1
|
Liao S, Kang K, Yao Z, Lu Y. Nervous system contributions to small cell lung cancer: Lessons from diverse oncological studies. Biochim Biophys Acta Rev Cancer 2025; 1880:189252. [PMID: 39725176 DOI: 10.1016/j.bbcan.2024.189252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The nervous system plays a vital role throughout the entire lifecycle and it may regulate the formation, development and metastasis of tumors. Small cell lung cancer is a typical neuroendocrine tumor, and it is naturally equipped with neurotropism. In this review, we firstly summarize current preclinical and clinical evidence to demonstrate the reciprocal crosstalk among the nervous system, tumor, and tumor microenvironment in various ways, including neurotransmitter-receptor pathways, innervations of nerve fibers, different types of synapse formation by neurons, astrocytes, and cancer cells, neoneurogenesis. Futherly, we emphasize how the nervous system interacts with small cell lung cancer and discuss the limitations of current research methods for examining the interactions. We propose that integrating neuroscience, development biology, and tumor biology can be a promising direction to provide new insights into development and metastasis of small cell lung cancer and raise some novel treatment strategies.
Collapse
Affiliation(s)
- Shuangsi Liao
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Kang
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuoran Yao
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China.
| | - You Lu
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Ait-Ahmad K, Ak C, Thibault G, Chang YH, Eksi SE. AxonFinder: Automated segmentation of tumor innervating neuronal fibers. Heliyon 2025; 11:e41209. [PMID: 39807499 PMCID: PMC11728976 DOI: 10.1016/j.heliyon.2024.e41209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Neurosignaling is increasingly recognized as a critical factor in cancer progression, where neuronal innervation of primary tumors contributes to the disease's advancement. This study focuses on segmenting individual axons within the prostate tumor microenvironment, which have been challenging to detect and analyze due to their irregular morphologies. We present a novel deep learning-based approach for the automated segmentation of axons, AxonFinder, leveraging a U-Net model with a ResNet-101 encoder, based on a multiplexed imaging approach. Utilizing a dataset of whole-slide images from low-, intermediate-, and high-risk prostate cancer patients, we manually annotated axons to train our model, achieving significant accuracy in detecting axonal structures that were previously hard to segment. Our method achieves high performance, with a validation F1-score of 94 % and IoU of 90.78 %. Besides, the morphometric analysis that shows strong alignment between manual annotations and automated segmentation with nerve length and tortuosity closely matching manual measurements. Furthermore, our analysis includes a comprehensive assessment of axon density and morphological features across different CAPRA-S prostate cancer risk categories revealing a significant decline in axon density correlating with higher CAPRA-S prostate cancer risk scores. Our paper suggests the potential utility of neuronal markers in the prognostic assessment of prostate cancer in aiding the pathologist's assessment of tumor sections and advancing our understanding of neurosignaling in the tumor microenvironment.
Collapse
Affiliation(s)
- Kaoutar Ait-Ahmad
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Cigdem Ak
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering (BME), Oregon Health and Science University, Portland, OR, USA
| | - Guillaume Thibault
- Department of Biomedical Engineering (BME), Oregon Health and Science University, Portland, OR, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering (BME), Oregon Health and Science University, Portland, OR, USA
| | - Sebnem Ece Eksi
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering (BME), Oregon Health and Science University, Portland, OR, USA
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
3
|
Zahalka AH, Fram E, Garden E, Howard L, Wiggins E, Babar M, Annam J, Reagan A, Eilender B, de Hoedt A, Freedland SJ, Tewari A, Watts KL. Association between beta-blocker atenolol use and prostate cancer upgrading in active surveillance. BJUI COMPASS 2024; 5:1095-1100. [PMID: 39539558 PMCID: PMC11557265 DOI: 10.1002/bco2.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Objectives The objective of this study is to investigate the association between the use of beta-adrenergic antagonist atenolol and risk of pathologic upgrade in patients on active surveillance, considering growing literature implicating adrenergic innervation with disease progression mediated through beta-adrenergic signalling. Patients and Methods Men with low-risk or favourable intermediate-risk prostate cancer who were placed on an active surveillance protocol between 2006 and 2020 across three diverse urban hospitals were included. Exposure was duration of atenolol use, and outcome was pathologic grade group upgrading (to GG ≥ 3) on final prostate biopsy. Cox proportional hazard regression models were used to determine the associations between atenolol use and risk of upgrading with time, on a per-examination basis. Results A total of 467 men with initial GG ≤ 2 were included. Postdiagnosis atenolol use was associated with a decreased risk of pathologic upgrade to GG ≥ 3 on final repeat biopsy (HR 0.81, 95% CI 0.39-0.98). Longer duration of postdiagnosis atenolol use (>2 years) and greater cumulative atenolol dose (>730 defined daily doses) were associated with a more pronounced decreased risk of upgrade to GG ≥ 3 (HR 0.41, 95% CI 0.05-0.88, and HR 0.32, 95% CI 0.15-0.99, respectively). Initiation of atenolol use prior to prostate cancer diagnosis had a slightly greater protective effect than drug initiation postdiagnosis (HR 0.79, 95% CI 0.43-0.98, and HR 0.83, 95% CI 0.30-0.99, respectively). Conclusions Beta-adrenergic blockade with atenolol use in men on active surveillance is associated with a reduced risk for clinically significant grade group pathologic upgrade.
