplay is crucial for developing innovative therapeutic approaches that improve anti-tumor immunity and patient outcomes. In this review, we provide a comprehensive overview of recent advances in unraveling the tug-of-war of glutamine metabolism between cancer and immune cells and explore potential applications of basic science discoveries in the clinical setting. Further investigations into the regulation of glutamine metabolism in cancer and immune cells are expected to yield valuable insights, paving the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Bolin Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinli Pei
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengnan Xu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
15
|
Xia R, Peng HF, Zhang X, Zhang HS. Comprehensive review of amino acid transporters as therapeutic targets. Int J Biol Macromol 2024; 260:129646. [PMID: 38272411 DOI: 10.1016/j.ijbiomac.2024.129646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The solute carrier (SLC) family, with more than 400 membrane-bound proteins, facilitates the transport of a wide array of substrates such as nutrients, ions, metabolites, and drugs across biological membranes. Amino acid transporters (AATs) are membrane transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs participate in many important physiological functions including nutrient supply, metabolic transformation, energy homeostasis, redox regulation, and neurological regulation. Several AATs have been found to significantly impact the progression of human malignancies, and dysregulation of AATs results in metabolic reprogramming affecting tumor growth and progression. However, current clinical therapies that directly target AATs have not been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, the molecular mechanisms in human diseases such as tumors, kidney diseases, and emerging therapeutic strategies for targeting AATs.
Collapse
Affiliation(s)
- Ran Xia
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hai-Feng Peng
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Xing Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hong-Sheng Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China.
| |
Collapse
|
16
|
Wei J, Wang J, Chen X, Zhang L, Peng M. Novel application of the ferroptosis-related genes risk model associated with disulfidptosis in hepatocellular carcinoma prognosis and immune infiltration. PeerJ 2024; 12:e16819. [PMID: 38317842 PMCID: PMC10840499 DOI: 10.7717/peerj.16819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/31/2023] [Indexed: 02/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) stands as the prevailing manifestation of primary liver cancer and continues to pose a formidable challenge to human well-being and longevity, owing to its elevated incidence and mortality rates. Nevertheless, the quest for reliable predictive biomarkers for HCC remains ongoing. Recent research has demonstrated a close correlation between ferroptosis and disulfidptosis, two cellular processes, and cancer prognosis, suggesting their potential as predictive factors for HCC. In this study, we employed a combination of bioinformatics algorithms and machine learning techniques, leveraging RNA sequencing data, mutation profiles, and clinical data from HCC samples in The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and the International Cancer Genome Consortium (ICGC) databases, to develop a risk prognosis model based on genes associated with ferroptosis and disulfidptosis. We conducted an unsupervised clustering analysis, calculating a risk score (RS) to predict the prognosis of HCC using these genes. Clustering analysis revealed two distinct HCC clusters, each characterized by significantly different prognostic and immune features. The median RS stratified HCC samples in the TCGA, GEO, and ICGC cohorts into high-and low-risk groups. Importantly, RS emerged as an independent prognostic factor in all three cohorts, with the high-risk group demonstrating poorer prognosis and a more active immunosuppressive microenvironment. Additionally, the high-risk group exhibited higher expression levels of tumor mutation burden (TMB), immune checkpoints (ICs), and human leukocyte antigen (HLA), suggesting a heightened responsiveness to immunotherapy. A cancer stem cell infiltration analysis revealed a higher similarity between tumor cells and stem cells in the high-risk group. Furthermore, drug sensitivity analysis highlighted significant differences in response to antitumor drugs between the two risk groups. In summary, our risk prognostic model, constructed based on ferroptosis-related genes associated with disulfidptosis, effectively predicts HCC prognosis. These findings hold potential implications for patient stratification and clinical decision-making, offering valuable theoretical insights in this field.
