1
|
Daya T, Breytenbach A, Gu L, Kaur M. Cholesterol metabolism in pancreatic cancer and associated therapeutic strategies. Biochim Biophys Acta Mol Cell Biol Lipids 2024:159578. [PMID: 39542394 DOI: 10.1016/j.bbalip.2024.159578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Pancreatic cancer remains one of the most lethal cancers due to late diagnosis and high chemoresistance. Despite recent progression in the development of chemotherapies, immunotherapies, and potential nanoparticles-based approaches, the success rate of therapeutic response is limited which is further compounded by cancer drug resistance. Understanding of emerging biological and molecular pathways causative of pancreatic cancer's aggressive and chemoresistance is vital to improve the effectiveness of existing therapeutics and to develop new therapies. One such under-investigated and relatively less explored area of research is documenting the effect that lipids, specifically cholesterol, and its metabolism, impose on pancreatic cancer. Dysregulated cholesterol metabolism has a profound role in supporting cellular proliferation, survival, and promoting chemoresistance and this has been well established in various other cancers. Thus, we aimed to provide an in-depth review focusing on the significance of cholesterol metabolism in pancreatic cancer and relevant genes at play, molecular processes contributing to cellular cholesterol homeostasis, and current research efforts to develop new cholesterol-targeting therapeutics. We highlight the caveats, weigh in different experimental therapeutic strategies, and provide possible suggestions for future research highlighting cholesterol's importance as a therapeutic target against pancreatic cancer resistance and cancer progression.
Collapse
Affiliation(s)
- Tasvi Daya
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Andrea Breytenbach
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Liang Gu
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa.
| |
Collapse
|
2
|
Limbu KR, Chhetri RB, Kim S, Shrestha J, Oh YS, Baek DJ, Park EY. Targeting sphingosine 1-phosphate and sphingosine kinases in pancreatic cancer: mechanisms and therapeutic potential. Cancer Cell Int 2024; 24:353. [PMID: 39462385 PMCID: PMC11514880 DOI: 10.1186/s12935-024-03535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
Pancreatic cancer is known to be the most lethal cancer. Fewer new treatments are being developed for pancreatic cancer as compared to other cancers. The bioactive lipid S1P, which is mainly regulated by sphingosine kinase 1 (SK1) and sphingosine kinase 2 (SK2) enzymes, plays significant roles in pancreatic cancer initiation and exacerbation. S1P controls many signaling pathways to modulate the progression of pancreatic cancer through the G-coupled receptor S1PR1-5. Several papers reporting amelioration of pancreatic cancer via modulation of S1P levels or downstream signaling pathways have previously been published. In this paper, for the first time, we have reviewed the results of previous studies to understand how S1P and its receptors contribute to the development of pancreatic cancer, and whether S1P can be a therapeutic target. In addition, we have also reviewed papers dealing with the effects of SK1 and SK2, which are kinases that regulate the level of S1P, on the pathogenesis of pancreatic cancer. We have also listed available drugs that particularly focus on S1P, S1PRs, SK1, and SK2 for the treatment of pancreatic cancer. Through this review, we would like to suggest that the SK/S1P/S1PR signaling system can be an important target for treating pancreatic cancer, where a new treatment target is desperately warranted.
Collapse
Affiliation(s)
- Khem Raj Limbu
- College of Pharmacy, Mokpo National University, Joennam, 58554, South Korea
| | | | - Subin Kim
- College of Pharmacy, Mokpo National University, Joennam, 58554, South Korea
| | - Jitendra Shrestha
- Massachusetts General Hospital Cancer Center, Boston, MA, 02114, USA
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam, 13135, South Korea
| | - Dong Jae Baek
- College of Pharmacy, Mokpo National University, Joennam, 58554, South Korea.
| | - Eun-Young Park
- College of Pharmacy, Mokpo National University, Joennam, 58554, South Korea.
| |
Collapse
|
3
|
Fu F, Li W, Zheng X, Wu Y, Du D, Han C. Role of Sphingosine-1-Phosphate Signaling Pathway in Pancreatic Diseases. Int J Mol Sci 2024; 25:11474. [PMID: 39519028 PMCID: PMC11545938 DOI: 10.3390/ijms252111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Sphingosine-1-phosphate (S1P) is a sphingolipid metabolic product produced via the phosphorylation of sphingosine by sphingosine kinases (SPHKs), serving as a powerful modulator of various cellular processes through its interaction with S1P receptors (S1PRs). Currently, this incompletely understood mechanism in pancreatic diseases including pancreatitis and pancreatic cancer, largely limits therapeutic options for these disorders. Recent evidence indicates that S1P significantly contributes to pancreatic diseases by modulating inflammation, promoting pyroptosis in pancreatic acinar cells, regulating the activation of pancreatic stellate cells, and affecting organelle functions in pancreatic cancer cells. Nevertheless, no review has encapsulated these advancements. Thus, this review compiles information about the involvement of S1P signaling in exocrine pancreatic disorders, including acute pancreatitis, chronic pancreatitis, and pancreatic cancer, as well as prospective treatment strategies to target S1P signaling for these conditions. The insights presented here possess the potential to offer valuable guidance for the implementation of therapies targeting S1P signaling in various pancreatic diseases.