Collapse
Affiliation(s)
- Ali H. Zahalka
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of UrologyUT Southwestern Medical CenterDallasTexasUSA
| | - Ethan Fram
- Department of UrologyAlbert Einstein College of Medicine/Montefiore Medical CenterBronxNew YorkUSA
| | - Evan Garden
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Lauren Howard
- Division of UrologyCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Emily Wiggins
- Division of UrologyCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Mustufa Babar
- Department of UrologyAlbert Einstein College of Medicine/Montefiore Medical CenterBronxNew YorkUSA
| | - Jay Annam
- Department of UrologyAlbert Einstein College of Medicine/Montefiore Medical CenterBronxNew YorkUSA
| | - Allison Reagan
- Division of UrologyCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Benjamin Eilender
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of UrologyUT Southwestern Medical CenterDallasTexasUSA
| | - Amanda de Hoedt
- Section of UrologyDurham VA Medical CenterDurhamNorth CarolinaUSA
| | - Stephen J. Freedland
- Division of UrologyCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Section of UrologyDurham VA Medical CenterDurhamNorth CarolinaUSA
| | - Ash Tewari
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Kara L. Watts
- Department of UrologyAlbert Einstein College of Medicine/Montefiore Medical CenterBronxNew YorkUSA
| |
Collapse
|
4
|
Ait-Ahmad K, Ak C, Thibault G, Chang YH, Eksi SE. AxonFinder: Automated segmentation of tumor innervating neuronal fibers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611089. [PMID: 39282317 PMCID: PMC11398301 DOI: 10.1101/2024.09.03.611089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Neurosignaling is increasingly recognized as a critical factor in cancer progression, where neuronal innervation of primary tumors contributes to the disease's advancement. This study focuses on segmenting individual axons within the prostate tumor microenvironment, which have been challenging to detect and analyze due to their irregular morphologies. We present a novel deep learning-based approach for the automated segmentation of axons, AxonFinder, leveraging a U-Net model with a ResNet-101 encoder, based on a multiplexed imaging approach. Utilizing a dataset of whole-slide images from low-, intermediate-, and high-risk prostate cancer patients, we manually annotated axons to train our model, achieving significant accuracy in detecting axonal structures that were previously hard to segment. Our analysis includes a comprehensive assessment of axon density and morphological features across different CAPRA-S prostate cancer risk categories, providing insights into the correlation between tumor innervation and cancer progression. Our paper suggests the potential utility of neuronal markers in the prognostic assessment of prostate cancer in aiding the pathologist's assessment of tumor sections and advancing our understanding of neurosignaling in the tumor microenvironment.
