1
|
Feng L, Wang Q, Zang R, Zhang M. WTAP promotes laryngeal carcinoma cell progression by posttranscriptional activation of CTHRC1 in an m6A-YTHDF1-dependent way. Cytotechnology 2024; 76:709-720. [PMID: 39435427 PMCID: PMC11490469 DOI: 10.1007/s10616-024-00648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/22/2024] [Indexed: 10/23/2024] Open
Abstract
Laryngeal carcinoma is one of the malignancies in the head and neck region with high incidence and mortality. Despite advances in therapeutic modalities, the 5-year survival rate remains low. Wilms tumor 1-associated protein (WTAP) has been reported to regulate cancer progression, however, its role and mechanism in regulating laryngeal carcinoma development remain unclear. In this study, the expressions of WTAP, collagen triple helix repeat containing 1 (CTHRC1), and YTH N6-methyladenosine RNA binding protein F1 (YTHDF1) and other molecules were detected by quantitative real-time polymerase chain reaction or western blotting. Cell viability and colony formation rate were determined by cell counting kit-8 assay and cell colony formation assay. Cell migration and invasion were investigated by transwell assay. The relationship between CTHRC1 and YTHDF1 was identified by RNA immunoprecipitation assay. The results showed that WTAP and CTHRC1 were upregulated in laryngeal carcinoma tissues and cells. WTAP or CTHRC1 silencing inhibited the proliferation, migration and invasion of laryngeal carcinoma cells. WTAP knockdown inhibited CTHRC1 mRNA stability by suppressing CTHRC1 m6A modification and YTHDF1 from recognizing CTHRC1 m6A sites. Moreover, CTHRC1 overexpression attenuated WTAP knockdown-mediated effects on laryngeal carcinoma cell phenotypes and the expression of β-catenin, C-myc and cyclinD1. Thus, WTAP facilitated CTHRC1 mRNA stability in an m6A-dependent manner to activate the Wnt/β-catenin pathway and promote laryngeal carcinoma cell malignant phenotypes.
Collapse
Affiliation(s)
- Lan Feng
- Department of Infectious Diseases, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154002 Heilongjiang Province China
| | - QingDong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, No.348 Dexiang Street, Xiangyang District, Jiamusi, 154002 Heilongjiang Province China
| | - Rongjia Zang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, No.348 Dexiang Street, Xiangyang District, Jiamusi, 154002 Heilongjiang Province China
| | - MeiJia Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Jiamusi University, No.348 Dexiang Street, Xiangyang District, Jiamusi, 154002 Heilongjiang Province China
| |
Collapse
|
2
|
Alissa M, Aldurayhim M, Abdulaziz O, Alsalmi O, Awad A, Algopishi UB, Alharbi S, Safhi AY, Khan KH, Uffar C. From molecules to heart regeneration: Understanding the complex and profound role of non-coding RNAs in stimulating cardiomyocyte proliferation for cardiac repair. Curr Probl Cardiol 2024; 49:102857. [PMID: 39306148 DOI: 10.1016/j.cpcardiol.2024.102857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Recent studies of noncoding genomes have shown important implications for regulating gene expression and genetic programs during development and their association with health, including cardiovascular disease. There are nearly 2,500 microRNAs (miRNAs), 12,000 long-chain non-coding RNAs (lncRNA), and nearly 4,000 circular RNAs (circles). Even though they do not code for proteins, they make up nearly 99% of the human genome. Non-coding RNA families (ncRNAs) have recently been discovered and established as novel and necessary controllers of cardiovascular risk factors and cellular processes and, therefore, have the potential to improve the diagnosis and prediction of cardiovascular disease. The increase in the prevalence of cardiovascular disease can be explained by the shortcomings of existing therapies, which focus only on the non-coding RNAs that protein codes for. On the other hand, recent studies point to the possibility of using ncRNAs in the early detection and intervention of CVD. These findings suggest that developing diagnostic tools and therapies based on miRNAs, lncRNAs, and circRNAs will potentially enhance the clinical management of patients with cardiovascular disease. Cardiovascular diseases include CH, HF, RHD, ACS, MI, AS, MF, ARR, and PAH, of which CH is the most common cardiovascular disease, followed by HF and RHD. This paper aims to elucidate the biological and clinical significance of miRNAs, increase, and circles, as well as their expression profiles and the possibility of regulating non-coding transcripts in cardiovascular diseases to improve the application of ncRNAs in diagnosis and treatment.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Mohammed Aldurayhim
- Department of Medical Laboratory, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Ohud Alsalmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Alsamghan Awad
- King Khalid University, College of Medicine, Family Medicine department, Saudi Arabia
| | | | - Sarah Alharbi
- Department of Medical Laboratory, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khadijah Hassan Khan
- Department of Laboratory, King Faisal Medical Complex, Ministry of Health, Taif 26514, Saudi Arabia
| | - Christin Uffar
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
3
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
4
|
Kordi N, Sanaei M, Akraminia P, Yavari S, Saydi A, Abadi FK, Heydari N, Jung F, Karami S. PANoptosis and cardiovascular disease: The preventive role of exercise training. Clin Hemorheol Microcirc 2024:CH242396. [PMID: 39269827 DOI: 10.3233/ch-242396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Regulated cell death, including pyroptosis, apoptosis, and necroptosis, is vital for the body's defense system. Recent research suggests that these three types of cell death are interconnected, giving rise to a new concept called PANoptosis. PANoptosis has been linked to various diseases, making it crucial to comprehend its mechanism for effective treatments. PANoptosis is controlled by upstream receptors and molecular signals, which form polymeric complexes known as PANoptosomes. Cell death combines necroptosis, apoptosis, and pyroptosis and cannot be fully explained by any of these processes alone. Understanding pyroptosis, apoptosis, and necroptosis is essential for understanding PANoptosis. Physical exercise has been shown to suppress pyroptotic, apoptotic, and necroptotic signaling pathways by reducing inflammatory factors, proapoptotic factors, and necroptotic factors such as caspases and TNF-alpha. This ultimately leads to a decrease in cardiac structural remodeling. The beneficial effects of exercise on cardiovascular health may be attributed to its ability to inhibit these cell death pathways.