Collapse
Affiliation(s)
- Fei Fu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Wanmeng Li
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Xiaoyin Zheng
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Dan Du
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Chenxia Han
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
4
|
Basu R, Kulkarni P, Swegan D, Duran-Ortiz S, Ahmad A, Caggiano LJ, Davis E, Walsh C, Brenya E, Koshal A, Brody R, Sandbhor U, Neggers SJCMM, Kopchick JJ. Growth Hormone Receptor Antagonist Markedly Improves Gemcitabine Response in a Mouse Xenograft Model of Human Pancreatic Cancer. Int J Mol Sci 2024; 25:7438. [PMID: 39000545 PMCID: PMC11242728 DOI: 10.3390/ijms25137438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Chemotherapy treatment against pancreatic ductal adenocarcinoma (PDAC) is thwarted by tumoral activation of multiple therapy resistance pathways. The growth hormone (GH)-GH receptor (GHR) pair is a covert driver of multimodal therapy resistance in cancer and is overexpressed in PDAC tumors, yet the therapeutic potential of targeting the same has not been explored. Here, we report that GHR expression is a negative prognostic factor in patients with PDAC. Combinations of gemcitabine with different GHR antagonists (GHRAs) markedly improve therapeutic outcomes in nude mice xenografts. Employing cultured cells, mouse xenografts, and analyses of the human PDAC transcriptome, we identified that attenuation of the multidrug transporter and epithelial-to-mesenchymal transition programs in the tumors underlie the observed augmentation of chemotherapy efficacy by GHRAs. Moreover, in human PDAC patients, GHR expression strongly correlates with a gene signature of tumor promotion and immune evasion, which corroborate with that in syngeneic tumors in wild-type vs. GH transgenic mice. Overall, we found that GH action in PDAC promoted a therapy-refractory gene signature in vivo, which can be effectively attenuated by GHR antagonism. Our results collectively present a proof of concept toward considering GHR antagonists to improve chemotherapeutic outcomes in the highly chemoresistant PDAC.
Collapse
MESH Headings
- Animals
- Gemcitabine
- Humans
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/therapeutic use
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Mice
- Xenograft Model Antitumor Assays
- Receptors, Somatotropin/metabolism
- Receptors, Somatotropin/antagonists & inhibitors
- Receptors, Somatotropin/genetics
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Cell Line, Tumor
- Mice, Nude
- Drug Resistance, Neoplasm/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Female
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Diabetes Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Deborah Swegan
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
| | - Arshad Ahmad
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
| | - Lydia J. Caggiano
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Honors Tutorial College, Ohio University, Athens, OH 45701, USA
| | - Emily Davis
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Christopher Walsh
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
| | - Edward Brenya
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Adeel Koshal
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA;
| | - Rich Brody
- InfinixBio LLC, Columbus, OH 43212, USA; (R.B.); (U.S.)
| | - Uday Sandbhor
- InfinixBio LLC, Columbus, OH 43212, USA; (R.B.); (U.S.)
| | | | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Diabetes Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
5
|
Liu Y. CWGCNA: an R package to perform causal inference from the WGCNA framework. NAR Genom Bioinform 2024; 6:lqae042. [PMID: 38666214 PMCID: PMC11044439 DOI: 10.1093/nargab/lqae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
WGCNA (weighted gene co-expression network analysis) is a very useful tool for identifying co-expressed gene modules and detecting their correlations to phenotypic traits. Here, we explored more possibilities about it and developed the R package CWGCNA (causal WGCNA), which works from the traditional WGCNA pipeline but mines more information. It couples a mediation model with WGCNA, so the causal relationships among WGCNA modules, module features, and phenotypes can be found, demonstrating whether the module change causes the phenotype change or vice versa. After that, when annotating the module gene set functions, it uses a novel network-based method, considering the modules' topological structures and capturing their influence on the gene set functions. In addition to conducting these biological explorations, CWGCNA also contains a machine learning section to perform clustering and classification on multi-omics data, given the increasing popularity of this data type. Some basic functions, such as differential feature identification, are also available in our package. Its effectiveness is proved by the performance on three single or multi-omics datasets, showing better performance than existing methods. CWGCNA is available at: https://github.com/yuabrahamliu/CWGCNA.
Collapse
Affiliation(s)
- Yu Liu
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Niu N, Shen X, Wang Z, Chen Y, Weng Y, Yu F, Tang Y, Lu P, Liu M, Wang L, Sun Y, Yang M, Shen B, Jin J, Lu Z, Jiang K, Shi Y, Xue J. Tumor cell-intrinsic epigenetic dysregulation shapes cancer-associated fibroblasts heterogeneity to metabolically support pancreatic cancer. Cancer Cell 2024; 42:869-884.e9. [PMID: 38579725 DOI: 10.1016/j.ccell.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/01/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
The tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) involves a significant accumulation of cancer-associated fibroblasts (CAFs) as part of the host response to tumor cells. The origins and functions of transcriptionally diverse CAF populations in PDAC remain poorly understood. Tumor cell-intrinsic genetic mutations and epigenetic dysregulation may reshape the TME; however, their impacts on CAF heterogeneity remain elusive. SETD2, a histone H3K36 trimethyl-transferase, functions as a tumor suppressor. Through single-cell RNA sequencing, we identify a lipid-laden CAF subpopulation marked by ABCA8a in Setd2-deficient pancreatic tumors. Our findings reveal that tumor-intrinsic SETD2 loss unleashes BMP2 signaling via ectopic gain of H3K27Ac, leading to CAFs differentiation toward lipid-rich phenotype. Lipid-laden CAFs then enhance tumor progression by providing lipids for mitochondrial oxidative phosphorylation via ABCA8a transporter. Together, our study links CAF heterogeneity to epigenetic dysregulation in tumor cells, highlighting a previously unappreciated metabolic interaction between CAFs and pancreatic tumor cells.