Collapse
|
5
|
Zhang Z, Lv ZG, Lu M, Li H, Zhou J. Nerve-tumor crosstalk in tumor microenvironment: From tumor initiation and progression to clinical implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189121. [PMID: 38796026 DOI: 10.1016/j.bbcan.2024.189121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
The autonomic nerve system (ANS) innervates organs and tissues throughout the body and maintains functional balance among various systems. Further investigations have shown that excessive activation of ANS not only causes disruption of homeostasis, but also may promote tumor formation. In addition, the dynamic interaction between nerve and tumor cells in the tumor microenvironment also regulate tumor progression. On the one hand, nerves are passively invaded by tumor cells, that is, perineural invasion (PNI). On the other hand, compared with normal tissues, tumor tissues are subject to more abundant innervation, and nerves can influence tumor progression through regulating tumor proliferation, metastasis and drug resistance. A large number of studies have shown that nerve-tumor crosstalk, including PNI and innervation, is closely related to the prognosis of patients, and contributes to the formation of cancer pain, which significantly deteriorates the quality of life for patients. These findings suggest that nerve-tumor crosstalk represents a potential target for anti-tumor therapies and the management of cancer pain in the future. In this review, we systematically describe the mechanism by which nerve-tumor crosstalk regulates tumorigenesis and progression.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Surgery, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Zhen Gang Lv
- Department of Surgery, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Miao Lu
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Haifeng Li
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Jiahua Zhou
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing 210009, Jiangsu Province, China.
| |
Collapse
|
6
|
Wu S, Li M, Chen F, Zeng Y, Xu C. Inhibition of β2-adrenergic receptor regulates necroptosis in prostate cancer cell. Heliyon 2024; 10:e31865. [PMID: 38845899 PMCID: PMC11153256 DOI: 10.1016/j.heliyon.2024.e31865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
As the malignant tumor with the highest incidence in male, prostate cancer poses a significant threat to the reproductive health of elderly men. Our previous studies have shown that promoting necroptosis of cancer cells can effectively inhibit cancer cell proliferation. This study includes lentivirus-mediated knockdown of β2AR which resulted in stable transfectants that exhibited an increased ability to form clones compared to that of the negative control group. In the protein and mRNA levels, necroptosis associated RIP and mixed lineage kinase domain-like (MLKL) were significantly higher in the treatment group than they were in the control group. Furthermore, cells treated with propranolol exhibited necrotic morphology as observed by transmission electron microscopy. The combination of β2AR suppression and necroptosis inhibitors resulted in a more potent suppression of cell proliferation compared to that observed in the control and negative control groups. Additionally, it elevated in the necrosis rate as determined by flow cytometry. Immunofluorescence staining revealed enhanced RIP and MLKL expression in the sh-β2AR group compared to levels in the negative control group. Co-immunoprecipitation experiments detected an interaction between β2AR and RIP. MLKL and RIPK3 levels were significantly higher in xenograft tumor sections from the sh-β2AR group compared to levels in the sh-NC group. To conclude, our research indicates the proliferation of PC-3 and DU-145 cprostate cancer cells can be suppressed by inhibiting β2AR, and this occurs through the RIP/MLKL-mediated pathway of necroptosis.
Collapse
Affiliation(s)
| | | | - Fangfang Chen
- Institution of Life Science, Chongqing Medical University, Chongqing, China
| | - Yan Zeng
- Institution of Life Science, Chongqing Medical University, Chongqing, China
| | - Chen Xu
- Corresponding author. Institution of Life Science, Chongqing Medical University, 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
7
|
Jing N, Du X, Liang Y, Tao Z, Bao S, Xiao H, Dong B, Gao WQ, Fang YX. PAX6 promotes neuroendocrine phenotypes of prostate cancer via enhancing MET/STAT5A-mediated chromatin accessibility. J Exp Clin Cancer Res 2024; 43:144. [PMID: 38745318 PMCID: PMC11094950 DOI: 10.1186/s13046-024-03064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Neuroendocrine prostate cancer (NEPC) is a lethal subset of prostate cancer which is characterized by neuroendocrine differentiation and loss of androgen receptor (AR) signaling. Growing evidence reveals that cell lineage plasticity is crucial in the failure of NEPC therapies. Although studies suggest the involvement of the neural transcription factor PAX6 in drug resistance, its specific role in NEPC remains unclear. METHODS The expression of PAX6 in NEPC was identified via bioinformatics and immunohistochemistry. CCK8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay were used to illustrate the key role of PAX6 in the progression of in vitro. ChIP and Dual-luciferase reporter assays were conducted to confirm the binding sequences of AR in the promoter region of PAX6, as well as the binding sequences of PAX6 in the promoter regions of STAT5A and MET. For in vivo validation, the xenograft model representing NEPC subtype underwent pathological analysis to verify the significant role of PAX6 in disease progression. Complementary diagnoses were established through public clinical datasets and transcriptome sequencing of specific cell lines. ATAC-seq was used to detect the chromatin accessibility of specific cell lines. RESULTS PAX6 expression was significantly elevated in NEPC and negatively regulated by AR signaling. Activation of PAX6 in non-NEPC cells led to NE trans-differentiation, while knock-down of PAX6 in NEPC cells inhibited the development and progression of NEPC. Importantly, loss of AR resulted in an enhanced expression of PAX6, which reprogramed the lineage plasticity of prostate cancer cells to develop NE phenotypes through the MET/STAT5A signaling pathway. Through ATAC-seq, we found that a high expression level of PAX6 elicited enhanced chromatin accessibility, mainly through attenuation of H4K20me3, which typically causes chromatin silence in cancer cells. CONCLUSION This study reveals a novel neural transcription factor PAX6 could drive NEPC progression and suggest that it might serve as a potential therapeutic target for the management of NEPC.
