1
|
Zhu X, Chen X, Zhao L, Zhang X, Li Y, Shen X. WTAP-Mediated m 6A Modification of circSMOC1 Accelerates the Tumorigenesis of Non-Small Cell Lung Cancer by Regulating miR-612/CCL28 Axis. J Cell Mol Med 2024; 28:e70207. [PMID: 39632285 PMCID: PMC11617116 DOI: 10.1111/jcmm.70207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/26/2024] [Accepted: 11/02/2024] [Indexed: 12/07/2024] Open
Abstract
Accumulating evidence reveals that deregulated N6-methyladenosine (m6A) RNA methylation and circular RNAs (circRNAs) are required for the tumorigenesis of non-small cell lung cancer (NSCLC). We aimed to uncover the underlying mechanisms by which WTAP-mediated m6A modification of circRNA contributes to NSCLC. The differentially-expressed circRNAs were identified by a circRNA profiling microarray. The association of circSMOC1 with clinicopathological features and prognosis in patients with NSCLC was estimated by fluorescence in situ hybridization. WTAP-mediated m6A modification of circRNA was validated by RNA immunoprecipitation (RIP) and methylated RIP (MeRIP) assays. The role of circSMOC1 in NSCLC cells was validated by in vitro functional experiments and in vivo tumorigenesis models. CircSMOC1-specific binding with miR-612 was verified by RIP, luciferase gene report and RT-qPCR assays. The effect of circSMOC1 and/or miR-612 on CCL28 expression was detected by RT-qPCR and Western blotting analysis. We found that the expression levels of circSMOC1 were elevated in NSCLC tissues and associated with TNM stage and poor survival in patients with NSCLC. Knockdown of circSMOC1 impaired the tumorigenesis of NSCLC in vitro and in vivo, whereas restored expression of circSMOC1 displayed the opposite effect. Furthermore, WTAP was upregulated in NSCLC and mediated m6A modification of circSMOC1 and circSMOC1 abolished WTAP knockdown-caused tumour-suppressive effects. Then, circSMOC1 acted as a sponge of miR-612 to upregulate CCL28 and miR-612 inhibitors abrogated circSMOC1 knockdown-caused anti-proliferation effects and CCL28 downregulation in NSCLC cells. Knockdown of CCL28 inhibited cell proliferation and invasion and counteracted miR-612 inhibitor-caused tumour-promoting effects. Our findings unveil that WTAP-mediated m6A modification of circSMOC1 facilitates the tumorigenesis of NSCLC by regulating the miR-612/CCL28 axis.
Collapse
Affiliation(s)
- Xun‐Xia Zhu
- Department of Thoracic SurgeryHuadong Hospital, Fudan UniversityShanghaiChina
| | - Xiao‐Yu Chen
- Department of Thoracic SurgeryHuadong Hospital, Fudan UniversityShanghaiChina
| | - Li‐Ting Zhao
- Department of NursingHuadong Hospital, Fudan UniversityShanghaiChina
| | - Xue‐Lin Zhang
- Department of Thoracic SurgeryHuadong Hospital, Fudan UniversityShanghaiChina
| | - Yi‐Ou Li
- Department of Critical Care MedicineTongren Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Xiao‐Yong Shen
- Department of Thoracic SurgeryHuadong Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
2
|
Zhou P, Deng Y, Sun Y, Wu D, Chen Y. Radiation-sensitive circRNA hsa_circ_0096498 inhibits radiation-induced liver fibrosis by suppressing EIF4A3 nuclear translocation to decrease CDC42 expression in hepatic stellate cells. J Transl Med 2024; 22:884. [PMID: 39354521 PMCID: PMC11446034 DOI: 10.1186/s12967-024-05695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Radiation-induced liver fibrosis (RILF) is a common manifestation of radiation-induced liver injury (RILI) and is caused primarily by activated hepatic stellate cells (HSCs). Circular RNAs (circRNAs) play critical roles in various diseases, but little is known about the function and mechanism of circRNAs in RILF. METHODS RNA pull-down and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to screen binding proteins of hsa_circ_0096498 (circ96498). RNA-binding protein immunoprecipitation, RNA pull-down and nuclear and cytoplasmic protein extraction were conducted to confirm the interaction between circ96498 and eukaryotic initiation factor 4A3 (EIF4A3). RNA sequencing was performed to screen target genes regulated by EIF4A3. HSCs with altered circ96498 and cell division cycle 42 (CDC42) expression were used to assess irradiated HSC activation. Circ96498 inhibition and CDC42 blockade were evaluated in RILF mouse models. RESULTS In this study, we identified a radiation-sensitive circ96498, which was highly expressed in the irradiated