Collapse
Affiliation(s)
- Negin Kordi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | | | - Peyman Akraminia
- Department of Sports Physiology, Faculty of Physical Education and Sports Sciences, Islamic Azad University, South Tehran Branch, Iran
| | - Sajad Yavari
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Ali Saydi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Fatemeh Khamis Abadi
- Department of Sport Physiology, Faculty of Human Sciences, Islamic Azad University, Borujerd, Iran
| | - Naser Heydari
- Faculty of Physical Education and Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Friedrich Jung
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Sajad Karami
- Faculty of Physical Education and Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
5
|
Gao Y, Ling Y, Wu H, Zhang P, Zhou J, Gu H, Yang J, Zhou Y, Zhong Z, Chi J. Swimming training attenuates doxorubicin induced cardiomyopathy by targeting the mir-17-3p/KEAP1/NRF2 axis. Biochem Biophys Res Commun 2024; 739:150568. [PMID: 39178797 DOI: 10.1016/j.bbrc.2024.150568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Doxorubicin (DOX), as a first-line anticancer drug, is widely used in the treatment of various cancers. However, its clinical application is restricted due to its severe cardiac toxicity. Previous studies have indicated exercise training can alleviate the DOX-induced cardiotoxicity (DIC), but the underlying mechanism remains unclear. Our research has discovered, post-exercise, an elevated expression level of mir-17-3p, but in DIC its level decreases. Therefore, we further studied the effect of exercise mir-17-3p axis on DIC. In vivo, we simulated DIC mouse model, followed by an intervention using swimming and adenovirus to inhibit mir-17-3p. We found that inhibition of mir-17-3p can weaken the protection of exercise against DIC, presenting as weakened heart function. Besides, the levels of Malondialdehyde and Fe2+ in the cardiac tissue increased, along with diminished glutathione peroxidase 4 and Solute Carrier Family 7 Member 11 levels, and a decline in the concentration of glutathione, causing an increase in ferroptosis. Moreover, in vitro, we used dual-luciferase assay to confirm that Kelch Like ECH Associated Protein 1 (KEAP1) can be a target gene of mir-17-3p. We used Keap1/NFE2 Like BZIP Transcription Factor 2 (NRF2) inhibitor brusatol and Stimulator of Interferon Response CGAMP Interactor 1 (STING) agonist SR-717 to verify the mir-17-3p/KEAP1 axis can affect the Cyclic GMP-AMP Synthase (CGAS)/STING pathway, leading to further ferroptosis in DIC. This manifested as a reduction in ferroptosis. In summary, our research suggests swimming training enhances the levels of mir-17-3p, thereby activating the KEAP1/NRF2 pathway, and weakening the CGAS/STING pathway, improving ferroptosis in DIC.
Collapse
Affiliation(s)
- Yefei Gao
- Department of Cardiology, The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Yan Ling
- The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Haowei Wu
- Department of Cardiology, The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Peipei Zhang
- The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Jiedong Zhou
- The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Haodi Gu
- The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Juntao Yang
- Department of Cardiology, The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Yan Zhou
- Department of Cardiology, The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| | - Zuoquan Zhong
- The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| | - Jufang Chi
- Department of Cardiology, Zhuji People's Hospital, Zhejiang, China.