Collapse
Affiliation(s)
- Jiayan Wei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jinsong Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xinyi Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Li Zhang
- Basic Medical Sciences, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
17
|
Zhang D, Hua Z, Li Z. The role of glutamate and glutamine metabolism and related transporters in nerve cells. CNS Neurosci Ther 2024; 30:e14617. [PMID: 38358002 PMCID: PMC10867874 DOI: 10.1111/cns.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Glutamate and glutamine are the most abundant amino acids in the blood and play a crucial role in cell survival in the nervous system. Various transporters found in cell and mitochondrial membranes, such as the solute carriers (SLCs) superfamily, are responsible for maintaining the balance of glutamate and glutamine in the synaptic cleft and within cells. This balance affects the metabolism of glutamate and glutamine as non-essential amino acids. AIMS This review aims to provide an overview of the transporters and enzymes associated with glutamate and glutamine in neuronal cells. DISCUSSION We delve into the function of glutamate and glutamine in the nervous system by discussing the transporters involved in the glutamate-glutamine cycle and the key enzymes responsible for their mutual conversion. Additionally, we highlight the role of glutamate and glutamine as carbon and nitrogen donors, as well as their significance as precursors for the synthesis of reduced glutathione (GSH). CONCLUSION Glutamate and glutamine play a crucial role in the brain due to their special effects. It is essential to focus on understanding glutamate and glutamine metabolism to comprehend the physiological behavior of nerve cells and to treat nervous system disorders and cancer.
Collapse
Affiliation(s)
- Dongyang Zhang
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhongyan Hua
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhijie Li
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
18
|
Wang W, Zhang Y, Li X, E Q, Jiang Z, Shi Q, Huang Y, Wang J, Huang Y. KCNA1 promotes the growth and invasion of glioblastoma cells through ferroptosis inhibition via upregulating SLC7A11. Cancer Cell Int 2024; 24:7. [PMID: 38172959 PMCID: PMC10765868 DOI: 10.1186/s12935-023-03199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The high invasiveness and infiltrative nature of Glioblastoma (GBM) pose significant challenges for surgical removal. This study aimed to investigate the role of KCNA1 in GBM progression. METHODS CCK8, colony formation assay, scratch assay, transwell assay, and 3D tumor spheroid invasion assays were to determine how KCNA1 affects the growth and invasion of GBM cells. Subsequently, to confirm the impact of KCNA1 in ferroptosis, western blot, transmission electron microscopy and flow cytometry were conducted. To ascertain the impact of KCNA1 in vivo, patient-derived orthotopic xenograft models were established. RESULTS In functional assays, KCNA1 promotes the growth and invasion of GBM cells. Besides, KCNA1 can increase the expression of SLC7A11 and protect cells from ferroptosis. The vivo experiments demonstrated that knocking down KCNA1 inhibited the growth and infiltration of primary tumors in mice and extended survival time. CONCLUSION Therefore, our research suggests that KCNA1 may promote tumor growth and invasion by upregulating the expression of SLC7A11 and inhibiting ferroptosis, making it a promising therapeutic target for GBM.
Collapse
Affiliation(s)
- Weichao Wang
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215000, China
| | - Yang Zhang
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215000, China
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xuetao Li
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215000, China
| | - Qinzi E
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215000, China
| | - Zuoyu Jiang
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215000, China
| | - Qikun Shi
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215000, China
| | - Yu Huang
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215000, China
| | - Jian Wang
- Department of Neurosurgery, TaiCang Hospital of Traditional Chinese Medicine, Suzhou, 215000, China.
| | - Yulun Huang
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215000, China.