HSCs of paracancerous tissues from RILI patients. Circ96498 inhibited the proliferation but promoted the apoptosis of irradiated HSCs, suppressed the secretion of proinflammatory cytokines IL-1β, IL-6 and TNF-α, and decreased the expression of profibrotic markers (α-SMA and collagen 1) in irradiated HSCs. Mechanistically, irradiation induced the transport of EIF4A3 into the nucleus, and nuclear EIF4A3 increased the stability of CDC42 mRNA and increased CDC42 expression, thereby promoting HSC activation through the NF-κB and JNK/Smad2 pathways. However, the binding of circ96498 to EIF4A3 impeded the translocation of EIF4A3 into the nucleus, resulting in the inhibition of CDC42 expression and subsequent HSC activation. Furthermore, circ96498 knockdown promoted the development of the early and late stages of RILF in a mouse model, which was mitigated by CDC42 blockade. CONCLUSIONS Collectively, our findings elucidate the involvement of the circ96498/EIF4A3/CDC42 axis in inhibiting irradiated HSC activation, which offers a novel approach for RILF prevention and treatment.
Collapse
Affiliation(s)
- Peitao Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangzhou, Guangdong Province, 510515, China
| | - Yixun Deng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yining Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangzhou, Guangdong Province, 510515, China
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
- Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangzhou, Guangdong Province, 510515, China.
| | - Yuhan Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
- Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangzhou, Guangdong Province, 510515, China.
| |
Collapse
|
3
|
Zhang XY, Li SS, Gu YR, Xiao LX, Ma XY, Chen XR, Wang JL, Liao CH, Lin BL, Huang YH, Lian YF. CircPIAS1 promotes hepatocellular carcinoma progression by inhibiting ferroptosis via the miR-455-3p/NUPR1/FTH1 axis. Mol Cancer 2024; 23:113. [PMID: 38802795 PMCID: PMC11131253 DOI: 10.1186/s12943-024-02030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/24/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The role of circRNAs in hepatocellular carcinoma (HCC) progression remains unclear. CircPIAS1 (circBase ID: hsa_circ_0007088) was identified as overexpressed in HCC cases through bioinformatics analysis. This study aimed to investigate the oncogenic properties and mechanisms of circPIAS1 in HCC development. METHODS Functional analyses were conducted to assess circPIAS1's impact on HCC cell proliferation, migration, and ferroptosis. Xenograft mouse models were employed to evaluate circPIAS1's effects on tumor growth and pulmonary metastasis in vivo. Bioinformatics analysis, RNA immunoprecipitation, and luciferase reporter assays were utilized to elucidate the molecular pathways influenced by circPIAS1. Additional techniques, including RNA pulldown, fluorescence in situ hybridization (FISH), chromatin immunoprecipitation (ChIP), qPCR, and western blotting, were used to further explore the underlying mechanisms. RESULTS CircPIAS1 expression was elevated in HCC tissues and cells. Silencing circPIAS1 suppressed HCC cell proliferation and migration both in vitro and in vivo. Mechanically, circPIAS1 overexpression inhibited ferroptosis by competitively binding to miR-455-3p, leading to upregulation of Nuclear Protein 1 (NUPR1). Furthermore, NUPR1 promoted FTH1 transcription, enhancing iron storage in HCC cells and conferring resistance to ferroptosis. Treatment with ZZW-115, an NUPR1 inhibitor, reversed the tumor-promoting effects of circPIAS1 and sensitized HCC cells to lenvatinib. CONCLUSION This study highlights the critical role of circPIAS1 in HCC progression through modulation of ferroptosis. Targeting the circPIAS1/miR-455-3p/NUPR1/FTH1 regulatory axis may represent a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shan-Shan Li
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yu-Rong Gu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Le-Xin Xiao
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin-Yi Ma
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin-Ru Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia-Liang Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chun-Hong Liao
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bing-Liang Lin
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China.