| |
Collapse
|
6
|
Sun J, Zheng Q, Wu K. IGFBP7 mediates oxLDL-induced human vascular endothelial cell injury by suppressing the expression of SIRT1. Heliyon 2024; 10:e35359. [PMID: 39170442 PMCID: PMC11336593 DOI: 10.1016/j.heliyon.2024.e35359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Endothelial cell injury plays an important role in initiating atherosclerotic lesion formation. Insulin-like growth factor binding protein 7 (IGFBP7) is known to modulate the behaviors of tumor-associated endothelial cells. This study was conducted to test whether IGFBP7 is involved in endothelial cell injury during atherosclerosis. Oxidized low-density lipoprotein (oxLDL) treatment was used to mimic atherosclerosis-related endothelial cell apoptosis and inflammation response. Small interfering RNA (siRNA) technology was employed to deplete IGFBP7 expression in human aortic endothelial cells (HAECs). HAECs were exposed to recombinant human IGFBP7 protein to evaluate the function of IGFBP7. Notably, IGFBP7 expression in HAECs was induced by oxLDL treatment. Knockdown of IGFBP7 or treatment with anti-IGFBP7 abolished oxLDL-induced apoptosis and inflammation in HAECs. Moreover, recombinant IGFBP7 (40 ng/mL but not 25 ng/mL) promoted apoptosis and inflammation in HAECs. IGFBP7 co-localized with CD93 on the surface of HAECs. A mechanistic investigation uncovered that IGFBP7 induced endothelial cell injury through interaction with CD93 and reduction of SIRT1 expression via an autocrine manner. Overexpression of SIRT1 rescued IGFBP7-induced phenotype in HAECs. Taken together, IGFBP7 is induced by oxLDL and mediates oxLDL-induced endothelial cell apoptosis and inflammation, likely through downregulation of SIRT1. These observations support a rationale to prevent atherosclerosis by targeting IGFBP7 activity.
Collapse
Affiliation(s)
- Jiaju Sun
- Department of Cardiology, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, China
| | - Qingyong Zheng
- Infectious Disease Laboratory, Wenzhou Sixth People's Hospital, Wenzhou, China
| | - Kaijia Wu
- Electrocardiogram Room, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Chang X, Wang B, Zhao Y, Deng B, Liu P, Wang Y. The role of IFI16 in regulating PANoptosis and implication in heart diseases. Cell Death Discov 2024; 10:204. [PMID: 38693141 PMCID: PMC11063201 DOI: 10.1038/s41420-024-01978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
Interferon Gamma Inducible Protein 16 (IFI16) belongs to the HIN-200 protein family and is pivotal in immunological responses. Serving as a DNA sensor, IFI16 identifies viral and aberrant DNA, triggering immune and inflammatory responses. It is implicated in diverse cellular death mechanisms, such as pyroptosis, apoptosis, and necroptosis. Notably, these processes are integral to the emergent concept of PANoptosis, which encompasses cellular demise and inflammatory pathways. Current research implies a significant regulatory role for IFI16 in PANoptosis, particularly regarding cardiac pathologies. This review delves into the complex interplay between IFI16 and PANoptosis in heart diseases, including atherosclerosis, myocardial infarction, heart failure, and diabetic cardiomyopathy. It synthesizes evidence of IFI16's impact on PANoptosis, with the intention of providing novel insights for therapeutic strategies targeting heart diseases.
Collapse
Affiliation(s)
- Xindi Chang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Bei Wang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Yingli Zhao
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Bing Deng
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Ping Liu
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China.
| | - Yiru Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China.
| |
Collapse
|
8
|
Cao Y, Zheng M, Sewani MA, Wang J. The miR-17-92 cluster in cardiac health and disease. Birth Defects Res 2024; 116:e2273. [PMID: 37984445 PMCID: PMC11418803 DOI: 10.1002/bdr2.2273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
MicroRNAs (miRs) are small noncoding RNAs that play important roles in both physiological and pathological processes through post-transcriptional regulation. The miR-17-92 cluster includes six individual members: miR-17, miR-18a, miR-19a, miR-19b-1, miR-20a, and miR-92a-1. The miR-17-92 cluster has been extensively studied and reported to broadly function in cancer biology, immunology, neurology, pulmonology, and cardiology. This review focuses on its roles in heart development and cardiac diseases. We briefly introduce the nature of the miR-17-92 cluster and its crucial roles in both normal development and the pathogenesis of various diseases. We summarize the recent progress in understanding the versatile roles of miR-17-92 during cardiac development, regeneration, and aging. Additionally, we highlight the indispensable roles of the miR-17-92 cluster in pathogenesis and therapeutic potential in cardiac birth defects and adult cardiac diseases.