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
19
|
Liu M, Liu X, Qiao J, Cao B. Silibinin suppresses glioblastoma cell growth, invasion, stemness, and glutamine metabolism by YY1/SLC1A5 pathway. Transl Neurosci 2024; 15:20220333. [PMID: 38410123 PMCID: PMC10896183 DOI: 10.1515/tnsci-2022-0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024] Open
Abstract
Background Silibinin has been found to inhibit glioblastoma (GBM) progression. However, the underlying molecular mechanism by which Silibinin regulates GBM process remains unclear. Methods GBM cell proliferation, apoptosis, invasion, and stemness are assessed by cell counting kit-8 assay, EdU assay, flow cytometry, transwell assay, and sphere formation assay. Western blot is used to measure the protein expression levels of apoptosis-related markers, solute carrier family 1 member 5 (SLC1A5), and Yin Yang-1 (YY1). Glutamine consumption, glutamate production, and α-ketoglutarate production are detected to evaluate glutamine metabolism in cells. Also, SLC1A5 and YY1 mRNA levels are examined using quantitative real-time PCR. Chromatin immunoprecipitation assay and dual-luciferase reporter assay are used to detect the interaction between YY1 and SLC1A5. Mice xenograft models are constructed to explore Silibinin roles in vivo. Results Silibinin inhibits GBM cell proliferation, invasion, stemness, and glutamine metabolism, while promotes apoptosis. SLC1A5 is upregulated in GBM and its expression is decreased by Silibinin. SLC1A5 overexpression abolishes the anti-tumor effect of Silibinin in GBM cells. Transcription factor YY1 binds to SLC1A5 promoter region to induce SLC1A5 expression, and the inhibition effect of YY1 knockdown on GBM cell growth, invasion, stemness, and glutamine metabolism can be reversed by SLC1A5 overexpression. In addition, Silibinin reduces GBM tumor growth by regulating YY1/SLC1A5 pathway. Conclusion Silibinin plays an anti-tumor role in GBM process, which may be achieved via inhibiting YY1/SLC1A5 pathway.
Collapse
Affiliation(s)
- Ming Liu
- Department of Neurosurgery, The First Affiliated Hospital of Hebei North University, 12 Changqing Road, Qiaoxi District, Zhangjiakou City, 075000, Hebei Province, China
| | - Xipeng Liu
- Department of Neurosurgery, The First Affiliated Hospital of Hebei North University, 12 Changqing Road, Qiaoxi District, Zhangjiakou City, 075000, Hebei Province, China
| | - Jianxin Qiao
- Department of Neurosurgery, The First Affiliated Hospital of Hebei North University, 12 Changqing Road, Qiaoxi District, Zhangjiakou City, 075000, Hebei Province, China
| | - Bing Cao
- Department of Neurosurgery, The First Affiliated Hospital of Hebei North University, 12 Changqing Road, Qiaoxi District, Zhangjiakou City, 075000, Hebei Province, China
| |
Collapse
|
20
|
Adeniyi PA, Gong X, MacGregor E, Degener-O’Brien K, McClendon E, Garcia M, Romero O, Russell J, Srivastava T, Miller J, Keene CD, Back SA. Ferroptosis of Microglia in Aging Human White Matter Injury. Ann Neurol 2023; 94:1048-1066. [PMID: 37605362 PMCID: PMC10840747 DOI: 10.1002/ana.26770] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE Because the role of white matter (WM) degenerating microglia (DM) in remyelination failure is unclear, we sought to define the core features of this novel population of aging human microglia. METHODS We analyzed postmortem human brain tissue to define a population of DM in aging WM lesions. We used immunofluorescence staining and gene expression analysis to investigate molecular mechanisms related to the degeneration of DM. RESULTS We found that DM, which accumulated myelin debris were selectively enriched in the iron-binding protein light chain ferritin, and accumulated PLIN2-labeled lipid droplets. DM displayed lipid peroxidation injury and enhanced expression for TOM20, a mitochondrial translocase, and a sensor of oxidative stress. DM also displayed enhanced expression of the DNA fragmentation marker phospho-histone H2A.X. We identified a unique set of ferroptosis-related genes involving iron-mediated lipid dysmetabolism and oxidative stress that were preferentially expressed in WM injury relative to gray matter neurodegeneration. INTERPRETATION Ferroptosis appears to be a major mechanism of WM injury in Alzheimer's disease and vascular dementia. WM DM are a novel therapeutic target to potentially reduce the impact of WM injury and myelin loss on the progression of cognitive impairment. ANN NEUROL 2023;94:1048-1066.