Collapse
Affiliation(s)
- Ningning Niu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuqing Shen
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yueyue Chen
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yawen Weng
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feier Yu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Lu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Liu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwei Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minwei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiabin Jin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Yufeng Shi
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Dong DB, Shao HJ. ABCA8: A potential therapeutic target in the treatment of colorectal cancer? Dig Liver Dis 2024; 56:903. [PMID: 38281867 DOI: 10.1016/j.dld.2024.01.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Affiliation(s)
- Dian-Bo Dong
- Department of Anorectal Surgery, Liaocheng People,s Hospital, Liaocheng 252000, PR China
| | - Hong-Jin Shao
- Department of Anorectal Surgery, Liaocheng People,s Hospital, Liaocheng 252000, PR China.
| |
Collapse
|
8
|
Yang K, Jiang Z. Author's reply: ABCA8, a tumour suppressor in colorectal cancer. Dig Liver Dis 2024; 56:904. [PMID: 38341378 DOI: 10.1016/j.dld.2024.01.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Affiliation(s)
- Kun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
9
|
Yang K, Li X, Jiang Z, Li J, Deng Q, He J, Chen J, Li X, Xu S, Jiang Z. Tumour suppressor ABCA8 inhibits malignant progression of colorectal cancer via Wnt/β-catenin pathway. Dig Liver Dis 2024; 56:880-893. [PMID: 37968146 DOI: 10.1016/j.dld.2023.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most commonly diagnosed malignant tumours of the digestive tract, and new therapeutic targets and prognostic markers are still urgently required. However, the role and molecular mechanisms of ATP binding cassette subfamily A member 8 (ABCA8) in CRC remain unclear. METHODS Databases and clinical specimens were analysed to determine the expression level of ABCA8 in CRC. Colony formation, CCK-8 and Transwell assays were conducted to determine cell proliferation, viability, migration and invasion. Flow cytometry was used to detect cell cycle progression and apoptosis. Western blot and rescue experiments were performed to determine the specific mechanisms of action of ABCA8. RESULTS ABCA8 expression is dramatically down-regulated in CRC tissues and cell lines. Ectopic expression of ABCA8 induced apoptosis and cell cycle arrest in vitro, inhibited cell growth, suppressed migration and invasion, reversed epithelial-mesenchymal transition and suppressed xenograft tumour growth and metastasis in vivo. Mechanistically, ABCA8 inhibited CRC cell proliferation and metastasis through the Wnt/β-catenin signalling pathway, both in vitro and in vivo. CONCLUSION We verified that ABCA8 inhibits the malignant progression of CRC through the Wnt/β-catenin pathway. This newly discovered ABCA8-Wnt-β-catenin signalling axis is probably helpful in guiding the clinical diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Kun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaolu Li
- Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Zhongxiang Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junfeng Li
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qianxi Deng
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jin He
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jun Chen
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoqing Li
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuman Xu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
10
|
Meng J, Qian W, Yang Z, Gong L, Xu D, Huang H, Jiang X, Pu Z, Yin Y, Zou J. p53/E2F7 axis promotes temozolomide chemoresistance in glioblastoma multiforme. BMC Cancer 2024; 24:317. [PMID: 38454344 PMCID: PMC10921682 DOI: 10.1186/s12885-024-12017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer, and chemoresistance poses a significant challenge to the survival and prognosis of GBM. Although numerous regulatory mechanisms that contribute to chemoresistance have been identified, many questions remain unanswered. This study aims to identify the mechanism of temozolomide (TMZ) resistance in GBM. METHODS Bioinformatics and antibody-based protein detection were used to examine the expression of E2F7 in gliomas and its correlation with prognosis. Additionally, IC50, cell viability, colony formation, apoptosis, doxorubicin (Dox) uptake, and intracranial transplantation were used to confirm the role of E2F7 in TMZ resistance, using our established TMZ-resistance (TMZ-R) model. Western blot and ChIP experiments provided confirmation of p53-driven regulation of E2F7. RESULTS Elevated levels of E2F7 were detected in GBM tissue and were correlated with a poor prognosis for patients. E2F7 was found to be upregulated in TMZ-R tumors, and its high levels were linked to increased chemotherapy resistance by limiting drug uptake and decreasing DNA damage. The expression of E2F7 was also found to be regulated by the activation of p53. CONCLUSIONS The high expression of E2F7, regulated by activated p53, confers chemoresistance to GBM cells by inhibiting drug uptake and DNA damage. These findings highlight the significant connection between sustained p53 activation and GBM chemoresistance, offering the potential for new strategies to overcome this resistance.
Collapse
Affiliation(s)
- Jiao Meng
- Department of Laboratory Medicine, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, 214023, Wuxi, Jiangsu, China
- Center of Clinical Research, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, 214023, Wuxi, Jiangsu, China
| | - Wei Qian
- Department of Laboratory Medicine, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, 214023, Wuxi, Jiangsu, China
- Center of Clinical Research, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, 214023, Wuxi, Jiangsu, China
- Department of Clinical Laborator, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, 215300, Suzhou, Jiangsu, China
| | - Zhenkun Yang
- Department of Laboratory Medicine, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, 214023, Wuxi, Jiangsu, China
- Center of Clinical Research, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, 214023, Wuxi, Jiangsu, China
| | - Lingli Gong
- Department of Laboratory Medicine, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, 214023, Wuxi, Jiangsu, China
- Center of Clinical Research, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, 214023, Wuxi, Jiangsu, China
| | - Daxing Xu
- Department of Laboratory Medicine, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, 214023, Wuxi, Jiangsu, China
- Center of Clinical Research, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, 214023, Wuxi, Jiangsu, China
| | - Hongbo Huang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China
| | - Xinyi Jiang
- Department of Laboratory Medicine, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, 214023, Wuxi, Jiangsu, China
- Center of Clinical Research, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, 214023, Wuxi, Jiangsu, China
| | - Zhening Pu
- Department of Laboratory Medicine, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, 214023, Wuxi, Jiangsu, China.
