1
|
Su Y, Li L, Chen J, Gao C. TMEM164 promotes ferroptosis by selectively mediating ATG5-dependent autophagosome formation to inhibit the progression of LUAD. Autoimmunity 2024; 57:2410192. [PMID: 39392409 DOI: 10.1080/08916934.2024.2410192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 10/12/2024]
Abstract
The study focuses on lung adenocarcinoma (LUAD), a predominant type of lung cancer. Despite advancements in diagnostics and molecular therapies, treatment remains challenging due to its low five-year survival rate. This study aims to investigate the role of the transmembrane protein TMEM164 in ferroptosis and anti-tumor immunity in LUAD, and to evaluate its potential as a therapeutic target. Through cellular experiments (such as QPCR, WB, CCK-8, EdU, Transwell, flow cytometry, CO-IP) and animal model experiments (including HE staining and IHC analysis), the relationship between TMEM164 expression and LUAD progression was explored, with particular attention to its mechanisms in ferroptosis and autophagy. The results show that TMEM164 expression is downregulated in LUAD and is associated with poor prognosis. Increasing TMEM164 expression significantly inhibits cell proliferation, migration, and invasion, while promoting an autophagy process dependent on ATG5 for autophagosome formation, thus facilitating ferroptosis. In mouse models, high TMEM164 expression combined with anti-PD-1 antibodies demonstrated synergistic anti-tumor effects. These findings highlight the critical role of TMEM164 in LUAD, suggesting that modulating TMEM164 expression could open new avenues for LUAD treatment.
Collapse
Affiliation(s)
- Yongxiang Su
- Department of Surgical oncology, Fudan University Shanghai Cancer Center Xiamen Hospital (Xiamen Cancer Hospital), Xiamen City, China
| | - Lintao Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen City, China
| | - Junhai Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen City, China
| | - Chao Gao
- Department of Surgical oncology, Fudan University Shanghai Cancer Center Xiamen Hospital (Xiamen Cancer Hospital), Xiamen City, China
| |
Collapse
|
2
|
Dong J, Li Y, Jin Z, Wu Z, Cai M, Pan G, Ye W, Zhou W, Li Z, Tian S, Chen ZS, Qin JJ. Synthesis and evaluation of novel tetrahydroisoquinoline-benzo[h]chromen-4-one conjugates as dual ABCB1/CYP1B1 inhibitors for overcoming MDR in cancer. Bioorg Med Chem 2024; 114:117944. [PMID: 39418747 DOI: 10.1016/j.bmc.2024.117944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
The emergence of multidrug resistance (MDR) in malignant tumors is one of the major threats encountered currently by many chemotherapeutic agents. Among the various mechanisms involved in drug resistance, P-glycoprotein (P-gp, ABCB1), a member of the ABC transporter family that significantly increases the efflux of various anticancer drugs from tumor cells, and the metabolic enzyme CYP1B1 are widely considered to be two critical targets for overcoming MDR. Unfortunately, no MDR modulator has been approved by the FDA to date. In this study, based on pharmacophore hybridization, bioisosteric and fragment-growing strategies, we designed and synthesized 11 novel tetrahydroisoquinoline-benzo[h]chromen-4-one conjugates as dual ABCB1/CYP1B1 inhibitors. Among them, the preferred compound A10 exhibited the best MDR reversal activity (IC50 = 0.25 μM, RF = 44.4) in SW620/AD300 cells, being comparable to one of the most potent third-generation P-gp inhibitors WK-X-34. In parallel, this dual ABCB1/CYP1B1 inhibitory effect drives compound A10 exhibiting prominent drug resistance reversal activity to doxorubicin (IC50 = 4.7 μM, RF = 13.7) in ABCB1/CYP1B1-overexpressing DOX-SW620/AD300-1B1 resistant cells, which is more potent than that of the CYP1B1 inhibitor ANF. Furthermore, although compound A2 possessed moderate ABCB1/CYP1B1 inhibitory activity, it showed considerable antiproliferative activity towards drug-resistant SW620/AD300 and MKN45-DDP-R cells, which may be partly related to the increase of PUMA expression to promote the apoptosis of the drug-resistant MKN45-DDP-R cells as confirmed by proteomics and western blot assay. These results indicated that the tetrahydroisoquinoline-benzo[h]chromen-4-one conjugates may provide a fundamental scaffold reference for further discovery of MDR reversal agents.
Collapse
Affiliation(s)
- Jinyun Dong
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - YuLong Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Zhiyuan Jin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Zumei Wu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Maohua Cai
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Guangzhao Pan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Zheshen Li
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Sichao Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
3
|
Lin J, Lai Y, Lu F, Wang W. Targeting ACSLs to modulate ferroptosis and cancer immunity. Trends Endocrinol Metab 2024:S1043-2760(24)00255-8. [PMID: 39424456 DOI: 10.1016/j.tem.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Five acyl-CoA synthetase long-chain family members (ACSLs) are responsible for catalyzing diverse long-chain fatty acids (LCFAs) into LCFA-acyl-coenzyme A (CoA) for their subsequent metabolism, including fatty acid oxidation (FAO), lipid synthesis, and protein acylation. In this review, we focus on ACSLs and their LCFA substrates and introduce their involvement in regulation of cancer proliferation, metastasis, and therapeutic resistance. Along with the recognition of the decisive role of ACSL4 in ferroptosis - an immunogenic cell death (ICD) initiated by lipid peroxidation - we review the functions of ACSLs on regulating ferroptosis sensitivity. Last, we discuss the current understanding of ACSL on the antitumor immune response. We emphasize the necessity to explore the functions of immune cells expressing ACSLs for developing novel strategies to augment immunotherapy by targeting ACSL.
Collapse
Affiliation(s)
- Junhong Lin
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yongfeng Lai
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fujia Lu
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
| | - Weimin Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Yan A, Wu H, Jiang W. RACK1 inhibits ferroptosis of cervical cancer by enhancing SLC7A11 core-fucosylation. Glycoconj J 2024; 41:229-240. [PMID: 39356381 DOI: 10.1007/s10719-024-10167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
Receiver for Activated C Kinase 1 (RACK1) is a highly conserved scaffold protein that can assemble multiple kinases and proteins together to form complexes, thereby regulating signal transduction process and various cellular biological processes, including cell cycle regulation, differentiation, and immune response. However, the function and mechanism of RACK1 in cervical cancer remain incompletely understood. Here we identified that RACK1 could significantly suppress cell ferroptosis in cervical cancer cells. Mechanistically, RACK1 increased the expression of FUT8 by inhibiting miR-1275, which in turn promoted the FUT8-catalyzed core-fucosylation of cystine/glutamate antiporter SLC7A11, thereby inhibiting SLC7A11 degradation and cell ferroptosis. Our data highlight the role of RACK1 in cervical cancer progression and its suppression of ferroptosis via the RACK1/miR-1275/FUT8/SLC7A11 axis, suggesting that inhibiting this pathway may be a promising therapeutic approach for patients with cervical cancer.
Collapse
Affiliation(s)
- Anqi Yan
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, China
| | - Hao Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, China.
| | - Wei Jiang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, China.
| |
Collapse
|
5
|
Yu Q, Li Y, Zhang N, Lu J, Gan X, Chen L, Liang R, Jian J. Silencing of lncRNA NEAT1 alleviates acute myocardial infarction by suppressing miR-450-5p/ACSL4-mediated ferroptosis. Exp Cell Res 2024; 442:114217. [PMID: 39222870 DOI: 10.1016/j.yexcr.2024.114217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Ferroptosis is principally initiated by dysregulation of iron metabolism and excessive accumulation of ROS, which exacerbates myocardial injury during acute myocardial infarction (AMI). Previous studies have indeed demonstrated the significant involvement of long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) exerts its pleiotropic effects in the pathophysiology of myocardial infarction, heart failure and atherosclerosis by modulating inflammation, apoptosis, and oxidative stress. However, whether and how NEAT1 mediates myocardial ferroptosis remain unknown. In this study, we found that NEAT1 expression was significantly elevated in hypoxic HL-1 cells and AMI mice, while silencing of NEAT1 alleviated lipid peroxidation and myocardial ferroptosis both in vitro and in vivo. Mechanistically, NEAT1 directly sponged miR-450b-5p and negatively regulated its expression. In addition, miR-450b-5p directly targeted Acyl-CoA synthase long-chain family member 4 (ACSL4). Notably, inhibition of miR-450b-5p reversed the role of NEAT1 in AMI mice. Collectively, these findings newly illustrated that NEAT1 acts as a competitive endogenous RNA (ceRNA) of miR-450-5p in AMI. Especially, silencing of NEAT1 effectively ameliorated myocardium ischemia by suppression of ferroptosis via miR-450-5p/ACSL4 pathway, which providing a brand-new therapeutic strategy for myocardial ischemia injury.