Collapse
Affiliation(s)
- Philip A. Adeniyi
- Departments of Pediatrics and, Oregon Health & Science University, Portland, Oregon, USA
| | - Xi Gong
- Departments of Pediatrics and, Oregon Health & Science University, Portland, Oregon, USA
| | - Ellie MacGregor
- Departments of Pediatrics and, Oregon Health & Science University, Portland, Oregon, USA
| | - Kiera Degener-O’Brien
- Departments of Pediatrics and, Oregon Health & Science University, Portland, Oregon, USA
| | - Evelyn McClendon
- Departments of Pediatrics and, Oregon Health & Science University, Portland, Oregon, USA
| | - Mariel Garcia
- Departments of Pediatrics and, Oregon Health & Science University, Portland, Oregon, USA
| | - Oscar Romero
- Departments of Pediatrics and, Oregon Health & Science University, Portland, Oregon, USA
| | - Joshua Russell
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Taasin Srivastava
- Departments of Pediatrics and, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeremy Miller
- Allen Institute for Brain Science, Seattle, Washington, USA
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Stephen A. Back
- Departments of Pediatrics and, Oregon Health & Science University, Portland, Oregon, USA
- Neurology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
21
|
Zhang Y, Wu X, Zhu J, Lu R, Ouyang Y. Knockdown of SLC39A14 inhibits glioma progression by promoting erastin-induced ferroptosis SLC39A14 knockdown inhibits glioma progression. BMC Cancer 2023; 23:1120. [PMID: 37978473 PMCID: PMC10655456 DOI: 10.1186/s12885-023-11637-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Ferroptosis is a newly classified form of regulated cell death with implications in various tumor progression pathways. However, the roles and mechanisms of ferroptosis-related genes in glioma remain unclear. METHODS Bioinformatics analysis was employed to identify differentially expressed ferroptosis-related genes in glioma. The expression levels of hub genes were assessed using real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). To explore the role of SLC39A14 in glioma, a series of in vitro assays were conducted, including cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, wound healing, and Transwell assays. Enzyme-linked immunosorbent assay (ELISA) was utilized to measure the levels of indicators associated with ferroptosis. Hematoxylin-eosin (HE) and immunohistochemistry (IHC) staining were performed to illustrate the clinicopathological features of the mouse transplantation tumor model. Additionally, Western blot analysis was used to assess the expression of the cGMP-PKG pathway-related proteins. RESULTS Seven ferroptosis-related hub genes, namely SLC39A14, WWTR1, STEAP3, NOTCH2, IREB2, HIF1A, and FANCD2, were identified, all of which were highly expressed in glioma. Knockdown of SLC39A14 inhibited glioma cell proliferation, migration, and invasion, while promoting apoptosis. Moreover, SLC39A14 knockdown also facilitated erastin-induced ferroptosis, leading to the suppression of mouse transplantation tumor growth. Mechanistically, SLC39A14 knockdown inhibited the cGMP-PKG signaling pathway activation. CONCLUSION Silencing SLC39A14 inhibits ferroptosis and tumor progression, potentially involving the regulation of the cGMP-PKG signaling pathway.
Collapse
Affiliation(s)
- Yunwen Zhang
- Department of Neurosurgery, First Clinical Medical College of Gannan Medical University, No.1 Xueyuan Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Xinghai Wu
- Department of Neurosurgery, Zhangye People's Hospital Affiliated to Hexi University, No. 67 Xihuan Road, Ganzhou District, Zhangye City, 734000, Gansu Province, China
| | - Jiyong Zhu
- Department of Neurosurgery, Guilin Municipal Hospital of Traditional Chinese Medicine, Guangxi Zhuang Autonomous Region, No. 2 Lingui Road, Xiangshan District, Guilin City, 541002, China
| | - Ruibin Lu
- Department of Neurosurgery, First Clinical Medical College of Gannan Medical University, No.1 Xueyuan Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Yian Ouyang
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical University, No.23 Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China.