Collapse
Affiliation(s)
- Nan Jing
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
- Med-X Research Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xinxing Du
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - ZhenKeke Tao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shijia Bao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huixiang Xiao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Med-X Research Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yu-Xiang Fang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
8
|
Blasko F, Horvathova L. The relationship between the tumor and its innervation: historical, methodical, morphological, and functional assessments - A minireview. Endocr Regul 2024; 58:68-82. [PMID: 38563296 DOI: 10.2478/enr-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The acceptance of the tumor as a non-isolated structure within the organism has opened a space for the study of a wide spectrum of potential direct and indirect interactions, not only between the tumor tissue and its vicinity, but also between the tumor and its macroenvironment, including the nervous system. Although several lines of evidence have implicated the nervous system in tumor growth and progression, for many years, researchers believed that tumors lacked innervation and the notion of indirect neuro-neoplastic interactions via other systems (e.g., immune, or endocrine) predominated. The original idea that tumors are supplied not only by blood and lymphatic vessels, but also autonomic and sensory nerves that may influence cancer progression, is not a recent phenomenon. Although in the past, mainly due to the insufficiently sensitive methodological approaches, opinions regarding the presence of nerves in tumors were inconsistent. However, data from the last decade have shown that tumors are able to stimulate the formation of their own innervation by processes called neo-neurogenesis and neo-axonogenesis. It has also been shown that tumor infiltrating nerves are not a passive, but active components of the tumor microenvironment and their presence in the tumor tissue is associated with an aggressive tumor phenotype and correlates with poor prognosis. The aim of the present review was to 1) summarize the available knowledge regarding the course of tumor innervation, 2) present the potential mechanisms and pathways for the possible induction of new nerve fibers into the tumor microenvironment, and 3) highlight the functional significance/consequences of the nerves infiltrating the tumors.
Collapse
Affiliation(s)
- Filip Blasko
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Lubica Horvathova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
9
|
Ni B, Yin Y, Li Z, Wang J, Wang X, Wang K. Crosstalk Between Peripheral Innervation and Pancreatic Ductal Adenocarcinoma. Neurosci Bull 2023; 39:1717-1731. [PMID: 37347365 PMCID: PMC10603023 DOI: 10.1007/s12264-023-01082-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive lethal malignancy, characterized by late diagnosis, aggressive growth, and therapy resistance, leading to a poor overall prognosis. Emerging evidence shows that the peripheral nerve is an important non-tumor component in the tumor microenvironment that regulates tumor growth and immune escape. The crosstalk between the neuronal system and PDAC has become a hot research topic that may provide novel mechanisms underlying tumor progression and further uncover promising therapeutic targets. In this review, we highlight the mechanisms of perineural invasion and the role of various types of tumor innervation in the progression of PDAC, summarize the potential signaling pathways modulating the neuronal-cancer interaction, and discuss the current and future therapeutic possibilities for this condition.