Collapse
Affiliation(s)
- Qiuting Yu
- Guangxi Key Laboratory of Diabetic System Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Yuxue Li
- Guangxi Key Laboratory of Diabetic System Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Ning Zhang
- Guangxi Key Laboratory of Diabetic System Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Jun Lu
- Guangxi Key Laboratory of Diabetic System Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Xiaowen Gan
- Guangxi Key Laboratory of Diabetic System Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Linglin Chen
- Guangxi Key Laboratory of Diabetic System Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Ronggan Liang
- Guangxi Key Laboratory of Diabetic System Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Jie Jian
- Guangxi Key Laboratory of Diabetic System Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China.
| |
Collapse
|
6
|
Wang Y, Yan D, Liu J, Tang D, Chen X. Protein modification and degradation in ferroptosis. Redox Biol 2024; 75:103259. [PMID: 38955112 PMCID: PMC11267077 DOI: 10.1016/j.redox.2024.103259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Ferroptosis is a form of iron-related oxidative cell death governed by an integrated redox system, encompassing pro-oxidative proteins and antioxidative proteins. These proteins undergo precise control through diverse post-translational modifications, including ubiquitination, phosphorylation, acetylation, O-GlcNAcylation, SUMOylation, methylation, N-myristoylation, palmitoylation, and oxidative modification. These modifications play pivotal roles in regulating protein stability, activity, localization, and interactions, ultimately influencing both the buildup of iron and lipid peroxidation. In mammalian cells, regulators of ferroptosis typically undergo degradation via two principal pathways: the ubiquitin-proteasome system, which handles the majority of protein degradation, and autophagy, primarily targeting long-lived or aggregated proteins. This comprehensive review aims to summarize recent advances in the post-translational modification and degradation of proteins linked to ferroptosis. It also discusses strategies for modulating ferroptosis through protein modification and degradation systems, providing new insights into potential therapeutic applications for both cancer and non-neoplastic diseases.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Biological Targeting Diagnosis, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China; State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ding Yan
- Key Laboratory of Biological Targeting Diagnosis, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China; State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinbao Liu
- Key Laboratory of Biological Targeting Diagnosis, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China; State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, 75390, USA.
| | - Xin Chen
- Key Laboratory of Biological Targeting Diagnosis, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China; State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
7
|
Hong Z, Liu F, Zhang Z. Ubiquitin modification in the regulation of tumor immunotherapy resistance mechanisms and potential therapeutic targets. Exp Hematol Oncol 2024; 13:91. [PMID: 39223632 PMCID: PMC11367865 DOI: 10.1186/s40164-024-00552-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Although immune checkpoint-based cancer immunotherapy has shown significant efficacy in various cancers, resistance still limits its therapeutic effects. Ubiquitination modification is a mechanism that adds different types of ubiquitin chains to proteins, mediating protein degradation or altering their function, thereby affecting cellular signal transduction. Increasing evidence suggests that ubiquitination modification plays a crucial role in regulating the mechanisms of resistance to cancer immunotherapy. Drugs targeting ubiquitination modification pathways have been shown to inhibit tumor progression or enhance the efficacy of cancer immunotherapy. This review elaborates on the mechanisms by which tumor cells, immune cells, and the tumor microenvironment mediate resistance to cancer immunotherapy and the details of how ubiquitination modification regulates these mechanisms, providing a foundation for enhancing the efficacy of cancer immunotherapy by intervening in ubiquitination modification.
Collapse
Affiliation(s)
- Zihang Hong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
8
|
Lu J, Jin Z, Jin X, Chen W. Prognostic value and potential regulatory relationship of miR-200c-5p in colorectal cancer. J Biochem Mol Toxicol 2024; 38:e23770. [PMID: 39016041 DOI: 10.1002/jbt.23770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/23/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
This study aimed to investigate the relationship and potential mechanisms of miR-200c-5p in colorectal cancer (CRC) progression. Differentially expressed miRNAs were screened using the TCGA database. Subsequently, univariate analysis was performed to identify CRC survival-related miRNAs. Survival and receiver operator characteristic curves were generated. The target genes of miR-200c-5p and the relevant signaling pathways or biological processes were predicted by the miRNet database and enrichment analyses. The miR-200c-5p expression was detected using quantitative reverse-transcription polymerase chain reaction, Cell Counting Kit-8, Transwell, and cell apoptosis experiments were performed to determine miR-200c-5p's impact on CRC cell viability, invasiveness, and apoptosis. Finally, we constructed a CRC mouse model with inhibited miR-200c-5p to evaluate its impact on tumors. miR-200c-5p was upregulated in CRC, implying a favorable prognosis. Gene set enrichment analysis revealed that miR-200c-5p may participate in signaling pathways such as the TGF-β signaling pathway, RIG-I-like receptor signaling pathway, renin-angiotensin system, and DNA replication. miR-200c-5p potentially targeted mRNAs, including KCNE4 and CYP1B1, exhibiting a negative correlation with their expression. Furthermore, these mRNAs may participate in biological processes like the regulation of intracellular transport, cAMP-dependent protein kinase regulatory activity, ubiquitin protein ligase binding, MHC class II protein complex binding, and regulation of apoptotic signaling pathway. Lastly, miR-200c-5p overexpression repressed the viability and invasiveness of CRC cells but promoted apoptosis. The tumor size, weight, and volume were significantly increased by inhibiting miR-200c-5p (p < 0.05). miR-200c-5p is upregulated in CRC, serving as a promising biomarker for predicting CRC prognosis.