- Center of Clinical Research, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, 214023, Wuxi, Jiangsu, China.
| | - Ying Yin
- Department of Laboratory Medicine, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, 214023, Wuxi, Jiangsu, China.
- Center of Clinical Research, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, 214023, Wuxi, Jiangsu, China.
| | - Jian Zou
- Department of Laboratory Medicine, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, 214023, Wuxi, Jiangsu, China.
- Center of Clinical Research, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, 214023, Wuxi, Jiangsu, China.
| |
Collapse
|
11
|
Cruz MS, Tintelnot J, Gagliani N. Roles of microbiota in pancreatic cancer development and treatment. Gut Microbes 2024; 16:2320280. [PMID: 38411395 PMCID: PMC10900280 DOI: 10.1080/19490976.2024.2320280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor prognosis. This is due to the fact that most cases are only diagnosed at an advanced and palliative disease stage, and there is a high incidence of therapy resistance. Despite ongoing efforts, to date, the mechanisms underlying PDAC oncogenesis and its poor responses to treatment are still largely unclear. As the study of the microbiome in cancer progresses, growing evidence suggests that bacteria or fungi might be key players both in PDAC oncogenesis as well as in its resistance to chemo- and immunotherapy, for instance through modulation of the tumor microenvironment and reshaping of the host immune response. Here, we review how the microbiota exerts these effects directly or indirectly via microbial-derived metabolites. Finally, we further discuss the potential of modulating the microbiota composition as a therapy in PDAC.
Collapse
Affiliation(s)
- Mariana Santos Cruz
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Joseph Tintelnot
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Wang Y, Xu H, Zhang X, Ma J, Xue S, Shentu D, Mao T, Li S, Yue M, Cui J, Wang L. The Role of Bile Acids in Pancreatic Cancer. Curr Cancer Drug Targets 2024; 24:1005-1014. [PMID: 38284711 DOI: 10.2174/0115680096281168231215060301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 01/30/2024]
Abstract
Bile acids are well known to promote the digestion and absorption of fat, and at the same time, they play an important role in lipid and glucose metabolism. More studies have found that bile acids such as ursodeoxycholic acid also have anti-inflammatory and immune-regulating effects. Bile acids have been extensively studied in biliary and intestinal tumors but less in pancreatic cancer. Patients with pancreatic cancer, especially pancreatic head cancer, are often accompanied by biliary obstruction and elevated bile acids caused by tumors. Elevated total bile acid levels in pancreatic cancer patients usually have a poor prognosis. There has been controversy over whether elevated bile acids are harmful or beneficial to pancreatic cancer. Still, there is no doubt that bile acids are important for the occurrence and development of pancreatic cancer. This article summarizes the research on bile acid as a biomarker and regulation of the occurrence, development and chemoresistance of pancreatic cancer, hoping to provide some inspiration for future research.
Collapse
Affiliation(s)
- Yanling Wang
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Haiyan Xu
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Xiaofei Zhang
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Jingyu Ma
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Shengbai Xue
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Daiyuan Shentu
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Tiebo Mao
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Shumin Li
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Ming Yue
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Jiujie Cui
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Liwei Wang
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| |
Collapse
|
13
|
Ding D, Zhong J, Xing Y, Hu Y, Ge X, Yao W. Bioinformatics and Experimental Study Revealed LINC00982/ miR-183-5p/ABCA8 Axis Suppresses LUAD Progression. Curr Cancer Drug Targets 2024; 24:654-667. [PMID: 38419344 DOI: 10.2174/0115680096266700231107071222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a major health challenge worldwide with an undesirable prognosis. LINC00982 has been implicated as a tumor suppressor in diverse human cancers; however, its role in LUAD has not been fully characterized. METHODS Expression level and prognostic value of LINC00982 were investigated in pan-cancer and lung cancer from The Cancer Genome Atlas (TCGA) project. Differential expression analysis based on the LINC00982 expression level was performed in LUAD followed by gene set enrichment analysis (GSEA) and functional enrichment analyses. The association between LINC00982 expression and tumor immune microenvironment characteristics was evaluated. A potential ceRNA regulatory axis was identified and experimentally validated. RESULTS We found that LINC00982 expression was downregulated and correlated with poor prognosis in LUAD. Enrichment analyses revealed that LINC00982 could inhibit DNA damage repair and cell proliferation, but enhance tumor metabolic reprogramming. We identified a competing endogenous RNA network involving LINC00982, miR-183-5p, and ATP-binding cassette subfamily A member 8 (ABCA8). Luciferase assays confirmed that miR-183-5p can interact with LINC00982 and ABCA8. Forced miR-183-5p expression reduced LINC00982 transcript levels and suppressed ABCA8 expression. CONCLUSIONS Our findings revealed the LINC00982/miR-183-5p/ABCA8 axis as a potential therapeutic target in LUAD.