| |
Collapse
|
22
|
Zhang F, Wu L, Feng S, Zhao Z, Zhang K, Thakur A, Xu Z, Liang Q, Liu Y, Liu W, Yan Y. FHOD1 is upregulated in glioma cells and attenuates ferroptosis of glioma cells by targeting HSPB1 signaling. CNS Neurosci Ther 2023; 29:3351-3363. [PMID: 37211949 PMCID: PMC10580363 DOI: 10.1111/cns.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND As a new type of regulatory cell death, ferroptosis has been proven to be involved in cancer pathogenesis and therapeutic response. However, the detailed roles of ferroptosis or ferroptosis-associated genes in glioma remain to be clarified. METHODS Here, we performed the TMT/iTRAQ-Based Quantitative Proteomic Approach to identify the differentially expressed proteins between glioma specimens and adjacent tissues. Kaplan-Meier survival was used to estimate the survival values. We also explored the regulatory roles of abnormally expressed formin homology 2 domain-containing protein 1 (FHOD1) in glioma ferroptosis sensitivity. RESULTS In our study, FHOD1 was identified to be the most significantly upregulated protein in glioma tissues. Multiple glioma datasets revealed that the glioma patients with low FHOD1 expression displayed favorable survival time. Functional analysis proved that the knockdown of FHOD1 inhibited cell growth and improved the cellular sensitivity to ferroptosis in glioma cells T98G and U251. Mechanically, we found the up-regulation and hypomethylation of HSPB1, a negative regulator of ferroptosis, in glioma tissues. FHOD1 knockdown could enhance the ferroptosis sensitivity of glioma cells via up-regulating the methylated heat-shock protein B (HSPB1). Overexpression of HSPB1 significantly reversed FHOD1 knockdown-mediated ferroptosis. CONCLUSIONS In summary, this study demonstrated that the FHOD1-HSPB1 axis exerts marked regulatory effects on ferroptosis, and might affect the prognosis and therapeutic response in glioma.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gynecology, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Physiology, School of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Lixiang Wu
- Department of Physiology, School of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Songshan Feng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Medical Research InstituteSouthwest UniversityChongqingChina
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer ResearchUniversity of ChicagoChicagoIllinoisUSA
| | - Zhijie Xu
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Qiuju Liang
- Department of Pharmacy, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya HospitalCentral South UniversityChangshaChina
| | - Wei Liu
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
23
|
Li Y, Li J, Chen H, Lu B, Lu F, Chen H, Liu H, Qian C. TCAF2 is associated with the immune microenvironment, promotes pathogenesis, and impairs prognosis in glioma. Gene 2023; 883:147667. [PMID: 37506986 DOI: 10.1016/j.gene.2023.147667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
PURPOSE Glioma is the most common primary intracranial tumor and exhibits rapid growth and aggressiveness. TRPM8 channel-associated factor 2 (TCAF2), located in cell junctions and the plasma membrane, plays a key role in the pathogeneses of several cancers in humans. However, the role of TCAF2 in glioma has been elusive. METHODS A combination of bioinformatic analysis using The Cancer Genome Atlas database and biological experiments, including 5-ethynyl-2'-deoxyuridine, transwell, and immunohistochemistry assays and xenotransplantation, was performed to analyze the expression level of TCAF2 and to mechanistically explore the relationship of TCAF2 with malignancy, prognosis, and the immune microenvironment in glioma. RESULTS TCAF2 was upregulated in glioma, and its expression level correlated with tumor grade and clinical outcome. The role of TCAF2 in promoting glioma malignancy was characterized through in vitro and in vivo experiments. Additionally, we observed that TCAF2 can modulate the metabolic pathways and immune microenvironment. CONCLUSION TCAF2 acts as an oncogene and may serve as a therapeutic target and prognostic marker in glioma.