| | - Yue-Hua Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Yi-Fan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Liang Y, Zhao B, Shen Y, Peng M, Qiao L, Liu J, Pan Y, Yang K, Liu W. Elucidating the Role of circTIAM1 in Guangling Large-Tailed Sheep Adipocyte Proliferation and Differentiation via the miR-485-3p/PLCB1 Pathway. Int J Mol Sci 2024; 25:4588. [PMID: 38731807 PMCID: PMC11083075 DOI: 10.3390/ijms25094588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Fat tissue-a vital energy storage organ-is intricately regulated by various factors, including circular RNA, which plays a significant role in modulating fat development and lipid metabolism. Therefore, this study aims to clarify the regulatory mechanism of sheep adipocyte proliferation and differentiation by investigating the involvement of circTIAM1, miR-485-3p, and its target gene PLCB1. Through previous sequencing data, circTIAM1 was identified in sheep adipocytes, with its circularization mechanism elucidated, confirming its cytoplasmic localization. Experimental evidence from RNase R treatment and transcription inhibitors highlighted that circTIAM1 is more stable than linear RNA. Additionally, circTIAM1 promoted sheep adipocyte proliferation and differentiation. Furthermore, bioinformatic analysis demonstrated a robust interaction between miR-485-3p and circTIAM1. Further experiments revealed that miR-485-3p inhibits fat cell proliferation and differentiation by inhibiting PLCB1, with circTIAM1 alleviating the inhibitory effect via competitive binding. In summary, our findings elucidate the mechanism through which circTIAM1 regulates Guangling Large-Tailed sheep adipocyte proliferation and differentiation via the miR-485-3p-PLCB1 pathway, offering a novel perspective for further exploring fat metabolism regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wenzhong Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
5
|
Li P, Huang D, Gu X. Exploring the dual role of circRNA and PI3K/AKT pathway in tumors of the digestive system. Biomed Pharmacother 2023; 168:115694. [PMID: 37832407 DOI: 10.1016/j.biopha.2023.115694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023] Open
Abstract
The interactions among circRNAs, the PI3K/AKT pathway, and their downstream effectors are intricately linked to their functional roles in tumorigenesis. Furthermore, the circRNAs/PI3K/AKT axis has been significantly implicated in the context of digestive system tumors. This axis is frequently abnormally activated in digestive cancers, including gastric cancer, colorectal cancer, pancreatic cancer, and others. Moreover, the overactivation of the circRNAs/PI3K/AKT axis promotes tumor cell proliferation, suppresses apoptosis, enhances invasive and metastatic capabilities, and contributes to drug resistance. In this regard, gaining crucial insights into the complex interaction between circRNAs and the PI3K/AKT pathway holds great potential for elucidating disease mechanisms, identifying diagnostic biomarkers, and designing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Penghui Li
- Department of General Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| |
Collapse
|
6
|
Jia W, Shi W, Yao Q, Mao Z, Chen C, Fan AQ, Wang Y, Zhao Z, Li J, Song W. Identifying immune infiltration by deep learning to assess the prognosis of patients with hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:12621-12635. [PMID: 37450030 DOI: 10.1007/s00432-023-05097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The treatment situation for hepatocellular carcinoma remains critical. The use of deep learning algorithms to assess immune infiltration is a promising new diagnostic tool. METHODS Patient data and whole slide images (WSIs) were obtained for the Xijing Hospital (XJH) cohort and TCGA cohort. We wrote programs using Visual studio 2022 with C# language to segment the WSI into tiles. Pathologists classified the tiles and later trained deep learning models using the ResNet 101V2 network via ML.NET with the TensorFlow framework. Model performance was evaluated using AccuracyMicro versus AccuracyMacro. Model performance was examined using ROC curves versus PR curves. The percentage of immune infiltration was calculated using the R package survminer to calculate the intergroup cutoff, and the