Collapse
Affiliation(s)
- Jiying Lu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Colorectal and Anal Surgery, The Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Zhekang Jin
- Department of Colorectal and Anal Surgery, The Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xihan Jin
- Department of Colorectal and Anal Surgery, The Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wenbin Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Wang X, Ren X, Lin X, Li Q, Zhang Y, Deng J, Chen B, Ru G, Luo Y, Lin N. Recent progress of ferroptosis in cancers and drug discovery. Asian J Pharm Sci 2024; 19:100939. [PMID: 39246507 PMCID: PMC11378902 DOI: 10.1016/j.ajps.2024.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 09/10/2024] Open
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron dependence and lipid peroxidation. Ferroptosis is involved in a range of pathological processes, such as cancer. Many studies have confirmed that ferroptosis plays an essential role in inhibiting cancer cell proliferation. In addition, a series of small-molecule compounds have been developed, including erastin, RSL3, and FIN56, which can be used as ferroptosis inducers. The combination of ferroptosis inducers with anticancer drugs can produce a significant synergistic effect in cancer treatment, and patients treated with these combinations exhibit a better prognosis than patients receiving traditional therapy. Therefore, a thorough understanding of the roles of ferroptosis in cancer is of great significance for the treatment of cancer. This review mainly elaborates the molecular biological characteristics and mechanism of ferroptosis, summarizes the function of ferroptosis in cancer development and treatment,illustrates the application of ferroptosis in patient's prognosis prediction and drug discovery, and discusses the prospects of targeting ferroptosis.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Xinxin Ren
- Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
- Clinical Research Center for Cancer of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Xu Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qi Li
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Yingqiong Zhang
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Jun Deng
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Binxin Chen
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Guoqing Ru
- Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Ying Luo
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Nengming Lin
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou 310024, China
| |
Collapse
|
10
|
Liang Y, Zhong H, Zhao Y, Tang X, Pan C, Sun J, Sun J. Epigenetic mechanism of RBM15 in affecting cisplatin resistance in laryngeal carcinoma cells by regulating ferroptosis. Biol Direct 2024; 19:57. [PMID: 39039611 PMCID: PMC11264397 DOI: 10.1186/s13062-024-00499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
Laryngeal carcinoma (LC) is a common cancer of the respiratory tract. This study aims to investigate the role of RNA-binding motif protein 15 (RBM15) in the cisplatin (DDP) resistance of LC cells. LC-DDP-resistant cells were constructed. RBM15, lysine-specific demethylase 5B (KDM5B), lncRNA Fer-1 like family member 4 (FER1L4), lncRNA KCNQ1 overlapping transcript 1 (KCNQ1OT1), glutathione peroxidase 4 (GPX4), and Acyl-CoA synthetase long-chain family (ACSL4) was examined. Cell viability, IC50, and proliferation were assessed after RBM15 downregulation. The enrichment of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) and N6-methyladenosine (m6A) on KDM5B was analyzed. KDM5B mRNA stability was measured after actinomycin D treatment. A tumor xenograft assay was conducted to verify the role of RBM15 in LC. Results showed that RBM15 was upregulated in LC and its knockdown decreased IC50, cell viability, proliferation, glutathione, and upregulated iron ion content, ROS, malondialdehyde, ACSL4, and ferroptosis. Mechanistically, RBM15 improved KDM5B stability in an IGF2BP3-dependent manner, resulting in FER1L4 downregulation and GPX4 upregulation. KDM5B increased KCNQ1OT1 and inhibited ACSL4. KDM5B/KCNQ1OT1 overexpression or FER1L4 knockdown promoted DDP resistance in LC by inhibiting ferroptosis. In conclusion, RBM15 promoted KDM5B expression, and KDM5B upregulation inhibited ferroptosis and promoted DDP resistance in LC by downregulating FER1L4 and upregulating GPX4, as well as by upregulating KCNQ1OT1 and inhibiting ACSL4. Silencing RBM15 inhibited tumor growth in vivo.
Collapse
Affiliation(s)
- Yue Liang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Luyang District, Hefei, 230001, Anhui, China
| | - Haoyue Zhong
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Luyang District, Hefei, 230001, Anhui, China
| | - Yi Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Luyang District, Hefei, 230001, Anhui, China
| | - XiaoMin Tang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Luyang District, Hefei, 230001, Anhui, China
| | - Chunchen Pan
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Luyang District, Hefei, 230001, Anhui, China
| | - Jingwu Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Luyang District, Hefei, 230001, Anhui, China.
| | - Jiaqiang Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Luyang District, Hefei, 230001, Anhui, China.
| |
Collapse
|
11
|
Li YN, Su JL, Tan SH, Chen XL, Cheng TL, Jiang Z, Luo YZ, Zhang LM. Machine learning based on metabolomics unveils neutrophil extracellular trap-related metabolic signatures in non-small cell lung cancer patients undergoing chemoimmunotherapy. World J Clin Cases 2024; 12:4091-4107. [PMID: 39015934 PMCID: PMC11235537 DOI: 10.12998/wjcc.v12.i20.4091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the primary form of lung cancer, and the combination of chemotherapy with immunotherapy offers promising treatment options for patients suffering from this disease. However, the emergence of drug resistance significantly limits the effectiveness of these therapeutic strategies. Consequently, it is imperative to devise methods for accurately detecting and evaluating the efficacy of these treatments. AIM To identify the metabolic signatures associated with neutrophil extracellular traps (NETs) and chemoimmunotherapy efficacy in NSCLC patients. METHODS In total, 159 NSCLC patients undergoing first-line chemoimmunotherapy were enrolled. We first investigated the characteristics influencing clinical efficacy. Circulating levels of NETs and cytokines were measured by commercial kits. Liquid chromatography tandem mass spectrometry quantified plasma metabolites, and differential metabolites were identified. Least absolute shrinkage and selection operator, support vector machine-recursive feature elimination, and random forest algorithms were employed. By using plasma metabolic profiles and machine learning algorithms, predictive metabolic signatures were established. RESULTS First, the levels of circulating interleukin-8, neutrophil-to-lymphocyte ratio, and NETs were closely related to poor efficacy of first-line chemoimmunotherapy. Patients were classed into a low NET group or a high NET group. A total of 54 differential plasma metabolites were identified. These metabolites were primarily involved in arachidonic acid and purine metabolism. Three key metabolites were identified as crucial variables, including 8,9-epoxyeicosatrienoic acid, L-malate, and bis(monoacylglycerol)phosphate (18:1/16:0). Using metabolomic sequencing data and machine learning methods, key metabolic signatures were screened to predict NET level as well as chemoimmunotherapy efficacy. CONCLUSION The identified metabolic signatures may effectively distinguish NET levels and predict clinical benefit from chemoimmunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Yu-Ning Li
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Jia-Lin Su
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Shu-Hua Tan
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
| | - Xing-Long Chen
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Tian-Li Cheng
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Zhou Jiang
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Yong-Zhong Luo
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Le-Meng Zhang
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| |
Collapse
|
12
|
Zhu J, Zhang J, Lou Y, Zheng Y, Zheng X, Cen W, Ye L, Zhang Q. Developing a machine learning-based prognosis and immunotherapeutic response signature in colorectal cancer: insights from ferroptosis, fatty acid dynamics, and the tumor microenvironment. Front Immunol 2024; 15:1416443. [PMID: 39076986 PMCID: PMC11284049 DOI: 10.3389/fimmu.2024.1416443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
Instruction Colorectal cancer (CRC) poses a challenge to public health and is characterized by a high incidence rate. This study explored the relationship between ferroptosis and fatty acid metabolism in the tumor microenvironment (TME) of patients with CRC to identify how these interactions impact the prognosis and effectiveness of immunotherapy, focusing on patient outcomes and the potential for predicting treatment response. Methods Using datasets from multiple cohorts, including The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), we conducted an in-depth multi-omics study to uncover the relationship between ferroptosis regulators and fatty acid metabolism in CRC. Through unsupervised clustering, we discovered unique patterns that link ferroptosis and fatty acid metabolism, and further investigated them in the context of immune cell infiltration and pathway analysis. We developed the FeFAMscore, a prognostic model created using a combination of machine learning algorithms, and assessed its predictive power for patient outcomes and responsiveness to treatment. The FeFAMscore signature expression level was confirmed using RT-PCR, and ACAA2 progression in cancer was further verified. Results This study revealed significant correlations between ferroptosis regulators and fatty acid metabolism-related genes with respect to tumor progression. Three distinct patient clusters with varied prognoses and immune cell infiltration were identified. The FeFAMscore demonstrated superior prognostic accuracy over existing models, with a C-index of 0.689 in the training cohort and values ranging from 0.648 to 0.720 in four independent validation cohorts. It also responses to immunotherapy and chemotherapy, indicating a sensitive response of special therapies (e.g., anti-PD-1, anti-CTLA4, osimertinib) in high FeFAMscore patients. Conclusion Ferroptosis regulators and fatty acid metabolism-related genes not only enhance immune activation, but also contribute to immune escape. Thus, the FeFAMscore, a novel prognostic tool, is promising for predicting both the prognosis and efficacy of immunotherapeutic strategies in patients with CRC.