Collapse
Affiliation(s)
- Yongshuai Li
- Department of Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu 221009, China
| | - Jiaqiong Li
- Department of Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu 221009, China
| | - Huaqing Chen
- Department of Pathology, Xuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu 221009, China
| | - Bo Lu
- Department of Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu 221009, China
| | - Fei Lu
- Department of Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu 221009, China
| | - Hairong Chen
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University. Nanjing, Jiangsu 210029, China
| | - Hongyi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University. Nanjing, Jiangsu 210029, China
| | - Chunfa Qian
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University. Nanjing, Jiangsu 210029, China.
| |
Collapse
|
24
|
Wang J, Luo X, Liu D. Knockdown of HNRNPM inhibits the progression of glioma through inducing ferroptosis. Cell Cycle 2023; 22:2264-2279. [PMID: 38016815 PMCID: PMC10730218 DOI: 10.1080/15384101.2023.2286782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/16/2023] [Indexed: 11/30/2023] Open
Abstract
PURPOSE Ferroptosis acts as an important regulator in diverse human tumors, including the glioma. This study aimed to screen potential ferroptosis-related genes involved in the progression of glioma. MATERIALS AND METHODS Differently expressed genes (DEGs) were screened based on GSE31262 and GSE12657 datasets, and ferroptosis-related genes were separated. Among the important hub genes in the protein-protein interaction networks, HNRNPM was selected as a research target. Following the knockdown of HNRNPM, the viability, migration, and invasion were detected by CCK8, wound healing, and transwell assays, respectively. The role of HNRNPM knockdown was also verified in a xenograft tumor model in mice. Immunohistochemistry detected the expression levels of HNRNPM and Ki67. Moreover, the ferroptosis was evaluated according to the levels of iron, glutathione peroxidase (GSH), and malondialdehyde (MDA), as well as the expression of PTGS2, GPX4, and FTH1. RESULTS Total 41 overlapping DEGs relating with ferroptosis and glioma were screened, among which 4 up-regulated hub genes (HNRNPM, HNRNPA3, RUVBL1, and SNRPPF) were determined. The up-regulation of HNRNPM presented a certain predictive value for glioma. In addition, knockdown of HNRNPM inhibited the viability, migration, and invasion of glioma cells in vitro, and also the tumor growth in mice. Notably, knockdown of HNRNPM enhanced the ferroptosis in glioma cells. Furthermore, HNRNPM was positively associated with SMARCA4 in glioma. CONCLUSIONS Knockdown of HNRNPM inhibits the progression of glioma via inducing ferroptosis. HNRNPM is a promising molecular target for the treatment of glioma via inducing ferroptosis. We provided new insights of glioma progression and potential therapeutic guidance.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pathology, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
| | - Xiaolin Luo
- Party Committee Office, The Third Affiliated Hospital of Gannan Medical University/Affiliated stomatological hospital, Ganzhou, Jiangxi, China
| | - Dehua Liu
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Neurology, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
25
|
Jiang Q, Wang C, Gao Q, Wu Z, Zhao P. Multiple sevoflurane exposures during mid-trimester induce neurotoxicity in the developing brain initiated by 15LO2-Mediated ferroptosis. CNS Neurosci Ther 2023; 29:2972-2985. [PMID: 37287422 PMCID: PMC10493671 DOI: 10.1111/cns.14236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/09/2023] Open
Abstract