Kaplan‒Meier method was used to plot the overall survival curve of patients. Cox regression was used to determine whether the percentage of immune infiltration was an independent risk factor for prognosis. A nomogram was constructed, and its accuracy was verified using time-dependent ROC curves with calibration curves. The CIBERSORT algorithm was used to assess immune infiltration between groups. Gene Ontology was used to explore the pathways of differentially expressed genes. RESULTS There were 100 WSIs and 165,293 tiles in the training set. The final deep learning models had an AccuracyMicro of 97.46% and an AccuracyMacro of 82.28%. The AUCs of the ROC curves on both the training and validation sets exceeded 0.95. The areas under the classification PR curves exceeded 0.85, except that of the TLS on the validation set, which might have had poor results (0.713) due to too few samples. There was a significant difference in OS between the TIL classification groups (p < 0.001), while there was no significant difference in OS between the TLS groups (p = 0.294). Cox regression showed that TIL percentage was an independent risk factor for prognosis in HCC patients (p = 0.015). The AUCs according to the nomogram were 0.714, 0.690, and 0.676 for the 1-year, 2-year, and 5-year AUCs in the TCGA cohort and 0.756, 0.797, and 0.883 in the XJH cohort, respectively. There were significant differences in the levels of infiltration of seven immune cell types between the two groups of samples, and gene ontology showed that the differentially expressed genes between the groups were immune related. Their expression levels of PD-1 and CTLA4 were also significantly different. CONCLUSION We constructed and tested a deep learning model that evaluates the immune infiltration of liver cancer tissue in HCC patients. Our findings demonstrate the value of the model in assessing patient prognosis, immune infiltration and immune checkpoint expression levels.
Collapse
Affiliation(s)
- Weili Jia
- Xi'an Medical University, Xi'an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wen Shi
- Xi'an Medical University, Xi'an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | - Zhenzhen Mao
- Xi'an Medical University, Xi'an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chao Chen
- Xi'an Medical University, Xi'an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - AQiang Fan
- Xi'an Medical University, Xi'an, China
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanfang Wang
- Xi'an Medical University, Xi'an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zihao Zhao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jipeng Li
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
7
|
Song J, Ge Y, Dong M, Guan Q, Ju M, Song X, Han J, Zhao L. Molecular interplay between EIF4 family and circular RNAs in cancer: Mechanisms and therapeutics. Eur J Pharmacol 2023:175867. [PMID: 37369297 DOI: 10.1016/j.ejphar.2023.175867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
The eukaryotic translation initiation factor 4 (EIF4) family is a major contributor to the recruitment of mRNAs to ribosomes during the initial translation stage in eukaryotes, whose dysregulation either allows for cancer transformation or prevents disordered cancerous cell growth. Circular RNAs (circRNAs), which exhibit distinctive structures and are widely expressed in eukaryotes, are anticipated to be a clinical diagnostic biomarker for cancer therapy. There is considerable evidence that EIF4s can influence the biogenesis, transport, and function of circRNAs and, in turn, circRNAs can control the expressions of EIF4s through certain molecular pathways. Herein, we primarily review the emerging studies of the EIF4 family and pinpoint the roles of dysregulated EIF4s in cancer. We also evaluate the patterns of intricate interactions between circRNAs and EIF4s and discuss the potential utility of circRNA-based therapeutics targeting EIF4s in clinical cancer research.
Collapse
Affiliation(s)
- Jia Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, PR China.
| | - Yuexin Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, PR China.
| | - Mingyan Dong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, PR China.
| | - Qiutong Guan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, PR China.