Collapse
Affiliation(s)
- Junchang Zhu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinyuan Zhang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunwei Lou
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yijie Zheng
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuzhi Zheng
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Cen
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lechi Ye
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiongying Zhang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Fan S, Zhou L, Zhang W, Wang D, Tang D. Ferroptosis: the balance between death and survival in colorectal cancer. Int J Biol Sci 2024; 20:3773-3783. [PMID: 39113707 PMCID: PMC11302868 DOI: 10.7150/ijbs.96828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor associated with high morbidity and mortality. Despite an increase in early screening and treatment options, people with CRC still have a poor prognosis and a low 5-year survival rate. Therefore, mining more therapeutic targets and developing means of early diagnosis and determining prognosis are now imperative in the clinical treatment of CRC. Ferroptosis is a recently identified type of regulated cell death (RCD) characterized, which is identified by the accumulation of iron-dependent lipid peroxidation, thereby causing membrane damage and cell death. Recent studies have shown that ferroptosis is associated with tumors, including CRC, and can be involved in CRC progression; however, the underlying mechanisms are complex and heterogeneous and have not been thoroughly summarized. Therefore, this study reviewed the roles of ferroptosis in CRC progression to target ferroptosis-related factors for CRC treatment. The significance of ferroptosis-related biomarkers and genes in the early diagnosis and prognosis of CRC was also investigated. Furthermore, the limitations of ferroptosis studies in the current treatment of CRC, as well as future research perspectives, are discussed.
Collapse
Affiliation(s)
- Shiying Fan
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, P. R. China
| | - Lujia Zhou
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, P. R. China
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, P. R. China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, P. R. China
| |
Collapse
|
14
|
Yu J, Gong Y, Xu Z, Chen L, Li S, Cui Y. Prognostic and therapeutic insights into colorectal carcinoma through immunogenic cell death gene profiling. PeerJ 2024; 12:e17629. [PMID: 38938617 PMCID: PMC11210462 DOI: 10.7717/peerj.17629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
While the significance of immunogenic cell death (ICD) in oncology is acknowledged, its specific impact on colorectal carcinoma remains underexplored. In this study, we delved into the role of ICD in colorectal carcinoma, a topic not yet comprehensively explored. A novel ICD quantification system was developed to forecast patient outcomes and the effectiveness of immunotherapy. Utilizing single-cell sequencing, we constructed an ICD score within the tumor immune microenvironment (TIME) and examined immunogenic cell death related genes (ICDRGs). Using data from TCGA and GEO, we discovered two separate molecular subcategories within 1,184 patients diagnosed with colon adenocarcinoma/rectum adenocarcinoma (COADREAD). The ICD score was established by principal component analysis (PCA), which classified patients into groups with low and high ICD scores. Further validation in three independent cohorts confirmed the model's accuracy in predicting immunotherapy success. Patients with higher ICD scores exhibited a "hot" immune phenotype and showed increased responsiveness to immunotherapy. Key genes in the model, such as AKAP12, CALB2, CYR61, and MEIS2, were found to enhance COADREAD cell proliferation, invasion, and PD-L1 expression. These insights offered a new avenue for anti-tumor strategies by targeting ICD, marking advances in colorectal carcinoma treatment.
Collapse
Affiliation(s)
- Jinglu Yu
- PuDong Traditional Chinese Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China, Shanghai, Pudong, China
| | - Yabin Gong
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui District, China
| | - Zhenye Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui District, China
| | - Lei Chen
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui District, China
| | - Shuang Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongkang Cui
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Adzavon KP, Zhao W, He X, Sheng W. Ferroptosis resistance in cancer cells: nanoparticles for combination therapy as a solution. Front Pharmacol 2024; 15:1416382. [PMID: 38962305 PMCID: PMC11219589 DOI: 10.3389/fphar.2024.1416382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Ferroptosis is a form of regulated cell death (RCD) characterized by iron-dependent lipid peroxidation. Ferroptosis is currently proposed as one of the most promising means of combating tumor resistance. Nevertheless, the problem of ferroptosis resistance in certain cancer cells has been identified. This review first, investigates the mechanisms of ferroptosis induction in cancer cells. Next, the problem of cancer cell resistance to ferroptosis, as well as the underlying mechanisms is discussed. Recently discovered ferroptosis-suppressing biomarkers have been described. The various types of nanoparticles that can induce ferroptosis are also discussed. Given the ability of nanoparticles to combine multiple agents, this review proposes nanoparticle-based ferroptosis cell death as a viable method of circumventing this resistance. This review suggests combining ferroptosis with other forms of cell death, such as apoptosis, cuproptosis and autophagy. It also suggests combining ferroptosis with immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Wang Sheng
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| |
Collapse
|
16
|
Mai Z, Li Y, Zhang L, Zhang H. Citraconate promotes the malignant progression of colorectal cancer by inhibiting ferroptosis. Am J Cancer Res 2024; 14:2790-2804. [PMID: 39005662 PMCID: PMC11236773 DOI: 10.62347/lwrs3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/24/2024] [Indexed: 07/16/2024] Open
Abstract
Metastasis is a principal factor in the poor prognosis of colorectal cancer. Recent studies have found microbial metabolites regulate colorectal cancer metastasis. By analyzing metabolomics data, we identified an essential fecal metabolite citraconate that potentially promotes colorectal cancer metastasis. Next, we tried to reveal its effect on colorectal cancer and the underlying mechanism. Firstly, the response of colorectal cancer cells (HCT116 and MC38 cells) to citraconate was assessed by Cell Counting Kit-8 assay, clonogenic assay, transwell migration and invasion assay. Moreover, we utilized an intra-splenic injection model to evaluate the effect of citraconate on colorectal cancer liver metastasis in vivo. Then molecular approaches were employed, including RNA sequencing, mass spectrometry-based metabolomics, western blot, quantitative real-time PCR, cell ferrous iron colorimetric assay and intracellular malondialdehyde measurement. In vitro, citraconate promotes the growth of colorectal cancer cells. In vivo, citraconate aggravated liver metastasis of colorectal cancer. Mechanistically, downstream genes of NRF2, NQO1, GCLC, and GCLM high expression induced by citraconate resulted in resistance to ferroptosis of colorectal cancer cells. In summary, citraconate promotes the malignant progression of colorectal cancer through NRF2-mediated ferroptosis resistance in colorectal cancer cells. Furthermore, our study indicates that fecal metabolite may be crucial in colorectal cancer development.
Collapse
Affiliation(s)
- Zongjiong Mai
- The Fifth Affiliated Hospital of Sun Yat-sen University Zhuhai, Guangdong, China
| | - Yanyu Li
- The Fifth Affiliated Hospital of Sun Yat-sen University Zhuhai, Guangdong, China
| | - Lei Zhang
- The Fifth Affiliated Hospital of Sun Yat-sen University Zhuhai, Guangdong, China
| | - Hongyu Zhang
- The Fifth Affiliated Hospital of Sun Yat-sen University Zhuhai, Guangdong, China
| |
Collapse
|
17
|
Zhang T, Zeng X, Zeng E, Wang H. Ferroptosis in antitumor therapy: Unraveling regulatory mechanisms and immunogenic potential. Int Immunopharmacol 2024; 134:112203. [PMID: 38705030 DOI: 10.1016/j.intimp.2024.112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Ferroptosis, a recently discovered form of non-apoptotic cell death, has the potential to revolutionize anti-tumor therapy. This review highlights the regulatory mechanisms and immunogenic properties of ferroptosis, and how it can enhance the effectiveness of radio and immunotherapies in overcoming tumor resistance. However, tumor metabolism and the impact of ferroptosis on the tumor microenvironment present challenges in completely realizing its therapeutic potential. A deeper understanding of the effects of ferroptosis on tumor cells and their associated immune cells is essential for developing more effective tumor treatment strategies. This review offers a comprehensive overview of the relationship between ferroptosis and tumor immunity, and sheds new light on its application in tumor immunotherapy.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China; First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiaoping Zeng
- Medical College, Jinhua Polytechnic, Jinhua 321017, Zhejiang Province, China; School of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Erming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China.
| | - Hongmei Wang
- Medical College, Jinhua Polytechnic, Jinhua 321017, Zhejiang Province, China; School of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi Province, China.