Collapse
Affiliation(s)
- Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| |
Collapse
|
14
|
de Castilhos J, Tillmanns K, Blessing J, Laraño A, Borisov V, Stein-Thoeringer CK. Microbiome and pancreatic cancer: time to think about chemotherapy. Gut Microbes 2024; 16:2374596. [PMID: 39024520 PMCID: PMC11259062 DOI: 10.1080/19490976.2024.2374596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by late diagnosis, rapid progression, and a high mortality rate. Its complex biology, characterized by a dense, stromal tumor environment with an immunosuppressive milieu, contributes to resistance against standard treatments like chemotherapy and radiation. This comprehensive review explores the dynamic role of the microbiome in modulating chemotherapy efficacy and outcomes in PDAC. It delves into the microbiome's impact on drug metabolism and resistance, and the interaction between microbial elements, drugs, and human biology. We also highlight the significance of specific bacterial species and microbial enzymes in influencing drug action and the immune response in the tumor microenvironment. Cutting-edge methodologies, including artificial intelligence, low-biomass microbiome analysis and patient-derived organoid models, are discussed, offering insights into the nuanced interactions between microbes and cancer cells. The potential of microbiome-based interventions as adjuncts to conventional PDAC treatments are discussed, paving the way for personalized therapy approaches. This review synthesizes recent research to provide an in-depth understanding of how the microbiome affects chemotherapy efficacy. It focuses on elucidating key mechanisms and identifying existing knowledge gaps. Addressing these gaps is crucial for enhancing personalized medicine and refining cancer treatment strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Juliana de Castilhos
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Katharina Tillmanns
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Jana Blessing
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Arnelyn Laraño
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Vadim Borisov
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Christoph K. Stein-Thoeringer
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| |
Collapse
|
15
|
Yu X, Zhou G, Zhang M, Zhang N. ABCA8 Elevation Predicts the Prognosis and Exerts the Anti-oncogenic Effects on the Malignancy of Non-small Cell Lung Cancer via TCF21-Mediated Inactivation of PI3K/AKT. Mol Biotechnol 2023:10.1007/s12033-023-00998-3. [PMID: 38153664 DOI: 10.1007/s12033-023-00998-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
The malignant growth and metastatic potential of non-small-cell lung cancer (NSCLC) are the major causes for its poor prognosis. ATP-binding cassette (ABC) subfamily A member 8 (ABCA8) exerts contradictive roles in the development of several cancers. Nevertheless, its role in NSCLC remains unclear. In this study, three GEO datasets and bioinformatics databases (GEPIA2 and UALCAN) revealed the obvious down-regulation of ABCA8 in NSCLC tissues and cells, and this expression was associated with cancer stages and lymph node metastasis. Low expression of ABCA8 predicted poor survival in NSCLC. ABCA8 elevation inhibited cell proliferation and induced cell apoptosis. Moreover, ABCA8 overexpression suppressed cancer cell invasion. Mechanistically, ABCA8 was associated with TCF21 in NSCLC specimens and its overexpression enhanced TCF21 expression. ABCA8 elevation inactivated the PI3K/AKT signaling, which was reversed after TCF21 knockdown. Additionally, targeting TCF21 overturned the anti-oncogenic effects of ABCA8 elevation on cell proliferation, apoptosis and invasion. Thus, the current findings highlight that ABCA8 may be a promising prognostic marker and may act as a suppressor gene to regulate the malignancy of NSCLC cells via TCF21-mediated inactivation of PI3K/AKT signaling, supporting a new promising target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xin Yu
- Department of General Medicine, Honghui Hospital Affiliated to Xi'an Jiaotong University, No. 555 Youyi East Road, Xi'an, 710054, People's Republic of China
| | - Guoqiong Zhou
- Department of General Medicine, Honghui Hospital Affiliated to Xi'an Jiaotong University, No. 555 Youyi East Road, Xi'an, 710054, People's Republic of China
| | - Ming Zhang
- Department of General Medicine, Honghui Hospital Affiliated to Xi'an Jiaotong University, No. 555 Youyi East Road, Xi'an, 710054, People's Republic of China
| | - Nana Zhang
- Department of General Medicine, Honghui Hospital Affiliated to Xi'an Jiaotong University, No. 555 Youyi East Road, Xi'an, 710054, People's Republic of China.
| |
Collapse
|
16
|
Kovacevic B, Jones M, Wagle SR, Ionescu CM, Foster T, Đanić M, Mikov M, Mooranian A, Al-Salami H. Influence of poly-L-ornithine-bile acid nano hydrogels on cellular bioactivity and potential pharmacological applications. Ther Deliv 2023. [PMID: 37667908 DOI: 10.4155/tde-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Aim: Cellular bioactivity and pathophysiological changes associated with chronic disorders are considered pivotal detrimental factors when developing novel formulations for biomedical applications. Methods: This paper investigates the use of bile acids and synthetic polypeptide poly-L-ornithine (PLO) in formulations and their impacts on a variety of cell lines, with a particular focus on their cellular bioactivity. Results: The hepatic cell line was the most negatively affected by the presence of PLO, while the muscle and beta-pancreatic cell lines did not show as profound of a negative impact of PLO on cellular viability. PLO was the least disruptive regarding mitochondrial function for muscle and beta cells. Conclusion: The addition of bile acids generally decreased mitochondrial respiration and altered bioenergetic parameters in all cell lines.