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, PR China.
| | - Xueyi Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, PR China.
| | - Jiali Han
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, PR China.
| |
Collapse
|
8
|
Li Y, Zheng X, Wang J, Sun M, Li D, Wang Z, Li J, Li Y, Liu Y. Exosomal circ-AHCY promotes glioblastoma cell growth via Wnt/β-catenin signaling pathway. Ann Clin Transl Neurol 2023; 10:865-878. [PMID: 37150844 PMCID: PMC10270256 DOI: 10.1002/acn3.51743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive brain tumor. Reportedly, circular RNAs (circRNAs) participate in regulation of the development and progression of diverse cancers, including GBM. METHODS Dysregulated circRNAs in GBM tissues were screened out from GEO database. The expression of candidate circRNAs in GBM cells was measured by qRT-PCR. Loss-of function assays, including colony formation assay, EdU assay, TUNEL assay, and flow cytometry analysis were conducted to determine the effects of circ-AHCY knockdown on GBM cell proliferation and apoptosis. Animal study was further used to prove the inhibitory effect of circ-AHCY silencing on GMB cell growth. Mechanistic experiments like luciferase reporter, RNA pull-down and RNA-binding protein immunoprecipitation (RIP) assays were performed to unveil the downstream molecular mechanism of circ-AHCY. Nanosight Nanoparticle Tracking Analysis (NTA) and PKH67 staining were applied to identify the existence of exosomes. RESULTS Circ-AHCY was confirmed to be highly expressed in GBM cells. Circ-AHCY silencing suppressed GBM cell proliferation both in vitro and in vivo. Mechanistically, circ-AHCY activates Wnt/β-catenin signaling pathway by sequestering miR-1294 to up-regulate MYC which activated CTNNB1 transcription. It was also found that circ-AHCY recruited EIF4A3 to stabilize TCF4 mRNA. Enhanced levels of TCF4 and β-catenin contributed to the stability of TCF4/β-catenin complex. In turn, TCF4/β-catenin complex strengthened the transcriptional activity of circ-AHCY. Exosomal circ-AHCY derived from GBM cells induced abnormal proliferation of normal human astrocytes (NHAs). CONCLUSION Exosomal circ-AHCY forms a positive feedback loop with Wnt/β-catenin signaling pathway to promote GBM cell growth.
Collapse
Affiliation(s)
- Yuhui Li
- Department of NeurosurgeryTangshan People's HospitalTangshanHebei063001China
| | - Xuan Zheng
- The Cancer InstituteTangshan People's HospitalTangshanHebei063001China
| | - Jiangong Wang
- Department of ChemoradiotherapyTangshan People's HospitalTangshanHebei063001China
| | - Mingyang Sun
- Department of NeurosurgeryTangshan People's HospitalTangshanHebei063001China
| | - Dan Li
- The Cancer InstituteTangshan People's HospitalTangshanHebei063001China
| | - Zhuo Wang
- The Cancer InstituteTangshan People's HospitalTangshanHebei063001China
| | - Jingwu Li
- The Cancer InstituteTangshan People's HospitalTangshanHebei063001China
| | - Yufeng Li
- The Cancer InstituteTangshan People's HospitalTangshanHebei063001China
| | - Yongliang Liu
- Department of NeurosurgeryTangshan People's HospitalTangshanHebei063001China
| |
Collapse
|
9
|
Mo Z, Li R, Cao C, Li Y, Zheng S, Wu R, Xue J, Hu J, Meng H, Zhai H, Huang W, Zheng F, Zhou B. Splicing factor SNRPA associated with microvascular invasion promotes hepatocellular carcinoma metastasis through activating NOTCH1/Snail pathway and is mediated by circSEC62/miR-625-5p axis. ENVIRONMENTAL TOXICOLOGY 2023; 38:1022-1037. [PMID: 36715182 DOI: 10.1002/tox.23745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/10/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Microvascular invasion (MVI) is a crucial risk factor related to the metastasis of hepatocellular carcinoma (HCC), but the underlying mechanisms remain to be revealed. Characterizing the inherent mechanisms of MVI may aid in the development of effective treatment strategies to improve the prognosis of HCC patients with metastasis. Through the Gene Expression Omnibus (GEO) database, we identified that small nuclear ribonucleoprotein polypeptide A (SNRPA) was related to MVI in HCC. SNRPA was overexpressed in MVI-HCC and correlated with poor patient survival. Mechanistically, SNRPA promoted the epithelial-mesenchymal transition (EMT)-like process for HCC cells to accelerate metastasis by activating the NOTCH1/Snail pathway in vitro and in vivo. Importantly, circSEC62 upregulated SNRPA expression in HCC cells via miR-625-5p sponging. Taking these results together, our study identified a novel regulatory mechanism among SNRPA, miR-625-5p, circSEC62 and the NOTCH1/Snail pathway in HCC, which promoted metastasis of HCC and may provide effective suggestions for improving the prognosis of HCC patients with metastasis.