| |
Collapse
|
18
|
Nejadi Orang F, Abdoli Shadbad M. Competing endogenous RNA networks and ferroptosis in cancer: novel therapeutic targets. Cell Death Dis 2024; 15:357. [PMID: 38778030 PMCID: PMC11111666 DOI: 10.1038/s41419-024-06732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
As a newly identified regulated cell death, ferroptosis is a metabolically driven process that relies on iron and is associated with polyunsaturated fatty acyl peroxidation, elevated levels of reactive oxygen species (ROS), and mitochondrial damage. This distinct regulated cell death is dysregulated in various cancers; activating ferroptosis in malignant cells increases cancer immunotherapy and chemoradiotherapy responses across different malignancies. Over the last decade, accumulating research has provided evidence of cross-talk between non-coding RNAs (ncRNAs) and competing endogenous RNA (ceRNA) networks and highlighted their significance in developing and progressing malignancies. Aside from pharmaceutical agents to regulate ferroptosis, recent studies have shed light on the potential of restoring dysregulated ferroptosis-related ceRNA networks in cancer treatment. The present study provides a comprehensive and up-to-date review of the ferroptosis significance, ferroptosis pathways, the role of ferroptosis in cancer immunotherapy and chemoradiotherapy, ceRNA biogenesis, and ferroptosis-regulating ceRNA networks in different cancers. The provided insights can offer the authorship with state-of-the-art findings and future perspectives regarding the ferroptosis and ferroptosis-related ceRNA networks and their implication in the treatment and determining the prognosis of affected patients.
Collapse
Affiliation(s)
| | - Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Meng X, Peng F, Yu S, Chi X, Wang W, Shao S. Knockdown of NADK promotes LUAD ferroptosis via NADPH/FSP1 axis. J Cancer Res Clin Oncol 2024; 150:228. [PMID: 38700533 PMCID: PMC11068837 DOI: 10.1007/s00432-024-05752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Lung cancer is a serious threat to human health and is the first leading cause of cancer death. Ferroptosis, a newly discovered form of programmed cell death associated with redox homeostasis, is of particular interest in the lung cancer, given the high oxygen environment of lung cancer. NADPH has reducing properties and therefore holds the potential to resist ferroptosis. Resistance to ferroptosis exists in lung cancer, but the role of NADK in regulating ferroptosis in lung cancer has not been reported yet. METHODS Immunohistochemistry (IHC) was used to analyse the expression of NADK in 86 cases of lung adenocarcinoma(LUAD) and adjacent tissues, and a IHC score was assigned to each sample. Chi-square and kaplan-meier curve was performed to analyse the differences in metastasis and five-year survival between the two groups with NADK high or low scores. Proliferation of NADK-knockdown LUAD cell lines was detected in vivo and vitro. Furthermore, leves of ROS, MDA and Fe2+ were measured to validate the effect and mechanism of NADK on ferroptosis in LUAD. RESULTS The expression of NADK was significantly evaluated in LUAD tissues as compared to adjacent non-cancerous tissues. The proliferation of NADK-knockdown cells was inhibited both in vivo and vitro, and increasing levels of intracellular ROS, Fe2+ and lipid peroxide products (MDA) were observed. Furthermore, NADK-knockdown promoted the ferroptosis of LUAD cells induced by Erastin/RSL3 by regulating the level of NADPH and the expression of FSP1. Knockdown of NADK enhanced the sensitivities of LUAD cells to Erastin/RSL3-induced ferroptosis by regulating NADPH level and FSP1 expression. CONCLUSIONS NADK is over-expressed in LUAD patients. Knockdown of NADK inhibited the proliferation of LUAD cells both in vitro and in vivo and promotes the Erastin/RSL3-induced ferroptosis of LUAD cells by down-regulating the NADPH/FSP1 axis.
Collapse
Affiliation(s)
- Xiangpeng Meng
- Liaoning Key Laboratory of Proteomics, Dalian Medical University, Dalian, 116044, China
| | - Fang Peng
- Department of Pathologic, The Second Hospital of Dalian Medical University, Dalian, 116011, China
| | - Shijie Yu
- Liaoning Key Laboratory of Proteomics, Dalian Medical University, Dalian, 116044, China
| | - Xinming Chi
- Liaoning Key Laboratory of Proteomics, Dalian Medical University, Dalian, 116044, China
| | - Wenchi Wang
- Liaoning Key Laboratory of Proteomics, Dalian Medical University, Dalian, 116044, China
| | - Shujuan Shao
- Liaoning Key Laboratory of Proteomics, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
20
|
Hou J, Wang B, Li J, Liu W. Ferroptosis and its role in gastric and colorectal cancers. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:183-196. [PMID: 38682167 PMCID: PMC11058540 DOI: 10.4196/kjpp.2024.28.3.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 05/01/2024]
Abstract
Ferroptosis is a novel mechanism of programmed cell death, characterized by intracellular iron overload, intensified lipid peroxidation, and abnormal accumulation of reactive oxygen species, which ultimately resulting in cell membrane impairment and demise. Research has revealed that cancer cells exhibit a greater demand for iron compared to normal cells, indicating a potential susceptibility of cancer cells to ferroptosis. Stomach and colorectal cancers are common gastrointestinal malignancies, and their elevated occurrence and mortality rates render them a global health concern. Despite significant advancements in medical treatments, certain unfavorable consequences and drug resistance persist. Consequently, directing attention towards the phenomenon of ferroptosis in gastric and colorectal cancers holds promise for enhancing therapeutic efficacy. This review aims to elucidate the intricate cellular metabolism associated with ferroptosis, encompassing lipid and amino acid metabolism, as well as iron metabolic processes. Furthermore, the significance of ferroptosis in the context of gastric and colorectal cancer is thoroughly examined and discussed.
Collapse
Affiliation(s)
- Jinxiu Hou
- School of Anesthesiology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Bo Wang
- School of Anesthesiology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Jing Li
- Department of Gastroenterology, Weifang People’s Hospital, Weifang 261041, Shandong, China
| | - Wenbo Liu
- Central Laboratory, The First Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong, China
| |
Collapse
|
21
|
Sun Y, Jin H, He J, Lai J, Lin H, Liu X. Melatonin alleviates ischemic stroke by inhibiting ferroptosis through the CYP1B1/ACSL4 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2623-2633. [PMID: 38205686 DOI: 10.1002/tox.24136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
This study utilized middle cerebral artery occlusion (MCAO) mouse models and HT-22 cell oxygen and glucose deprivation/reoxygenation (OGD/R) models to investigate the therapeutic effects of melatonin on ischemic brain injury. In the experiments, MCAO mice were treated with 5 and 10 mg/kg doses of melatonin, and H-T22 cells underwent OGD/R treatment and were administered different concentrations of melatonin. The results showed that melatonin significantly reduced ischemic brain area, neural damage, cerebral edema, and neuronal apoptosis in MCAO mice. In the HT-22 cell model, melatonin also improved cell proliferation ability, reduced apoptosis, and ROS production. Further mechanistic studies found that melatonin exerts protective effects by inhibiting ferroptosis, an iron-dependent form of regulated cell death, through regulation of the ACSL4/CYP1B1 pathway. In MCAO mice, melatonin decreased lipid peroxidation, ROS production, and ACSL4 protein expression. Overexpression of CYP1B1 increased ACSL4 ubiquitination and degradation, thereby increasing cell tolerance to ferroptosis, reducing ACSL4 protein levels, and decreasing ROS production. CYP1B1 knockdown obtained opposite results. The CYP1B1 metabolite 20-HETE induces expression of the E3 ubiquitin ligase FBXO10 by activating PKC signaling, which promotes ACSL4 degradation. In the OGD/R cell model, inhibition of CYP1B1 expression reversed the therapeutic effects of melatonin. In summary, this study demonstrates that melatonin protects the brain from ischemic injury by inhibiting ferroptosis through regulation of the ACSL4/CYP1B1 pathway, providing evidence for new therapeutic targets for ischemic brain injury.