Collapse
Affiliation(s)
- Yuhan Cao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| | - Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maham A Sewani
- Department of BioSciences, Wiess School of Natural Sciences, Rice University, Houston, Texas, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| |
Collapse
|
9
|
Minakawa T, Yamashita JK. Extracellular vesicles and microRNAs in the regulation of cardiomyocyte differentiation and proliferation. Arch Biochem Biophys 2023; 749:109791. [PMID: 37858665 DOI: 10.1016/j.abb.2023.109791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
Cardiomyocyte differentiation and proliferation are essential processes for the regeneration of an injured heart. In recent years, there have been several reports highlighting the involvement of extracellular vesicles (EVs) in cardiomyocyte differentiation and proliferation. These EVs originate from mesenchymal stem cells, pluripotent stem cells, and heart constituting cells (cardiomyocytes, cardiac fibroblasts, cardiac progenitor cells, epicardium). Numerous reports also indicate the involvement of microRNAs (miRNAs) in cardiomyocyte differentiation and proliferation. Among them, miRNA-1, miRNA-133, and miRNA-499, recently demonstrated to promote cardiomyocyte differentiation, and miRNA-199, shown to promote cardiomyocyte proliferation, were found effective in various studies. MiRNA-132 and miRNA-133 have been identified as cargo in EVs and are reported to induce cardiomyocyte differentiation. Similarly, miRNA-30a, miRNA-100, miRNA-27a, miRNA-30e, miRNA-294 and miRNA-590 have also been identified as cargo in EVs and are shown to have a role in the promotion of cardiomyocyte proliferation. Regeneration of the heart by EVs or artificial nanoparticles containing functional miRNAs is expected in the future. In this review, we outline recent advancements in understanding the roles of EVs and miRNAs in cardiomyocyte differentiation and proliferation. Additionally, we explore the related challenges when utilizing EVs and miRNAs as a less risky approach to cardiac regeneration compared to cell transplantation.
Collapse
Affiliation(s)
- Tomohiro Minakawa
- Department of Cellular and Tissue Communication, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Jun K Yamashita
- Department of Cellular and Tissue Communication, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| |
Collapse
|
10
|
Huang B, Xie L, Ke M, Fan Y, Tan J, Ran J, Zhu C. Programmed Release METTL3-14 Inhibitor Microneedle Protects Myocardial Function by Reducing Drp1 m6A Modification-Mediated Mitochondrial Fission. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46583-46597. [PMID: 37752784 PMCID: PMC10573327 DOI: 10.1021/acsami.3c06318] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023]
Abstract
M6A modification is an RNA-important processing event mediated by methyltransferases METTL3 and METTL14 and the demethylases. M6A dynamic changes after myocardial infarction (MI), involved in the massive loss of cardiomyocytes due to hypoxia, as well as the recruitment and activation of myofibroblasts. Balanced mitochondrial fusion and fission are essential to maintain intracardiac homeostasis and reduce poststress myocardial remodeling. Double-layer programmed drug release microneedle (DPDMN) breaks the limitations of existing therapeutic interventions in one period or one type of cells, and multitargeted cellular combination has more potential in MI therapy. By employing hypoxia-ischemic and TGF-β1-induced fibrosis cell models, we found that METTL3-14 inhibition effectively decreased cardiomyocyte death through the reduction of mitochondrial fragmentation and inhibiting myofibrillar transformation. DPDMN treatment of MI in rat models showed improved cardiac function and decreased infarct size and fibrosis level, demonstrating its superior effectiveness. The DPDMN delivers METTL3 inhibitor swiftly in the early phase to rescue dying cardiomyocytes and slowly in the late phase to achieve long-term suppression of fibroblast over proliferation, collagen synthesis, and deposition. RIP assay and mechanistic investigation confirmed that METTL3 inhibition reduced the translation efficiency of Drp1 mRNA by 5'UTR m6A modification, thus decreasing the Drp1 protein level and mitochondrial fragment after hypoxic-ischemic injury. This project investigated the efficacy of DPDMNs-loaded METTL3 inhibitor in MI treatment and the downstream signaling pathway proteins, providing an experimental foundation for the translation of the utility, safety, and versatility of microneedle drug delivery for MI into clinical applications.
Collapse
Affiliation(s)
- Boyue Huang
- Department
of Anatomy, and Laboratory of Neuroscience and Tissue Engineering,
Basic Medical College, Chongqing Medical
University, Chongqing 400016, China
| | - Liu Xie
- Department
of Anatomy, Engineering Research Center for Organ Intelligent Biological
Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering
of Chongqing, Third Military Medical University, Chongqing 400038, China
- Department
of Pathology and Pathophysiology, Hunan
Medical College, Huaihua 418000, China
| | - Ming Ke
- Department
of Anatomy, Engineering Research Center for Organ Intelligent Biological
Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering
of Chongqing, Third Military Medical University, Chongqing 400038, China
| | - Yonghong Fan
- Department
of Anatomy, Engineering Research Center for Organ Intelligent Biological
Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering
of Chongqing, Third Military Medical University, Chongqing 400038, China
| | - Ju Tan
- Department
of Anatomy, Engineering Research Center for Organ Intelligent Biological
Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering
of Chongqing, Third Military Medical University, Chongqing 400038, China
| | - Jianhua Ran
- Department
of Anatomy, and Laboratory of Neuroscience and Tissue Engineering,
Basic Medical College, Chongqing Medical
University, Chongqing 400016, China
| | - Chuhong Zhu
- Department
of Anatomy, Engineering Research Center for Organ Intelligent Biological
Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering
of Chongqing, Third Military Medical University, Chongqing 400038, China
- Engineering
Research Center of Tissue and Organ Regeneration and Manufacturing,
Ministry of Education, Chongqing 400038, China
- Burn
and Combined Injury, State Key Laboratory
of Trauma, Chongqing 400038, China
| |
Collapse
|
11
|
Yang H, Yang Y, Kiskin FN, Shen M, Zhang JZ. Recent advances in regulating the proliferation or maturation of human-induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2023; 14:228. [PMID: 37649113 PMCID: PMC10469435 DOI: 10.1186/s13287-023-03470-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
In the last decade, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM)-based cell therapy has drawn broad attention as a potential therapy for treating injured hearts. However, mass production of hiPSC-CMs remains challenging, limiting their translational potential in regenerative medicine. Therefore, multiple strategies including cell cycle regulators, small molecules, co-culture systems, and epigenetic modifiers have been used to improve the proliferation of hiPSC-CMs. On the other hand, the immaturity of these proliferative hiPSC-CMs could lead to lethal arrhythmias due to their limited ability to functionally couple with resident cardiomyocytes. To achieve functional maturity, numerous methods such as prolonged culture, biochemical or biophysical stimulation, in vivo transplantation, and 3D culture approaches have been employed. In this review, we summarize recent approaches used to promote hiPSC-CM proliferation, and thoroughly review recent advances in promoting hiPSC-CM maturation, which will serve as the foundation for large-scale production of mature hiPSC-CMs for future clinical applications.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yuan Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Fedir N Kiskin
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Mengcheng Shen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
12
|
Luo H, Wu X, Huo B, Liu L, Jiang DS, Yi X. The roles of METTL3 on autophagy and proliferation of vascular smooth muscle cells are mediated by mTOR rather than by CDK1. Cell Div 2023; 18:13. [PMID: 37559091 PMCID: PMC10411010 DOI: 10.1186/s13008-023-00096-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Aberrant proliferation of vascular smooth muscle cells (VSMCs) is the cause of neointima formation followed by vascular injury. Autophagy is involved in this pathological process, but its function is controversial. Recently, we found that methyltransferase like 3 (METTL3) inhibited VSMC proliferation by activating autophagosome formation. Moreover, we also demonstrated that METTL3 reduced the levels of phosphorylated mammalian target of rapamycin (p-mTOR) and cyclin dependent kinase 1 (p-CDK1/CDC2), which were critical for autophagy and proliferation regulation. However, whether mTOR and CDK1 mediated the function of METTL3 on autophagy and proliferation in VSMCs remains unknown. RESULTS We showed that the activator of mTOR, MHY1485 largely reversed the effects of METTL3 overexpression on VSMC autophagy and proliferation. Rapamycin, the inhibitor of mTOR, obviously nullified the pro-proliferation effects of METTL3 knockdown by activating autophagy in VSMCs. Unexpectedly, mTOR did not contribute to the impacts of METTL3 on migration and phenotypic switching of VSMCs. On the other hand, by knockdown of CDK1 in VSMC with METTL3 deficiency, we demonstrated that CDK1 was involved in METTL3-regulated proliferation of VSMCs, but this effect was not mediated by autophagy. CONCLUSIONS We concluded that mTOR but not CDK1 mediated the role of METTL3 on VSMC proliferation and autophagy.
Collapse
Affiliation(s)
- Hanshen Luo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, Hubei, China
| | - Xingliang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, Hubei, China
| | - Liyuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, China.
| |
Collapse
|
13
|
Xiong Q, Zhang Y. Small RNA modifications: regulatory molecules and potential applications. J Hematol Oncol 2023; 16:64. [PMID: 37349851 PMCID: PMC10286502 DOI: 10.1186/s13045-023-01466-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Small RNAs (also referred to as small noncoding RNAs, sncRNA) are defined as polymeric ribonucleic acid molecules that are less than 200 nucleotides in length and serve a variety of essential functions within cells. Small RNA species include microRNA (miRNA), PIWI-interacting RNA (piRNA), small interfering RNA (siRNA), tRNA-derived small RNA (tsRNA), etc. Current evidence suggest that small RNAs can also have diverse modifications to their nucleotide composition that affect their stability as well as their capacity for nuclear export, and these modifications are relevant to their capacity to drive molecular signaling processes relevant to biogenesis, cell proliferation and differentiation. In this review, we highlight the molecular characteristics and cellular functions of small RNA and their modifications, as well as current techniques for their reliable detection. We also discuss how small RNA modifications may be relevant to the clinical applications for the diagnosis and treatment of human health conditions such as cancer.