Collapse
Affiliation(s)
- Zhaohong Mo
- Fifth Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruixi Li
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chuanlin Cao
- Fifth Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shiyang Zheng
- Department of Head and Neck surgery, Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Runxin Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jinhua Xue
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Jingxiong Hu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Meng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hang Zhai
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weiling Huang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fang Zheng
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Boxuan Zhou
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
10
|
Paskeh MDA, Ghadyani F, Hashemi M, Abbaspour A, Zabolian A, Javanshir S, Razzazan M, Mirzaei S, Entezari M, Goharrizi MASB, Salimimoghadam S, Aref AR, Kalbasi A, Rajabi R, Rashidi M, Taheriazam A, Sethi G. Biological impact and therapeutic perspective of targeting PI3K/Akt signaling in hepatocellular carcinoma: Promises and Challenges. Pharmacol Res 2023; 187:106553. [PMID: 36400343 DOI: 10.1016/j.phrs.2022.106553] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Abbaspour
- Cellular and Molecular Research Center,Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhossein Zabolian
- Resident of department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Alireza Kalbasi
- Department of Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
11
|
Han Q, Wang M, Dong X, Wei F, Luo Y, Sun X. Non-coding RNAs in hepatocellular carcinoma: Insights into regulatory mechanisms, clinical significance, and therapeutic potential. Front Immunol 2022; 13:985815. [PMID: 36300115 PMCID: PMC9590653 DOI: 10.3389/fimmu.2022.985815] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a complex and heterogeneous malignancy with high incidence and poor prognosis. In addition, owing to the lack of diagnostic and prognostic markers, current multimodal treatment options fail to achieve satisfactory outcomes. Tumor immune microenvironment (TIME), angiogenesis, epithelial-mesenchymal transition (EMT), invasion, metastasis, metabolism, and drug resistance are important factors influencing tumor development and therapy. The intercellular communication of these important processes is mediated by a variety of bioactive molecules to regulate pathophysiological processes in recipient cells. Among these bioactive molecules, non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), account for a large part of the human transcriptome, and their dysregulation affects the progression of HCC. The purpose of this review is to evaluate the potential regulatory mechanisms of ncRNAs in HCC, summarize novel biomarkers from somatic fluids (plasma/serum/urine), and explore the potential of some small-molecule modulators as drugs. Thus, through this review, we aim to contribute to a deeper understanding of the regulatory mechanisms, early diagnosis, prognosis, and precise treatment of HCC.
Collapse
Affiliation(s)
- Qin Han
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mengchen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Wei
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| |
Collapse
|
12
|
Wang S, Xiao F, Li J, Fan X, He Z, Yan T, Yang M, Yang D. Circular RNAs Involved in the Regulation of the Age-Related Pathways. Int J Mol Sci 2022; 23:ijms231810443. [PMID: 36142352 PMCID: PMC9500598 DOI: 10.3390/ijms231810443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 12/04/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently circular noncoding RNAs that have been extensively studied in recent years. Aging is a process related to functional decline that is regulated by signal transduction. An increasing number of studies suggest that circRNAs can regulate aging and multiple age-related diseases through their involvement in age-related signaling pathways. CircRNAs perform several biological functions, such as acting as miRNA sponges, directly interacting with proteins, and regulating transcription and translation to proteins or peptides. Herein, we summarize research progress on the biological functions of circRNAs in seven main age-related signaling pathways, namely, the insulin-insulin-like, PI3K-AKT, mTOR, AMPK, FOXO, p53, and NF-κB signaling pathways. In these pathways, circRNAs mainly function as miRNA sponges. In this review, we suggest that circRNAs are widely involved in the regulation of the main age-related pathways and are potential biomarkers for aging and age-related diseases.