Collapse
Affiliation(s)
- Yu Sun
- Department of Neurology, The Third People's Hospital of Longgang Shenzhen, Shenzhen, China
| | - Haiyan Jin
- Department of Neurology, The Third People's Hospital of Longgang Shenzhen, Shenzhen, China
| | - Jia He
- Department of Neurology, The Third People's Hospital of Longgang Shenzhen, Shenzhen, China
| | - Jinyu Lai
- Department of Neurology, The Third People's Hospital of Longgang Shenzhen, Shenzhen, China
| | - Hao Lin
- Department of Neurology, The Third People's Hospital of Longgang Shenzhen, Shenzhen, China
| | - Xiangyu Liu
- Department of Neurology, The Third People's Hospital of Longgang Shenzhen, Shenzhen, China
| |
Collapse
|
22
|
Lu S, Yao Z, Cheng Q, Wu J, Jiang Y, Lin H. RAS-Selective Lethal 3-Induced Ferroptosis Promotes the Antitumor Efficiency of Anti-Programmed Cell Death Protein 1 Treatment in Colorectal Cancer. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:288-298. [PMID: 39128094 PMCID: PMC11114210 DOI: 10.5152/tjg.2023.23300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/16/2023] [Indexed: 08/13/2024]
Abstract
BACKGROUND/AIMS Anti-programmed cell death protein 1 (PD-1) treatment has exhibited clinical benefits in colorectal cancer (CRC). However, the low response rate of CRC to immunotherapy is an urgent problem that needs to be solved. MATERIALS AND METHODS MC-38 tumor cells was challenged subcutaneously in the flank of 7-week-old male C57BL/6 mice. The mice were randomly divided into 3 groups, and 200µg/mouse anti-PD-1 antibody and 100 mg/kg RAS-Seletive Lethal 3 (RSL) or phosphate buffer saline (PBS) were intraperitoneally injected every 2 days. The expression of oxidative stress and ferroptosis-related genes was measured by Western blotting, real-time reverse transcription-polymerase chain reaction, Prussian blue staining, and enzyme-linked immunosorbent assay. RESULTS Anti-PD-1 treatment-unresponsive tumors showed stronger immunosuppression than responsive tumors. Notably, the responsive tumors showed higher levels of H2O2 and reactive oxygen species, both of which could impair the antitumor effect of cytotoxic CD8+ T cells. The anti-PD-1 treatment-responsive tumors showed a higher expression of pro-ferroptosis genes and Fe2+ accumulation than those of anti-PD-1 nonresponsive tumors, indicating the potential role of ferroptosis in the efficacy of anti-PD-1 treatment. In MC-38 syngeneic tumor model, (1S, 3R)-RSL3 (RSL), a glutathione peroxidase 4 inhibitor, effectively promoted the antitumor effect of anti-PD-1 treatment in vivo. However, anti-PD-1 treatment did not affect the levels of ferroptosis-related genes in tumor model. Mechanistically, RSL treatment significantly upregulated the frequency of proliferating (ki67+) and cytotoxic (GZMB+) CD8+ T cells. Furthermore, the frequency of tumor neoantigen-specific interferon (IFN)-γ CD8+ T cells showed a significant increase after RSL plus anti-PD-1 treatment. CONCLUSION RSL may be a promising drug for potentiating the antitumor efficiency of anti-PD-1 treatment in CRC.
Collapse
Affiliation(s)
- Shiyv Lu
- Department of Gastroenterology, Shanghai Jing’an District Zhabei Central Hospital, Shanghai, China
| | - Zhilu Yao
- Department of Gastroenterology, Shanghai Qingpu District Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Qing Cheng
- Department of Gastroenterology, Shanghai Qingpu District Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Jianping Wu
- Department of Gastroenterology, Shanghai Qingpu District Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yuanye Jiang
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Lin
- Department of Gastroenterology, Shanghai Qingpu District Hospital of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Xie XT, Pang QH, Luo LX. Role of targeting ferroptosis as a component of combination therapy in combating drug resistance in colorectal cancer. World J Clin Oncol 2024; 15:375-377. [PMID: 38576594 PMCID: PMC10989259 DOI: 10.5306/wjco.v15.i3.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/27/2023] [Accepted: 02/25/2024] [Indexed: 03/22/2024] Open
Abstract
Colorectal cancer (CRC) is a form of cancer that is often resistant to chemotherapy, targeted therapy, radiotherapy, and immunotherapy due to its genomic instability and inflammatory tumor microenvironment. Ferroptosis, a type of non-apoptotic cell death, is characterized by the accumulation of iron and the oxidation of lipids. Studies have revealed that the levels of reactive oxygen species and glutathione in CRC cells are significantly lower than those in healthy colon cells. Erastin has emerged as a promising candidate for CRC treatment by diminishing stemness and chemoresistance. Moreover, the gut, responsible for regulating iron absorption and release, could influence CRC susceptibility through iron metabolism modulation. Investigation into ferroptosis offers new insights into CRC pathogenesis and clinical management, potentially revolutionizing treatment approaches for therapy-resistant cancers.
Collapse
Affiliation(s)
- Xiao-Ting Xie
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China
| | - Qiang-Hu Pang
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China
| | - Lian-Xiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China
| |
Collapse
|
24
|
Cui Z, Sun H, Gao Z, Li C, Xiao T, Bian Y, Liu Z, Gu T, Zhang J, Li T, Zhou Q, He Z, Li B, Li F, Xu Z, Xu H. TRIM21/USP15 balances ACSL4 stability and the imatinib resistance of gastrointestinal stromal tumors. Br J Cancer 2024; 130:526-541. [PMID: 38182686 PMCID: PMC10876985 DOI: 10.1038/s41416-023-02562-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Imatinib has become an exceptionally effective targeted drug for treating gastrointestinal stromal tumors (GISTs). Despite its efficacy, the resistance to imatinib is common in GIST patients, posing a significant challenge to the effective treatment. METHODS The expression profiling of TRIM21, USP15, and ACSL4 in GIST patients was evaluated using Western blot and immunohistochemistry. To silence gene expression, shRNA was utilized. Biological function of TRIM21, USP15, and ACSL4 was examined through various methods, including resistance index calculation, colony formation, shRNA interference, and xenograft mouse model. The molecular mechanism of TRIM21 and USP15 in GIST was determined by conducting Western blot, co-immunoprecipitation, and quantitative real-time PCR (qPCR) analyses. RESULTS Here we demonstrated that downregulation of ACSL4 is associated with imatinib (IM) resistance in GIST. Moreover, clinical data showed that higher levels of ACSL4 expression are positively correlated with favorable clinical outcomes. Mechanistic investigations further indicated that the reduced expression of ACSL4 in GIST is attributed to excessive protein degradation mediated by the E3 ligase TRIM21 and the deubiquitinase USP15. CONCLUSION These findings demonstrate that the TRIM21 and USP15 control ACSL4 stability to maintain the IM sensitive/resistant status of GIST.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Haoyu Sun
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zhishuang Gao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Chao Li
- Department of General Surgery, Zhongshan Hospital, Fudan University School of Medicine, #180 Fenglin Road, Shanghai, 200032, China
| | - Tingting Xiao
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Yibo Bian
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Rd, Xi'an, 710032, Shaanxi, China
| | - Zonghang Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Tianhao Gu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Jianan Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Tengyun Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Qianzheng Zhou
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zhongyuan He
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Bowen Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Fengyuan Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Hao Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China.
| |
Collapse
|
25
|
Liu S, Yue M, Lu Y, Wang Y, Luo S, Liu X, Jiang J. Advancing the frontiers of colorectal cancer treatment: harnessing ferroptosis regulation. Apoptosis 2024; 29:86-102. [PMID: 37752371 DOI: 10.1007/s10495-023-01891-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
In recent years, colorectal cancer incidence and mortality have increased significantly due to poor lifestyle choices. Despite the development of various treatments, their effectiveness against advanced/metastatic colorectal cancer remains unsatisfactory due to drug resistance. However, ferroptosis, a novel iron-dependent cell death process induced by lipid peroxidation and elevated reactive oxygen species (ROS) levels along with reduced activity of the glutathione peroxidase 4 (GPX4) antioxidant enzyme system, shows promise as a therapeutic target for colorectal cancer. This review aims to delve into the regulatory mechanisms of ferroptosis in colorectal cancer, providing valuable insights into potential therapeutic approaches. By targeting ferroptosis, new avenues can be explored for innovative therapies to combat colorectal cancer more effectively. In addition, understanding the molecular pathways involved in ferroptosis may help identify biomarkers for prognosis and treatment response, paving the way for personalized medicine approaches. Furthermore, exploring the interplay between ferroptosis and other cellular processes can uncover combination therapies that enhance treatment efficacy. Investigating the tumor microenvironment's role in regulating ferroptosis may offer strategies to sensitize cancer cells to cell death induction, leading to improved outcomes. Overall, ferroptosis presents a promising avenue for advancing the treatment of colorectal cancer and improving patient outcomes.