Collapse
Affiliation(s)
- Qunli Xiong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
- Abdominal Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yaguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
14
|
Zhuang Y, Li T, Hu X, Xie Y, Pei X, Wang C, Li Y, Liu J, Tian Z, Zhang X, Peng L, Meng B, Wu H, Yuan W, Pan Z, Lu Y. MetBil as a novel molecular regulator in ischemia-induced cardiac fibrosis via METTL3-mediated m6A modification. FASEB J 2023; 37:e22797. [PMID: 36753405 DOI: 10.1096/fj.202201734r] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 02/09/2023]
Abstract
Cardiac fibrosis is a common pathological manifestation in multiple cardiovascular diseases and often results in myocardial stiffness and cardiac dysfunctions. LncRNA (long noncoding RNA) participates in a number of pathophysiological processes. However, its role in cardiac fibrosis remains unclear. The purpose of this study was to investigate the role and molecular mechanism of MetBil in regulating cardiac fibrosis. Our data showed that METTL3 binding lncRNA (MetBil) was significantly increased both in fibrotic tissue following myocardial infarction (MI) in mice and in cardiac fibroblasts (CFs) exposed to TGF-β1 (20 ng/mL) or 20% FBS. Overexpression of MetBil augmented collagen deposition, CF proliferation and activation while silencing MetBil exhibited the opposite effects. Importantly, heterozygous knockout of MetBil alleviated cardiac fibrosis and improved cardiac function after MI. RNA pull-down and RNA-binding protein immunoprecipitation assay showed that METTL3 is a direct downstream target of MetBil; consistently, MetBil and METTL3 were co-localized in both the nucleus and cytoplasm of CFs. Interestingly, MetBil regulated METTL3 expression at protein level, but not mRNA level, in ubiquitin-proteasome pathway. Enforced expression of METTL3 canceled the antifibrotic effects of silencing MetBil reflected by increased collagen production, CF proliferation and activation. Most notably, the m6A-modified fibrosis-regulated genes mediated by METTL3 are profoundly involved in the regulation of MetBil in the cardiac fibrosis following MI. Our study reveals that MetBil as a novel regulator of fibrosis promotes cardiac fibrosis via interacting with METTL3 and regulating the expression of the methylated fibrosis-associated genes, providing a new intervening target for fibrosis-associated cardiac diseases.
Collapse
Affiliation(s)
- Yuting Zhuang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China.,Scientific Research Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - Tingting Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xiaoxi Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Yilin Xie
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xinyu Pei
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Chaoqun Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Yuyang Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Junwu Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Zhongrui Tian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xiaowen Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Lili Peng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Bo Meng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Hao Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Wei Yuan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Zhenwei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Yanjie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China.,China Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
15
|
Cheng H, Li L, Xue J, Ma J, Ge J. TNC Accelerates Hypoxia-Induced Cardiac Injury in a METTL3-Dependent Manner. Genes (Basel) 2023; 14:591. [PMID: 36980863 PMCID: PMC10048594 DOI: 10.3390/genes14030591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cardiac fibrosis and cardiomyocyte apoptosis are reparative processes after myocardial infarction (MI), which results in cardiac remodeling and heart failure at last. Tenascin-C (TNC) consists of four distinct domains, which is a large multimodular glycoprotein of the extracellular matrix. It is also a key regulator of proliferation and apoptosis in cardiomyocytes. As a significant m6A regulator, METTL3 binds m6A sites in mRNA to control its degradation, maturation, stabilization, and translation. Whether METTL3 regulates the occurrence and development of myocardial infarction through the m6A modification of TNC mRNA deserves our study. Here, we have demonstrated that overexpression of METTL3 aggravated cardiac dysfunction and cardiac fibrosis after 4 weeks after MI. Moreover, we also demonstrated that TNC resulted in cardiac fibrosis and cardiomyocyte apoptosis after MI. Mechanistically, METTL3 led to enhanced m6A levels of TNC mRNA and promoted TNC mRNA stability. Then, we mutated one m6A site "A" to "T", and the binding ability of METTL3 was reduced. In conclusion, METTL3 is involved in cardiac fibrosis and cardiomyocyte apoptosis by increasing m6A levels of TNC mRNA and may be a promising target for the therapy of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Linnan Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Junqiang Xue
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Jianying Ma
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| |
Collapse
|
16
|
Abstract
RNA is not always a faithful copy of DNA. Advances in tools enabling the interrogation of the exact RNA sequence have permitted revision of how genetic information is transferred. We now know that RNA is a dynamic molecule, amenable to chemical modifications of its four canonical nucleotides by dedicated RNA-binding enzymes. The ever-expanding catalogue of identified RNA modifications in mammals has led to a burst of studies in the past 5 years that have explored the biological relevance of the RNA modifications, also known as epitranscriptome. These studies concluded that chemical modification of RNA nucleotides alters several properties of RNA molecules including sequence, secondary structure, RNA-protein interaction, localization and processing. Importantly, a plethora of cellular functions during development, homeostasis and disease are controlled by RNA modification enzymes. Understanding the regulatory interface between a single-nucleotide modification and cellular function will pave the way towards the development of novel diagnostic, prognostic and therapeutic tools for the management of diseases, including cardiovascular disease. In this Review, we use two well-studied and abundant RNA modifications - adenosine-to-inosine RNA editing and N6-methyladenosine RNA methylation - as examples on which to base the discussion about the current knowledge on installation or removal of RNA modifications, their effect on biological processes related to cardiovascular health and disease, and the potential for development and application of epitranscriptome-based prognostic, diagnostic and therapeutic tools for cardiovascular disease.