AIMS Mid-gestational sevoflurane exposure may induce notable long-term neurocognitive impairment in offspring. This study was designed to investigate the role and potential mechanism of ferroptosis in developmental neurotoxicity induced by sevoflurane in the second trimester. METHODS Pregnant rats on day 13 of gestation (G13) were treated with or without 3.0% sevoflurane, Ferrostatin-1 (Fer-1), PD146176, or Ku55933 on three consecutive days. Mitochondrial morphology, ferroptosis-relative proteins, malondialdehyde (MDA) levels, total iron content, and glutathione peroxidase 4 (GPX4) activities were measured. Hippocampal neuronal development in offspring was also examined. Subsequently, 15-lipoxygenase 2 (15LO2)-phosphatidylethanolamine binding protein 1 (PEBP1) interaction and expression of Ataxia telangiectasia mutated (ATM) and its downstream proteins were also detected. Furthermore, Morris water maze (MWM) and Nissl's staining were applied to estimate the long-term neurotoxic effects of sevoflurane. RESULTS Ferroptosis mitochondria were observed after maternal sevoflurane exposures. Sevoflurane elevated MDA and iron levels while inhibiting GPX4 activity, and resultant long-term learning and memory dysfunction, which were alleviated by Fer-1, PD146176, and Ku55933. Sevoflurane could enhance 15LO2-PEBP1 interaction and activate ATM and its downstream P53/SAT1 pathway, which might be attributed to excessive p-ATM nuclear translocation. CONCLUSION This study proposes that 15LO2-mediated ferroptosis might contribute to neurotoxicity induced by maternal sevoflurane anesthesia during the mid-trimester in the offspring and its mechanism may be ascribed to hyperactivation of ATM and enhancement of 15LO2-PEBP1 interaction, indicating a potential therapeutic target for ameliorating sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Qian Jiang
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Cong Wang
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Qiushi Gao
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Ziyi Wu
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Ping Zhao
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
26
|
de Ruiter Swain J, Michalopoulou E, Noch EK, Lukey MJ, Van Aelst L. Metabolic partitioning in the brain and its hijacking by glioblastoma. Genes Dev 2023; 37:681-702. [PMID: 37648371 PMCID: PMC10546978 DOI: 10.1101/gad.350693.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The different cell types in the brain have highly specialized roles with unique metabolic requirements. Normal brain function requires the coordinated partitioning of metabolic pathways between these cells, such as in the neuron-astrocyte glutamate-glutamine cycle. An emerging theme in glioblastoma (GBM) biology is that malignant cells integrate into or "hijack" brain metabolism, co-opting neurons and glia for the supply of nutrients and recycling of waste products. Moreover, GBM cells communicate via signaling metabolites in the tumor microenvironment to promote tumor growth and induce immune suppression. Recent findings in this field point toward new therapeutic strategies to target the metabolic exchange processes that fuel tumorigenesis and suppress the anticancer immune response in GBM. Here, we provide an overview of the intercellular division of metabolic labor that occurs in both the normal brain and the GBM tumor microenvironment and then discuss the implications of these interactions for GBM therapy.
Collapse
Affiliation(s)
- Jed de Ruiter Swain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | | | - Evan K Noch
- Department of Neurology, Division of Neuro-oncology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Michael J Lukey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| |
Collapse
|
27
|
Anagnostakis F, Kokkorakis M, Markouli M, Piperi C. Impact of Solute Carrier Transporters in Glioma Pathology: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24119393. [PMID: 37298344 DOI: 10.3390/ijms24119393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Solute carriers (SLCs) are essential for brain physiology and homeostasis due to their role in transporting necessary substances across cell membranes. There is an increasing need to further unravel their pathophysiological implications since they have been proposed to play a pivotal role in brain tumor development, progression, and the formation of the tumor microenvironment (TME) through the upregulation and downregulation of various amino acid transporters. Due to their implication in malignancy and tumor progression, SLCs are currently positioned at the center of novel pharmacological targeting strategies and drug development. In this review, we discuss the key structural and functional characteristics of the main SLC family members involved in glioma pathogenesis, along with their potential targeting options to provide new opportunities for CNS drug design and more effective glioma management.