Collapse
Affiliation(s)
- Siyue Liu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Ming Yue
- Department of Pharmacy, Tongji Medical College, the Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Yukang Lu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Ying Wang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shiwen Luo
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiaoliu Liu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Jue Jiang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
26
|
Zhang Z, Zhao Y, Wang Y, Zhao Y, Guo J. Autophagy/ferroptosis in colorectal cancer: Carcinogenic view and nanoparticle-mediated cell death regulation. ENVIRONMENTAL RESEARCH 2023; 238:117006. [PMID: 37669735 DOI: 10.1016/j.envres.2023.117006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
The cell death mechanisms have a long history of being evaluated in diseases and pathological events. The ability of triggering cell death is considered to be a promising strategy in cancer therapy, but some mechanisms have dual functions in cancer, requiring more elucidation of underlying factors. Colorectal cancer (CRC) is a disease and malignant condition of colon and rectal that causes high mortality and morbidity. The autophagy targeting in CRC is therapeutic importance and this cell death mechanism can interact with apoptosis in inhibiting or increasing apoptosis. Autophagy has interaction with ferroptosis as another cell death pathway in CRC and can accelerate ferroptosis in suppressing growth and invasion. The dysregulation of autophagy affects the drug resistance in CRC and pro-survival autophagy can induce drug resistance. Therefore, inhibition of protective autophagy enhances chemosensitivity in CRC cells. Moreover, autophagy displays interaction with metastasis and EMT as a potent regulator of invasion in CRC cells. The same is true for ferroptosis, but the difference is that function of ferroptosis is determined and it can reduce viability. The lack of ferroptosis can cause development of chemoresistance in CRC cells and this cell death mechanism is regulated by various pathways and mechanisms that autophagy is among them. Therefore, current review paper provides a state-of-art analysis of autophagy, ferroptosis and their crosstalk in CRC. The nanoparticle-mediated regulation of cell death mechanisms in CRC causes changes in progression. The stimulation of ferroptosis and control of autophagy (induction or inhibition) by nanoparticles can impair CRC progression. The engineering part of nanoparticle synthesis to control autophagy and ferroptosis in CRC still requires more attention.
Collapse
Affiliation(s)
- Zhibin Zhang
- Chengde Medical College, College of Traditional Chinese Medicine, Chengde, Hebei, 067000, China.
| | - Yintao Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yuman Wang
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yutang Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Jianen Guo
- Chengde Medical College, Chengde, Hebei, 067000, China
| |
Collapse
|
27
|
Cheng X, Zhao F, Ke B, Chen D, Liu F. Harnessing Ferroptosis to Overcome Drug Resistance in Colorectal Cancer: Promising Therapeutic Approaches. Cancers (Basel) 2023; 15:5209. [PMID: 37958383 PMCID: PMC10649072 DOI: 10.3390/cancers15215209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Drug resistance remains a significant challenge in the treatment of colorectal cancer (CRC). In recent years, the emerging field of ferroptosis, a unique form of regulated cell death characterized by iron-dependent lipid peroxidation, has offered new insights and potential therapeutic strategies for overcoming drug resistance in CRC. This review examines the role of ferroptosis in CRC and its impact on drug resistance. It highlights the distinctive features and advantages of ferroptosis compared to other cell death pathways, such as apoptosis and necrosis. Furthermore, the review discusses current research advances in the field, including novel treatment approaches that target ferroptosis. These approaches involve the use of ferroptosis inducers, interventions in iron metabolism and lipid peroxidation, and combination therapies to enhance the efficacy of ferroptosis. The review also explores the potential of immunotherapy in modulating ferroptosis as a therapeutic strategy. Additionally, it evaluates the strengths and limitations of targeting ferroptosis, such as its selectivity, low side effects, and potential to overcome resistance, as well as challenges related to treatment specificity and drug development. Looking to the future, this review discusses the prospects of ferroptosis-based therapies in CRC, emphasizing the importance of further research to elucidate the interaction between ferroptosis and drug resistance. It proposes future directions for more effective treatment strategies, including the development of new therapeutic approaches, combination therapies, and integration with emerging fields such as precision medicine. In conclusion, harnessing ferroptosis represents a promising avenue for overcoming drug resistance in CRC. Continued research efforts in this field are crucial for optimizing therapeutic outcomes and providing hope for CRC patients.
Collapse
Affiliation(s)
- Xiaofei Cheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; (B.K.); (D.C.)
| | - Feng Zhao
- Department of Radiation Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310030, China;
| | - Bingxin Ke
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; (B.K.); (D.C.)
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; (B.K.); (D.C.)
| | - Fanlong Liu
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; (B.K.); (D.C.)
| |
Collapse
|
28
|
Al-saraireh YM, Alshammari FOFO, Abu-azzam OH, Al-dalain SM, Al-sarayra YM, Haddad M, Makeen H, Al-Qtaitat A, Almermesh M, Al-sarayreh SA. Targeting Cytochrome P450 Enzymes in Ovarian Cancers: New Approaches to Tumor-Selective Intervention. Biomedicines 2023; 11:2898. [PMID: 38001897 PMCID: PMC10669316 DOI: 10.3390/biomedicines11112898] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Over the past decade, there have been significant developments in treatment for ovarian cancer, yet the lack of targeted therapy with few side effects still represents a major issue. The cytochrome P450 (CYP) enzyme family plays a vital role in the tumorigenesis process and metabolism of drugs and has a negative impact on therapy outcomes. Gaining more insight into CYP expression is crucial to understanding the pathophysiology of ovarian cancer since many isoforms are essential to the metabolism of xenobiotics and steroid hormones, which drive the disease's development. To the best of our knowledge, no review articles have documented the intratumoral expression of CYPs and their implications in ovarian cancer. Therefore, the purpose of this review is to provide a clear understanding of differential CYP expression in ovarian cancer and its implications for the prognosis of ovarian cancer patients, together with the effects of CYP polymorphisms on chemotherapy metabolism. Finally, we discuss opportunities to exploit metabolic CYP expression for the development of novel therapeutic methods to treat ovarian cancer.