Collapse
Affiliation(s)
- Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiamei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (M.Y.); (D.Y.); Tel.: +86-28-86290991 (M.Y.)
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (M.Y.); (D.Y.); Tel.: +86-28-86290991 (M.Y.)
| |
Collapse
|
13
|
The FOXO family of transcription factors: key molecular players in gastric cancer. J Mol Med (Berl) 2022; 100:997-1015. [PMID: 35680690 DOI: 10.1007/s00109-022-02219-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Gastric cancer (GC) is the fifth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death with an oncological origin. Despite its decline in incidence and mortality in recent years, GC remains a global public problem that seriously threatens patients' health and lives. The forkhead box O proteins (FOXOs) are a family of evolutionarily conserved transcription factors (TFs) with crucial roles in cell fate decisions. In mammals, the FOXO family consists of four members FOXO1, 3a, 4, and 6. FOXOs play crucial roles in a variety of biological processes, such as development, metabolism, and stem cell maintenance, by regulating the expression of their target genes in space and time. An accumulating amount of evidence has shown that the dysregulation of FOXOs is involved in GC progression by affecting multiple cellular processes, including proliferation, apoptosis, invasion, metastasis, cell cycle progression, carcinogenesis, and resistance to chemotherapeutic drugs. In this review, we systematically summarize the recent findings on the regulatory mechanisms of FOXO family expression and activity and elucidate its roles in GC progression. Moreover, we also highlight the clinical implications of FOXOs in GC treatment.
Collapse
|
14
|
Jia W, Zhang T, Yao Q, Li J, Nie Y, Lei X, Mao Z, Wang Y, Shi W, Song W. Tertiary Lymphatic Structures in Primary Hepatic Carcinoma: Controversy Cannot Overshadow Hope. Front Immunol 2022; 13:870458. [PMID: 35844587 PMCID: PMC9278517 DOI: 10.3389/fimmu.2022.870458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Tertiary lymphoid structures (TLSs) are organized aggregates of immune cells found in the tumor microenvironment. TLS can influence primary hepatic carcinoma (PHC) occurrence and have an active role in cancer. TLS can promote or inhibit the growth of PHC depending on their location, and although available findings are controversial, they suggest that TLS have a protective role in PHC tissues and a non-protective role in paracancerous tissues. In addition, the cellular composition of TLS can also influence the outcome of PHC. As an immunity marker, TLS can act as a marker of immunotherapy to predict its effect and help to identify patients who will respond well to immunotherapy. Modulation of TLS formation through the use of chemokines/cytokines, immunotherapy, or induction of high endothelial vein to interfere with tumor growth has been studied extensively in PHC and other cancers. In addition, new tools such as genetic interventions, cellular crosstalk, preoperative radiotherapy, and advances in materials science have been shown to influence the prognosis of malignant tumors by modulating TLS production. These can also be used to develop PHC treatment.
Collapse
Affiliation(s)
- Weili Jia
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Tianchen Zhang
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qianyun Yao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jianhui Li
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ye Nie
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinjun Lei
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhenzhen Mao
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanfang Wang
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wen Shi
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Wenjie Song,
| |
Collapse
|
15
|
Wang L, Li B, Yi X, Xiao X, Zheng Q, Ma L. Circ_0036412 affects the proliferation and cell cycle of hepatocellular carcinoma via hedgehog signaling pathway. J Transl Med 2022; 20:154. [PMID: 35382824 PMCID: PMC8981839 DOI: 10.1186/s12967-022-03305-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/12/2022] [Indexed: 12/27/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC), as the most common type of liver cancer, is characterized by high recurrence and metastasis. Circular RNA (circRNA) circ_0036412 was selected for studying the underlying mechanisms of HCC. Methods Quantitative real time-polymerase chain reaction (qRT-PCR) and western blot analyzed gene and protein expression. Functional experiments evaluated HCC cell proliferation, apoptosis and cell cycle in vitro. In vivo experiments detected HCC carcinogenesis in vivo. Fluorescence in situ hybridization (FISH) assays evaluated the subcellular distribution. Luciferase reporter, Chromatin immunoprecipitation (ChIP), DNA pulldown, RNA-binding protein immunoprecipitation (RIP), and RNA pulldown assays detected the underlying mechanisms. Results Circ_0036412 is overexpressed in HCC cells and features circular structure. PRDM1 activates circ_0036412 transcription to regulate the proliferation and cell cycle of HCC cells in vitro. Circ_0036412 modulates Hedgehog pathway. GLI2 propels HCC growth in vivo. Circ_0036412 up-regulates GLI2 expression by competitively binding to miR-579-3p, thus promoting the proliferation and inhibiting cell cycle arrest of HCC cells. Circ_0036412 stabilizes GLI2 expression by recruiting ELAVL1. Circ_0036412 propels the proliferation and inhibits cell cycle arrest of HCC cells in vitro through Hedgehog pathway. Conclusions Circ_0036412 affects the proliferation and cell cycle of HCC via Hedgehog signaling pathway. It offers an insight into the targeted therapies of HCC. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03305-x.