Collapse
Affiliation(s)
- Bozica Kovacevic
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Melissa Jones
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Susbin Raj Wagle
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Thomas Foster
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Maja Đanić
- Department of Pharmacology, Toxicology & Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology & Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Armin Mooranian
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, 9016, New Zealand
| | - Hani Al-Salami
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
- Medical School, University of Western Australia, Perth, 6000, Australia
| |
Collapse
|
17
|
Klotz DM, Schwarz FM, Dubrovska A, Schuster K, Theis M, Krüger A, Kutz O, Link T, Wimberger P, Drukewitz S, Buchholz F, Thomale J, Kuhlmann JD. Establishment and Molecular Characterization of an In Vitro Model for PARPi-Resistant Ovarian Cancer. Cancers (Basel) 2023; 15:3774. [PMID: 37568590 PMCID: PMC10417418 DOI: 10.3390/cancers15153774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Overcoming PARPi resistance is a high clinical priority. We established and characterized comparative in vitro models of acquired PARPi resistance, derived from either a BRCA1-proficient or BRCA1-deficient isogenic background by long-term exposure to olaparib. While parental cell lines already exhibited a certain level of intrinsic activity of multidrug resistance (MDR) proteins, resulting PARPi-resistant cells from both models further converted toward MDR. In both models, the PARPi-resistant phenotype was shaped by (i) cross-resistance to other PARPis (ii) impaired susceptibility toward the formation of DNA-platinum adducts upon exposure to cisplatin, which could be reverted by the drug efflux inhibitors verapamil or diphenhydramine, and (iii) reduced PARP-trapping activity. However, the signature and activity of ABC-transporter expression and the cross-resistance spectra to other chemotherapeutic drugs considerably diverged between the BRCA1-proficient vs. BRCA1-deficient models. Using dual-fluorescence co-culture experiments, we observed that PARPi-resistant cells had a competitive disadvantage over PARPi-sensitive cells in a drug-free medium. However, they rapidly gained clonal dominance under olaparib selection pressure, which could be mitigated by the MRP1 inhibitor MK-751. Conclusively, we present a well-characterized in vitro model, which could be instrumental in dissecting mechanisms of PARPi resistance from HR-proficient vs. HR-deficient background and in studying clonal dynamics of PARPi-resistant cells in response to experimental drugs, such as novel olaparib-sensitizers.
Collapse
Affiliation(s)
- Daniel Martin Klotz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Franziska Maria Schwarz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Dubrovska
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
| | - Kati Schuster
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mirko Theis
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- UCC Section Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alexander Krüger
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Oliver Kutz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Theresa Link
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stephan Drukewitz
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Frank Buchholz
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- UCC Section Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jürgen Thomale
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen Medical School, 45147 Essen, Germany;
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Malhotra P, Palanisamy R, Caparros-Martin JA, Falasca M. Bile Acids and Microbiota Interplay in Pancreatic Cancer. Cancers (Basel) 2023; 15:3573. [PMID: 37509236 PMCID: PMC10377396 DOI: 10.3390/cancers15143573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Evidence suggests the involvement of the microbiota, including oral, intra-tumoral and gut, in pancreatic cancer progression and response to therapy. The gut microbiota modulates the bile acid pool and is associated with maintaining host physiology. Studies have shown that the bile acid/gut microbiota axis is dysregulated in pancreatic cancer. Bile acid receptor expression and bile acid levels are dysregulated in pancreatic cancer as well. Studies have also shown that bile acids can cause pancreatic cell injury and facilitate cancer cell proliferation. The microbiota and its metabolites, including bile acids, are also altered in other conditions considered risk factors for pancreatic cancer development and can alter responses to chemotherapeutic treatments, thus affecting patient outcomes. Altogether, these findings suggest that the gut microbial and/or bile acid profiles could also serve as biomarkers for pancreatic cancer detection. This review will discuss the current knowledge on the interaction between gut microbiota interaction and bile acid metabolism in pancreatic cancer.
Collapse
Affiliation(s)
- Pratibha Malhotra
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Ranjith Palanisamy
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | | | - Marco Falasca
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
19
|
Sun Y, Zabihi M, Li Q, Li X, Kim BJ, Ubogu EE, Raja SN, Wesselmann U, Zhao C. Drug Permeability: From the Blood-Brain Barrier to the Peripheral Nerve Barriers. ADVANCED THERAPEUTICS 2023; 6:2200150. [PMID: 37649593 PMCID: PMC10465108 DOI: 10.1002/adtp.202200150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 01/20/2023]
Abstract
Drug delivery into the peripheral nerves and nerve roots has important implications for effective local anesthesia and treatment of peripheral neuropathies and chronic neuropathic pain. Similar to drugs that need to cross the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) to gain access to the central nervous system (CNS), drugs must cross the peripheral nerve barriers (PNB), formed by the perineurium and blood-nerve barrier (BNB) to modulate peripheral axons. Despite significant progress made to develop effective strategies to enhance BBB permeability in therapeutic drug design, efforts to enhance drug permeability and retention in peripheral nerves and nerve roots are relatively understudied. Guided by knowledge describing structural, molecular and functional similarities between restrictive neural barriers in the CNS and peripheral nervous system (PNS), we hypothesize that certain CNS drug delivery strategies are adaptable for peripheral nerve drug delivery. In this review, we describe the molecular, structural and functional similarities and differences between the BBB and PNB, summarize and compare existing CNS and peripheral nerve drug delivery strategies, and discuss the potential application of selected CNS delivery strategies to improve efficacious drug entry for peripheral nerve disorders.