Collapse
Affiliation(s)
- Yousef M. Al-saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan;
| | - Fatemah O. F. O. Alshammari
- Department of Medical Lab Technology, Faculty of Health Sciences, The Public Authority for Applied Education and Training, Shuwaikh 15432, Kuwait;
| | - Omar H. Abu-azzam
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan;
| | - Sa’ed M. Al-dalain
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan;
| | - Yahya M. Al-sarayra
- Al-Karak Governmental Hospital, Ministry of Health, P.O. Box 86, Al-Karak 11118, Jordan;
| | - Mansour Haddad
- Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Hafiz Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan P.O. Box 114, Saudi Arabia;
| | - Aiman Al-Qtaitat
- Department of Anatomy and Histology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan;
- Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Mohammad Almermesh
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail 2440, Saudi Arabia;
| | - Sameeh A. Al-sarayreh
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan;
| |
Collapse
|
29
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
30
|
Zheng Y, Sun L, Guo J, Ma J. The crosstalk between ferroptosis and anti-tumor immunity in the tumor microenvironment: molecular mechanisms and therapeutic controversy. Cancer Commun (Lond) 2023; 43:1071-1096. [PMID: 37718480 PMCID: PMC10565387 DOI: 10.1002/cac2.12487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/13/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023] Open
Abstract
The advent of immunotherapy has significantly reshaped the landscape of cancer treatment, greatly enhancing therapeutic outcomes for multiple types of cancer. However, only a small subset of individuals respond to it, underscoring the urgent need for new methods to improve its response rate. Ferroptosis, a recently discovered form of programmed cell death, has emerged as a promising approach for anti-tumor therapy, with targeting ferroptosis to kill tumors seen as a potentially effective strategy. Numerous studies suggest that inducing ferroptosis can synergistically enhance the effects of immunotherapy, paving the way for a promising combined treatment method in the future. Nevertheless, recent research has raised concerns about the potential negative impacts on anti-tumor immunity as a consequence of inducing ferroptosis, leading to conflicting views within the scientific community about the interplay between ferroptosis and anti-tumor immunity, thereby underscoring the necessity of a comprehensive review of the existing literature on this relationship. Previous reviews on ferroptosis have touched on related content, many focusing primarily on the promoting role of ferroptosis on anti-tumor immunity while overlooking recent evidence on the inhibitory effects of ferroptosis on immunity. Others have concentrated solely on discussing related content either from the perspective of cancer cells and ferroptosis or from immune cells and ferroptosis. Given that both cancer cells and immune cells exist in the tumor microenvironment, a one-sided discussion cannot comprehensively summarize this topic. Therefore, from the perspectives of both tumor cells and tumor-infiltrating immune cells, we systematically summarize the current conflicting views on the interplay between ferroptosis and anti-tumor immunity, intending to provide potential explanations and identify the work needed to establish a translational basis for combined ferroptosis-targeted therapy and immunotherapy in treating tumors.
Collapse
Affiliation(s)
- Yichen Zheng
- Division of Abdominal Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengduSichuanP. R. China
| | - Lingqi Sun
- Department of NeurologyAir Force Hospital of the Western Theater of the Chinese People's Liberation ArmyChengduSichuanP. R. China
| | - Jiamin Guo
- Division of Abdominal Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ji Ma
- Division of Abdominal Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
31
|
Zhang GX, Ding XS, Wang YL. Prognostic model of hepatocellular carcinoma based on cancer grade. World J Clin Cases 2023; 11:6383-6397. [PMID: 37900243 PMCID: PMC10600993 DOI: 10.12998/wjcc.v11.i27.6383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. With highly invasive biological characteristics and a lack of obvious clinical manifestations, HCC usually has a poor prognosis and ranks fourth in cancer mortality. The aetiology and exact molecular mechanism of primary HCC are still unclear. AIM To select the characteristic genes that are significantly associated with the prognosis of HCC patients and construct a prognosis model of this malignancy. METHODS By comparing the gene expression levels of patients with different cancer grades of HCC, we screened out differentially expressed genes associated with tumour grade. By protein-protein interaction (PPI) network analysis, we obtained the top 2 PPI networks and hub genes from these differentially expressed genes. By using least absolute shrinkage and selection operator Cox regression, 13 prognostic genes were selected for feature extraction, and a prognostic risk model of HCC was established. RESULTS The model had significant prognostic ability in HCC. We also analysed the biological functions of these prognostic genes. CONCLUSION By comparing the gene profiles of patients with different stages of HCC, We have constructed a prognosis model consisting of 13 genes that have important prognostic value. This model has good application value and can be explained clinically.
Collapse
Affiliation(s)
- Guo-Xin Zhang
- Department of General Surgery, Aviation General Hospital, Beijing 100010, China
| | - Xiao-Sheng Ding
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - You-Li Wang
- Department of General Surgery, Aviation General Hospital, Beijing 100010, China
| |
Collapse
|
32
|
Yang H, Li N, Chen L, Zhou L, Zhou Y, Liu J, Jia W, Chen R, Su J, Yang L, Gong X, Zhan X. Ubiquitinomics revealed disease- and stage-specific patterns relevant for the 3PM approach in human sigmoid colon cancers. EPMA J 2023; 14:503-525. [PMID: 37605648 PMCID: PMC10439878 DOI: 10.1007/s13167-023-00328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/04/2023] [Indexed: 08/23/2023]
Abstract
Objective The patients with sigmoid colorectal cancer commonly show high mortality and poor prognosis. Increasing evidence has demonstrated that the ubiquitinated proteins and ubiquitination-mediated molecular pathways influence the growth and aggressiveness of colorectal cancer. It emphasizes the scientific merits of quantitative ubiquitinomics in human sigmoid colon cancer. We hypothesize that the ubiquitinome and ubiquitination-mediated pathway networks significantly differ in sigmoid colon cancers compared to controls, which offers the promise for in-depth insight into molecular mechanisms, discovery of effective therapeutic targets, and construction of reliable biomarkers in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Methods The first ubiquitinome analysis was performed with anti-K-ε-GG antibody beads (PTMScan ubiquitin remnant motif [K-ε-GG])-based label-free quantitative proteomics and bioinformatics to identify and quantify ubiquitination profiling between sigmoid colon cancer tissues and para-carcinoma tissues. A total of 100 human sigmoid colon cancer samples that included complete clinical information and the corresponding gene expression data were obtained from The Cancer Genome Atlas (TCGA). Ubiquitination was the main way of protein degradation; the relationships between differentially ubiquitinated proteins (DUPs) and their differently expressed genes (DEGs) and between DUPs and their differentially expressed proteins (DEPs) were analyzed between cancer tissues and control tissues. The overall survival of those DUPs was obtained with Kaplan-Meier method. Results A total of 1249 ubiquitinated sites within 608 DUPs were identified in human sigmoid colon cancer tissues. KEGG pathway network analysis of these DUPs revealed 35 statistically significant signaling pathways, such as salmonella infection, glycolysis/gluconeogenesis, and ferroptosis. Gene Ontology (GO) analysis of 608 DUPs revealed that protein ubiquitination was involved in 98 biological processes, 64 cellular components, 51 molecule functions, and 26 immune system processes. Protein-protein interaction (PPI) network of 608 DUPs revealed multiple high-combined scores and co-expressed DUPs. The relationship analysis between DUPs and their DEGs found 4 types of relationship models, including DUP-up (increased ubiquitination level) and DEG-up (increased gene expression), DUP-up and DEG-down (decreased gene expression), DUP-down (decreased ubiquitination level) and DEG-up, and DUP-down and DEG-down. The relationship analysis between DUPs and their DEPs found 4 types of relationship models, including DUP-up and DEP-up (increased protein expression), DUP-up and DEP-down (decreased protein expression), DUP-down and DEP-up, and DUP-down and DEP-down. Survival analysis found 46 overall survival-related DUPs in sigmoid colon cancer, and the drug sensitivity of overall survival-related DUPs were identified. Conclusion The study provided the first differentially ubiquitinated proteomic profiling, ubiquitination-involved signaling pathway network changes, and the relationship models between protein ubiquitination and its gene expression and between protein ubiquitination and its protein expression, in human sigmoid colon cancer. It offers the promise for deep insights into molecular mechanisms of sigmoid colon cancer, and discovery of effective therapeutic targets and biomarkers for patient stratification, predictive diagnosis, prognostic assessment, and personalized treatment in the context of 3P medicine. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00328-2.
Collapse
Affiliation(s)
- Hua Yang
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing, 100029 People’s Republic of China
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Liang Chen
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117 People’s Republic of China
| | - Lei Zhou
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing, 100029 People’s Republic of China
| | - Yuanchen Zhou
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029 People’s Republic of China
| | - Jixiang Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029 People’s Republic of China
| | - Wenshuang Jia
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Ruofei Chen
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Junwen Su
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Lamei Yang
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xiaoxia Gong
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|