Collapse
Affiliation(s)
- Filippos Anagnostakis
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Michail Kokkorakis
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Mariam Markouli
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
28
|
Xie M, Zhu C, Ye Y. Ferroptosis-Related Molecular Clusters and Diagnostic Model in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24087342. [PMID: 37108505 PMCID: PMC10138921 DOI: 10.3390/ijms24087342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by synovitis, joint damage and deformity. A newly described type of cell death, ferroptosis, has an important role in the pathogenesis of RA. However, the heterogeneity of ferroptosis and its association with the immune microenvironment in RA remain unknown. Synovial tissue samples from 154 RA patients and 32 healthy controls (HCs) were obtained from the Gene Expression Omnibus database. Twelve of twenty-six ferroptosis-related genes (FRGs) were differentially expressed between RA patients and HCs. Furthermore, the patterns of correlation among the FRGs were significantly different between the RA and HC groups. RA patients were classified into two distinct ferroptosis-related clusters, of which cluster 1 had a higher abundance of activated immune cells and a corresponding lower ferroptosis score. Enrichment analysis suggested that tumor necrosis factor-α signaling via nuclear factor-κB was upregulated in cluster 1. RA patients in cluster 1 responded better to anti-tumor necrosis factor (anti-TNF) therapy, which was verified by the GSE 198520 dataset. A diagnostic model to identify RA subtypes and immunity was constructed and verified, in which the area under the curve values in the training (70%) and validation (30%) cohorts were 0.849 and 0.810, respectively. This study demonstrated that there were two ferroptosis clusters in RA synovium that exhibited distinct immune profiles and ferroptosis sensitivity. Additionally, a gene scoring system was constructed to classify individual RA patients.
Collapse
Affiliation(s)
- Maosheng Xie
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chao Zhu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yujin Ye
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
29
|
Ferroptosis-Related Gene SLC1A5 Is a Novel Prognostic Biomarker and Correlates with Immune Microenvironment in HBV-Related HCC. J Clin Med 2023; 12:jcm12051715. [PMID: 36902506 PMCID: PMC10003624 DOI: 10.3390/jcm12051715] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
(1) Background: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with limited treatment satisfaction. Finding new therapeutic targets has remained a major challenge. Ferroptosis is an iron-dependent cell death program that plays a regulatory role in HBV infection and HCC development. It is necessary to classify the roles of ferroptosis or ferroptosis-related genes (FRGs) in HBV-related HCC progression. (2) Methods: We conducted a matched case-control study from the TCGA database, retrospectively collecting demographic data and common clinical indicators from all subjects. The Kaplan-Meier curve, univariate and multivariate cox regression analysis of the FRGs were used to explore the risk factors for HBV-related HCC. The CIBERSORT algorithm and TIDE algorithm were executed to evaluate the functions of FRGs in the tumor-immune environment. (3) Results: A total of 145 HBV-positive HCC patients and 266 HBV-negative HCC patients were enrolled in our study. Four ferroptosis related genes (FANCD2, CS, CISD1 and SLC1A5) were positively correlated with the progression of HBV-related HCC. Among them, SLC1A5 was an independent risk factor for HBV-related HCC, and correlated with poor prognosis, advanced progression and an immunosuppression microenvironment. (4) Conclusions: Here, we revealed that a ferroptosis-related gene, SLC1A5, may be an excellent predictor of HBV-related HCC and may provide insight into the development of innovative possible therapeutic techniques.
Collapse
|
30
|
Shen D, Yang F, Li Q. Detection of Ferroptosis in Models of Brain Diseases. Methods Mol Biol 2023; 2712:233-251. [PMID: 37578711 DOI: 10.1007/978-1-0716-3433-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Ferroptosis is a regulated form of non-apoptotic cell death driven by iron-dependent lipid peroxidation. In the past decade, ferroptosis has been reported to be involved in the pathological role in the central nervous system degenerative diseases (e.g., Alzheimer's disease, Huntington's disease, and Parkinson's disease), stroke, traumatic brain injury, and brain tumor. However, how to reliably detect and classify ferroptosis from other cell death in pathological conditions remains a great challenge, especially in primary brain cells and brain tissues. Here, we summarize the methods and protocols (such as real-time PCR, western blotting, immunofluorescence staining, lipid peroxidation assay kits and probe, immunofluorescence staining, GPX activity and glutathione depletion assay kits, iron detection, and TEM) used in the present study to detect and classify ferroptosis in the brain.
Collapse
Affiliation(s)
- Danmin Shen
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Fei Yang
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Qian Li
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China.
| |
Collapse
|