Collapse
Affiliation(s)
- Yifei Sun
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Mahmood Zabihi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Qi Li
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Xiaosi Li
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Brandon J. Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa AL 35487, USA
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa AL 35487, USA
- Alabama Life Research Institute, University of Alabama, Tuscaloosa AL 35487, USA
| | - Eroboghene E. Ubogu
- Division of Neuromuscular Disease, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Srinivasa N. Raja
- Division of Pain Medicine, Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ursula Wesselmann
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, and Department of Neurology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Consortium for Neuroengineering and Brain-Computer Interfaces, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao Zhao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa AL 35487, USA
- Alabama Life Research Institute, University of Alabama, Tuscaloosa AL 35487, USA
| |
Collapse
|
20
|
Li W, Du J, Yang L, Liang Q, Yang M, Zhou X, Du W. Chromosome-level genome assembly and population genomics of Mongolian racerunner (Eremias argus) provide insights into high-altitude adaptation in lizards. BMC Biol 2023; 21:40. [PMID: 36803146 PMCID: PMC9942394 DOI: 10.1186/s12915-023-01535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Although the extreme environmental adaptation of organisms is a hot topic in evolutionary biology, genetic adaptation to high-altitude environment remains poorly characterized in ectothermic animals. Squamates are among the most diverse terrestrial vertebrates, with tremendous ecological plasticity and karyotype diversity, and are a unique model system to investigate the genetic footprints of adaptation. RESULTS We report the first chromosome-level assembly of the Mongolian racerunner (Eremias argus) and our comparative genomics analyses found that multiple chromosome fissions/fusions events are unique to lizards. We further sequenced the genomes of 61 Mongolian racerunner individuals that were collected from altitudes ranging from ~ 80 to ~ 2600 m above sea level (m.a.s.l.). Population genomic analyses revealed many novel genomic regions under strong selective sweeps in populations endemic to high altitudes. Genes embedded in those genomic regions are mainly associated with energy metabolism and DNA damage repair pathways. Moreover, we identified and validated two substitutions of PHF14 that may enhance the lizards' tolerance to hypoxia at high altitudes. CONCLUSIONS Our study reveals the molecular mechanism of high-altitude adaptation in ectothermic animal using lizard as a research subject and provides a high-quality lizard genomic resource for future research.
Collapse
Affiliation(s)
- Weiming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academic of Sciences, Beijing, China
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academic of Sciences, Beijing, China
| | - Lingyun Yang
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Qiqi Liang
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Mengyuan Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academic of Sciences, Beijing, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
21
|
Wang G, Zhang X, Zhou Z, Song C, Jin W, Zhang H, Wu W, Yi Y, Cui H, Zhang P, Liu X, Xu W, Shen X, Shen W, Wang X. Sphingosine 1-phosphate receptor 2 promotes the onset and progression of non-alcoholic fatty liver disease-related hepatocellular carcinoma through the PI3K/AKT/mTOR pathway. Discov Oncol 2023; 14:4. [PMID: 36631680 PMCID: PMC9834486 DOI: 10.1007/s12672-023-00611-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Recent studies have revealed an increase in the incidence rate of non-alcoholic fatty liver disease-related hepatocellular carcinoma (NAFLD-HCC). Furthermore, the association of Sphingosine 1-phosphate receptor 2 (S1PR2) with various types of tumours is identified, and the metabolism of conjugated bile acids (CBAs) performs an essential function in the onset and development of HCC. However, the association of CBA and S1PR2 with NAFLD-HCC is unclear. METHODS The relationship between the expression of S1PR2 and the prognosis of patients suffering from NAFLD-HCC was investigated by bioinformatics techniques. Subsequently, the relationship between S1PR2 and the biological behaviours of HCC cell lines Huh 7 and HepG2 was explored by conducting molecular biology assays. Additionally, several in vivo animal experiments were carried out for the elucidation of the biological impacts of S1PR2 inhibitors on HCC cells. Finally, We used Glycodeoxycholic acid (GCDA) of CBA to explore the biological effects of CBA on HCC cell and its potential mechanism. RESULTS High S1PR2 expression was linked to poor prognosis of the NAFLD-HCC patients. According to cellular assay results, S1PR2 expression could affect the proliferation, invasion, migration, and apoptosis of Huh 7 and HepG2 cells, and was closely associated with the G1/G2 phase of the cell cycle. The experiments conducted in the In vivo conditions revealed that the overexpression of S1PR2 accelerated the growth of subcutaneous tumours. In addition, JTE-013, an antagonist of S1PR2, effectively inhibited the migration and proliferation of HCC cells. Furthermore, the bioinformatics analysis highlighted a correlation between S1PR2 and the PI3K/AKT/mTOR pathway. GCDA administration further enhanced the expression levels of p-AKT, p-mTOR, VEGF, SGK1, and PKCα. Moreover, both the presence and absence of GCDA did not reveal any significant change in the levels of S1PR2, p-AKT, p-mTOR, VEGF, SGK1, and PKCα proteins under S1PR2 knockdown, indicating that CBA may regulates the PI3K/AKT/mTOR pathway by mediating S1PR2 expression. CONCLUSION S1PR2 is a potential prognostic biomarker in NAFLD-HCC. In addition, We used GCDA in CBAs to treat HCC cell and found that the expression of S1PR2 was significantly increased, and the expression of PI3K/AKT/mTOR signalling pathway-related signal molecules was also significantly enhanced, indicating that GCDA may activate PI3K/AKT/mTOR signalling pathway by up-regulating the expression of S1PR2, and finally affect the activity of hepatocellular carcinoma cells. S1PR2 can be a candidate therapeutic target for NAFLD-HCC. Collectively, the findings of this research offer novel perspectives on the prevention and treatment of NAFLD-HCC.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Chao Song
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenzhi Jin
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Weixin Wu
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Hengguan Cui
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Zhang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyu Liu