Collapse
|
17
|
Sikorski V, Vento A, Kankuri E. Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:426-461. [PMID: 35991314 PMCID: PMC9366019 DOI: 10.1016/j.omtn.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases lead the mortality and morbidity disease metrics worldwide. A multitude of chemical base modifications in ribonucleic acids (RNAs) have been linked with key events of cardiovascular diseases and metabolic disorders. Named either RNA epigenetics or epitranscriptomics, the post-transcriptional RNA modifications, their regulatory pathways, components, and downstream effects substantially contribute to the ways our genetic code is interpreted. Here we review the accumulated discoveries to date regarding the roles of the two most common epitranscriptomic modifications, N6-methyl-adenosine (m6A) and adenosine-to-inosine (A-to-I) editing, in cardiovascular disease.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - IHD-EPITRAN Consortium
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
18
|
Zhao K, Mao Y, Li Y, Yang C, Wang K, Zhang J. The roles and mechanisms of epigenetic regulation in pathological myocardial remodeling. Front Cardiovasc Med 2022; 9:952949. [PMID: 36093141 PMCID: PMC9458904 DOI: 10.3389/fcvm.2022.952949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
Pathological myocardial remodeling was still one of the leading causes of death worldwide with an unmet therapeutic need. A growing number of researchers have addressed the role of epigenome changes in cardiovascular diseases, paving the way for the clinical application of novel cardiovascular-related epigenetic targets in the future. In this review, we summarized the emerged advances of epigenetic regulation, including DNA methylation, Histone posttranslational modification, Adenosine disodium triphosphate (ATP)-dependent chromatin remodeling, Non-coding RNA, and RNA modification, in pathological myocardial remodeling. Also, we provided an overview of the mechanisms that potentially involve the participation of these epigenetic regulation.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yukang Mao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yansong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanxi Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Kai Wang
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jing Zhang
| |
Collapse
|
19
|
Zhang R, Qu Y, Ji Z, Hao C, Su Y, Yao Y, Zuo W, Chen X, Yang M, Ma G. METTL3 mediates Ang-II-induced cardiac hypertrophy through accelerating pri-miR-221/222 maturation in an m6A-dependent manner. Cell Mol Biol Lett 2022; 27:55. [PMID: 35836108 PMCID: PMC9284900 DOI: 10.1186/s11658-022-00349-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Background METTL3 is the core catalytic enzyme in m6A and is involved in a variety of cardiovascular diseases. However, whether and how METTL3 plays a role during angiotensin II (Ang-II)-induced myocardial hypertrophy is still unknown. Methods Neonatal rat cardiomyocytes (NRCMs) and C57BL/6J mice were treated with Ang-II to induce myocardial hypertrophy. qRT-PCR and western blots were used to detect the expression of RNAs and proteins. Gene function was verified by knockdown and/or overexpression, respectively. Luciferase and RNA immunoprecipitation (RIP) assays were used to verify interactions among multiple genes. Wheat germ agglutinin (WGA), hematoxylin and eosin (H&E), and immunofluorescence were used to examine myocardial size. m6A methylation was detected by a colorimetric kit. Results METTL3 and miR-221/222 expression and m6A levels were significantly increased in response to Ang-II stimulation. Knockdown of METTL3 or miR-221/222 could completely abolish the ability of NRCMs to undergo hypertrophy. The expression of miR-221/222 was positively regulated by METTL3, and the levels of pri-miR-221/222 that bind to DGCR8 or form m6A methylation were promoted by METTL3 in NRCMs. The effect of METTL3 knockdown on hypertrophy was antagonized by miR-221/222 overexpression. Mechanically, Wnt/β-catenin signaling was activated during hypertrophy and restrained by METTL3 or miR-221/222 inhibition. The Wnt/β-catenin antagonist DKK2 was directly targeted by miR-221/222, and the effect of miR-221/222 inhibitor on Wnt/β-catenin was abolished after inhibition of DKK2. Finally, AAV9-mediated cardiac METTL3 knockdown was able to attenuate Ang-II-induced cardiac hypertrophy in mouse model. Conclusions Our findings suggest that METTL3 positively modulates the pri-miR221/222 maturation process in an m6A-dependent manner and subsequently activates Wnt/β-catenin signaling by inhibiting DKK2, thus promoting Ang-II-induced cardiac hypertrophy. AAV9-mediated cardiac METTL3 knockdown could be a therapeutic for pathological myocardial hypertrophy. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00349-1.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Yangyang Qu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Chunshu Hao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Yamin Su
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Xi Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Mingming Yang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China.