Collapse
Affiliation(s)
- Liyan Wang
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Xiufeng District, Guilin, 541001, Guangxi, China
| | - Bin Li
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Xiufeng District, Guilin, 541001, Guangxi, China.
| | - Xiaoyuan Yi
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Xiufeng District, Guilin, 541001, Guangxi, China
| | - Xuhua Xiao
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Xiufeng District, Guilin, 541001, Guangxi, China
| | - Qinghua Zheng
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Xiufeng District, Guilin, 541001, Guangxi, China
| | - Lei Ma
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Xiufeng District, Guilin, 541001, Guangxi, China
| |
Collapse
|
16
|
Gong X, Lu X, Cao J, Liu H, Chen H, Bao F, Shi X, Cong H. Serum hsa_circ_0087776 as a new oncologic marker for the joint diagnosis of multiple myeloma. Bioengineered 2021; 12:12447-12459. [PMID: 34905439 PMCID: PMC8810131 DOI: 10.1080/21655979.2021.2005875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy caused by abnormal proliferation of bone marrow plasma cells, which lacks diagnostic markers and has a general prognosis. At present, the understanding of its pathogenesis provides the basis for the combined diagnosis and new targeted therapy of the disease. In this study, quantitative real-time PCR was used to detect 136 MM patients and 74 healthy controls, and the clinical application value of hsa_circ_0087776 as a new tumor marker and combined diagnosis was evaluated. The results showed that the expression of hsa_circ_0087776 was significantly lower in serum of MM patients (P-value < 0.0001), and the expression was consistent in MM cells. In the analysis of clinicopathological parameters, it was found that there were significant statistical differences with MM stage and renal injury. In addition, it significantly increased the sensitivity with ALB, β₂-MG joint diagnosis, to provide a basis for diagnosis, improve the prognosis of the disease, improve the survival of patients and quality of life. These studies suggest that hsa_circ_0087776 can be used as a new oncology marker for the combined diagnosis of MM. Impact statement: Various evidences have shown that the role of circRNA in the occurrence and development of diseases is potentially unknown and untapped. Therefore, it has a broad prospect to find circRNA specifically expressed in MM patients for combined diagnosis and targeted therapy of MM. However, MM lacks such specific tumor markers. Therefore, the discovery of new specific tumor markers for combined diagnosis is an important milestone in the development of medical history. In the research, we founded hsa_circ_0087776 can be used as a new oncology marker for combined diagnosis of MM.
Collapse
Affiliation(s)
- Xingxing Gong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong P.R. China
| | - Xu Lu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong P.R. China
| | - Jing Cao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong P.R. China
| | - Huan Liu
- Neurosurgery Department, Linqing People's Hospital, Linqing, P.R. China
| | - Hongmei Chen
- Vip Ward, Affiliated Hospital of Nantong University, Nantong P.R. China
| | - Fang Bao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong P.R. China
| | - Xiuying Shi
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong P.R. China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong P.R. China.,Department of Blood Transfusion, Affiliated Hospital of Nantong University, Nantong P.R. China
| |
Collapse
|