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiqiang Xu
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaowei Shen
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weixing Shen
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoliang Wang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Xie R, Liu L, Lu X, He C, Li G. Identification of the diagnostic genes and immune cell infiltration characteristics of gastric cancer using bioinformatics analysis and machine learning. Front Genet 2023; 13:1067524. [PMID: 36685898 PMCID: PMC9845288 DOI: 10.3389/fgene.2022.1067524] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Finding reliable diagnostic markers for gastric cancer (GC) is important. This work uses machine learning (ML) to identify GC diagnostic genes and investigate their connection with immune cell infiltration. Methods: We downloaded eight GC-related datasets from GEO, TCGA, and GTEx. GSE13911, GSE15459, GSE19826, GSE54129, and GSE79973 were used as the training set, GSE66229 as the validation set A, and TCGA & GTEx as the validation set B. First, the training set screened differentially expressed genes (DEGs), and gene ontology (GO), kyoto encyclopedia of genes and genomes (KEGG), disease Ontology (DO), and gene set enrichment analysis (GSEA) analyses were performed. Then, the candidate diagnostic genes were screened by LASSO and SVM-RFE algorithms, and receiver operating characteristic (ROC) curves evaluated the diagnostic efficacy. Then, the infiltration characteristics of immune cells in GC samples were analyzed by CIBERSORT, and correlation analysis was performed. Finally, mutation and survival analyses were performed for diagnostic genes. Results: We found 207 up-regulated genes and 349 down-regulated genes among 556 DEGs. gene ontology analysis significantly enriched 413 functional annotations, including 310 biological processes, 23 cellular components, and 80 molecular functions. Six of these biological processes are closely related to immunity. KEGG analysis significantly enriched 11 signaling pathways. 244 diseases were closely related to Ontology analysis. Multiple entries of the gene set enrichment analysis analysis were closely related to immunity. Machine learning screened eight candidate diagnostic genes and further validated them to identify ABCA8, COL4A1, FAP, LY6E, MAMDC2, and TMEM100 as diagnostic genes. Six diagnostic genes were mutated to some extent in GC. ABCA8, COL4A1, LY6E, MAMDC2, TMEM100 had prognostic value. Conclusion: We screened six diagnostic genes for gastric cancer through bioinformatic analysis and machine learning, which are intimately related to immune cell infiltration and have a definite prognostic value.
Collapse
Affiliation(s)
- Rongjun Xie
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of General Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Longfei Liu
- Department of General Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xianzhou Lu
- Department of General Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Chengjian He
- Department of Intensive Care Medicine, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China,*Correspondence: Guoxin Li,
| |
Collapse
|
23
|
McGowan EM, Lin Y, Chen S. Targeting Chronic Inflammation of the Digestive System in Cancer Prevention: Modulators of the Bioactive Sphingolipid Sphingosine-1-Phosphate Pathway. Cancers (Basel) 2022; 14:cancers14030535. [PMID: 35158806 PMCID: PMC8833440 DOI: 10.3390/cancers14030535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/04/2023] Open
Abstract
Incidence of gastrointestinal (GI) cancers is increasing, and late-stage diagnosis makes these cancers difficult to treat. Chronic and low-grade inflammation are recognized risks for most GI cancers. The GI mucosal immune system maintains healthy homeostasis and signalling molecules made from saturated fats, bioactive sphingolipids, play essential roles in healthy GI immunity. Sphingosine-1-phosphate (S1P), a bioactive sphingolipid, is a key mediator in a balanced GI immune response. Disruption in the S1P pathway underlies systemic chronic metabolic inflammatory disorders, including diabetes and GI cancers, providing a strong rationale for using modulators of the S1P pathway to treat pathological inflammation. Here, we discuss the effects of bioactive sphingolipids in immune homeostasis with a focus on S1P in chronic low-grade inflammation associated with increased risk of GI carcinogenesis. Contemporary information on S1P signalling involvement in cancers of the digestive system, from top to bottom, is reviewed. Further, we discuss the use of novel S1P receptor modulators currently in clinical trials and their potential as first-line drugs in the clinic for chronic inflammatory diseases. Recently, ozanimod (ZeposiaTM) and etrasimod have been approved for clinical use to treat ulcerative colitis and eosinophilic oesophagitis, respectively, which may have longer term benefits in reducing risk of GI cancers.
Collapse
Affiliation(s)
- Eileen M. McGowan
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (Y.L.); (S.C.)
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
- Correspondence: ; Tel.: +86-614-0581-4048
| | - Yiguang Lin
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (Y.L.); (S.C.)
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
| | - Size Chen
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (Y.L.); (S.C.)
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| |
Collapse
|
24
|
Wang JQ, Wu ZX, Yang Y, Teng QX, Li YD, Lei ZN, Jani KA, Kaushal N, Chen ZS. ATP-binding cassette (ABC) transporters in cancer: A review of recent updates. J Evid Based Med 2021; 14:232-256. [PMID: 34388310 DOI: 10.1111/jebm.12434] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is one of the largest membrane protein families existing in wide spectrum of organisms from prokaryotes to human. ABC transporters are also known as efflux pumps because they mediate the cross-membrane transportation of various endo- and xenobiotic molecules energized by ATP hydrolysis. Therefore, ABC transporters have been considered closely to multidrug resistance (MDR) in cancer, where the efflux of structurally distinct chemotherapeutic drugs causes reduced itherapeutic efficacy. Besides, ABC transporters also play other critical biological roles in cancer such as signal transduction. During the past decades, extensive efforts have been made in understanding the structure-function relationship, transportation profile of ABC transporters, as well as the possibility to overcome MDR via targeting these transporters. In this review, we discuss the most recent knowledge regarding ABC transporters and cancer drug resistance in order to provide insights for the development of more effective therapies.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Khushboo A Jani
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Neeraj Kaushal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| |
Collapse
|