| |
Collapse
|
20
|
Chen J, Lai K, Yong X, Yin H, Chen Z, Wang H, Chen K, Zheng J. Silencing METTL3 Stabilizes Atherosclerotic Plaques by Regulating the Phenotypic Transformation of Vascular Smooth Muscle Cells via the miR-375-3p/PDK1 Axis. Cardiovasc Drugs Ther 2022; 37:471-486. [PMID: 35704246 DOI: 10.1007/s10557-022-07348-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Atherosclerosis (AS) is a primary cause of cardiovascular diseases. This study investigated the mechanism of methyltransferase-like 3 (METTL3) in AS plaques via modulating the phenotypic transformation of vascular smooth muscle cells (VSMCs). METHODS AS mouse models and MOVAS cell models were established through high-fat diet and the treatment of ox-LDL, respectively. METTL3 expression in AS models was detected via RT-qPCR and Western blot. The AS plaques, lipid deposition, and collagen fibers were examined via histological staining. The levels of Ly-6c, α-SMA, and OPN were examined via Western blot. The blood lipid indexes in mouse aortic tissues were determined using kits. The proliferation and migration of MOVAS cells were detected via CCK-8 and Transwell assays. The m6A modification level of mRNA was quantified. The binding relationship between pri-miR-375 and DGCR8, and the enrichment of m6A on pri-miR-375 were detected via RIP. The binding relationship between miR-375-3p and 3-phosphoinositide-dependent protein kinase-1 (PDK1) was verified via dual-luciferase assay. Joint experiments were designed to investigate the role of miR-375-3P/PDK1 in the phenotypic transformation of VSMCs. RESULTS METTL3 was highly expressed in AS. Silencing METTL3 alleviated AS progression and stabilized AS plaques in mice, and limited the phenotypic transformation of VSMCs induced by ox-LDL. Silencing METTL3 inhibited m6A level and decreased the binding of DGCR8 to pri-miR-375 and further limited miR-375-3p expression. miR-375-3p targeted PDK1 transcription. miR-375-3p upregulation or PDK1 downregulation facilitated the phenotypic transformation of VSMCs. CONCLUSION METTL3-mediated m6A modification promoted VSMC phenotype transformation and made AS plaques more vulnerable via the miR-375-3p/PDK1 axis.
Collapse
Affiliation(s)
- Jingquan Chen
- Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, No.1 Maoyuan south road, Shunqing district, Nanchong, 637000, Sichuan, China
| | - Kun Lai
- Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, No.1 Maoyuan south road, Shunqing district, Nanchong, 637000, Sichuan, China
| | - Xi Yong
- Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, No.1 Maoyuan south road, Shunqing district, Nanchong, 637000, Sichuan, China
| | - Hongshun Yin
- Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, No.1 Maoyuan south road, Shunqing district, Nanchong, 637000, Sichuan, China
| | - Zhilong Chen
- Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, No.1 Maoyuan south road, Shunqing district, Nanchong, 637000, Sichuan, China
| | - Haifei Wang
- Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, No.1 Maoyuan south road, Shunqing district, Nanchong, 637000, Sichuan, China
| | - Kai Chen
- Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, No.1 Maoyuan south road, Shunqing district, Nanchong, 637000, Sichuan, China
| | - Jianghua Zheng
- Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, No.1 Maoyuan south road, Shunqing district, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
21
|
Zhao K, Mao Y, Ye X, Ma J, Sun L, Li P, Li Y. MicroRNA-210-5p alleviates cardiac fibrosis via targeting transforming growth factor-beta type I receptor in rats on high sodium chloride (NaCl)-based diet. Eur J Pharmacol 2021; 912:174587. [PMID: 34678242 DOI: 10.1016/j.ejphar.2021.174587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
The present study was designed to explore whether high sodium chloride (NaCl)-based diet (HSD) caused cardiac fibrosis regardless of blood pressure in Sprague-Dawley (SD) rats, and to further determine the effects and the underlying mechanisms of microRNA (miR)-210-5p on HSD-induced cardiac fibrosis in rats or NaCl-induced cardiac fibroblast activation in neonatal rat cardiac fibroblasts (NRCFs). The SD rats received 8% HSD, and NRCFs were treated with NaCl. The levels of collagen I, alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta 1 (TGF-β1) were increased in the heart of hypertension (HTN), hypertension-prone (HP) and hypertension-resistant (HR) rats on HSD in vivo. NaCl increased the levels of collagen I, α-SMA and TGF-β1 in NRCFs in vitro. The level of miR-210-5p was reduced in both NBD-induced rats' hearts and NaCl-treated NRCFs, which was consistent with the results of miR high-throughput sequencing in NRCFs. The HSD or NaCl-induced increases of collagen I, α-SMA and TGF-β1 were inhibited by miR-210-5p agomiR in vitro and in vivo, respectively. miR-210-5p antagomiR could mimic the pathological effects of NaCl in NRCFS. Bioinformatics analysis and luciferase reporter assays demonstrated that TGF-β type I receptor (TGFBR1) was a direct target gene of miR-210-5p. These results indicated that HSD resulted in cardiac fibrosis regardless of blood pressure. The upregulation of miR-210-5p could attenuate cardiac fibroblast activation in NRCFS via targeting TGFBR1. Thus, upregulating miR-210-5p might be a strategy for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yukang Mao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoman Ye
- Intensive Care Unit, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiazheng Ma
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|