Collapse
Affiliation(s)
- Bo Ni
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zekun Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Junjin Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Kaiyuan Wang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
10
|
Sigorski D, Wesołowski W, Gruszecka A, Gulczyński J, Zieliński P, Misiukiewicz S, Kitlińska J, Iżycka-Świeszewska E. Neuropeptide Y and its receptors in prostate cancer: associations with cancer invasiveness and perineural spread. J Cancer Res Clin Oncol 2023; 149:5803-5822. [PMID: 36583743 PMCID: PMC10356636 DOI: 10.1007/s00432-022-04540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE Neuropeptide Y (NPY) is a pleiotropic peptide, which is involved in many biological mechanisms important in regulation of cell growth and survival. The aim of this study was a comprehensive analysis of the NPY system in prostate pathology. METHODS The study was based on immunohistochemical analysis of NPY and its receptors, Y1R, Y2R and Y5R, in tissue samples from benign prostate (BP), primary prostate cancer (PCa) and PCa bone metastases. Tissue microarray (TMA) technique was employed, with analysis of multiple cores from each specimen. Intensity of the immunoreactivity and expression index (EI), as well as distribution of the immunostaining in neoplastic cells and stromal elements were evaluated. Perineural invasion (PNI) and extraprostatic extension (EPE) were areas of special interests. Moreover, a transwell migration assay on the LNCaP PCa cell line was used to assess the chemotactic properties of NPY. RESULTS Morphological analysis revealed homogeneous membrane and cytoplasmic pattern of NPY staining in cancer cells and its membrane localization with apical accentuation in BP glands. All elements of the NPY system were upregulated in pre-invasive prostate intraepithelial neoplasia, PCa and metastases. EI and staining intensity of NPY receptors were significantly higher in PCa then in BP with correlation between Y2R and Y5R. The strength of expression of the NPY system was further increased in the PNI and EPE areas. In bone metastases, Y1R and Y5R presented high expression scores. CONCLUSION The results of our study suggest that the NPY system is involved in PCa, starting from early stages of its development to disseminated states of the disease, and participates in the invasion of PCa into the auto and paracrine matter.
Collapse
Affiliation(s)
- Dawid Sigorski
- Department of Oncology, Collegium Medicum, University of Warmia and Mazury, 10-228, Olsztyn, Poland
- Department of Oncology and Immuno-Oncology, Warmian-Masurian Cancer Center of the Ministry of the Interior and Administration Hospital, 10-228, Olsztyn, Poland
| | | | - Agnieszka Gruszecka
- Department of Radiology Informatics and Statistics, Medical University of Gdansk, 80-210, Gdansk, Poland
| | - Jacek Gulczyński
- Department of Pathology and Neuropathology, Medical University of Gdańsk, 80-210, Gdańsk, Poland
- Department of Pathomorphology, Copernicus Hospital, 80-803, Gdańsk, Poland
| | - Piotr Zieliński
- Division of Tropical and Parasitic Diseases, University Center of Maritime and Tropical Medicine, 81-519, Gdynia, Poland
| | - Sara Misiukiewicz
- Human Science Department, School of Nursing and Health Studies, Georgetown University Medical Center, Washington, DC, USA
| | - Joanna Kitlińska
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Medical University of Gdańsk, 80-210, Gdańsk, Poland.
- Department of Pathomorphology, Copernicus Hospital, 80-803, Gdańsk, Poland.
| |
Collapse
|
11
|
Wang Y, Qu M, Qiu Z, Zhu S, Chen W, Guo K, Miao C, Zhang H. Surgical Stress and Cancer Progression: New Findings and Future Perspectives. Curr Oncol Rep 2022; 24:1501-1511. [PMID: 35763189 DOI: 10.1007/s11912-022-01298-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW The stress response to surgery is essential for maintaining homeostasis and exhibits anti-tumor effects; however, an ongoing and exaggerated stress response may have adverse clinical consequences and even promote cancer progression. This review will discuss the complex relationship between surgical stress and cancer progression. RECENT FINDINGS Surgical stress exhibits both anti-tumor and cancer-promoting effects by causing changes in the neuroendocrine, circulatory, and immune systems. Many studies have found that many mechanisms are involved in the process, and the corresponding targets could be applied for cancer therapy. Although surgical stress may have anti-tumor effects, it is necessary to inhibit an excessive stress response, mostly showing cancer-promoting effects.
Collapse
Affiliation(s)
- Yanghanzhao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Zhiyun Qiu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Fudan University Jinshan Hospital, Shanghai, China.
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
12
|
Sympathetic nervous signaling dictates prostate cancer progression. Cell Death Dis 2022; 8:109. [PMID: 35264555 PMCID: PMC8907162 DOI: 10.1038/s41420-022-00928-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
|
13
|
Arman T, Nelson PS. Endocrine and paracrine characteristics of neuroendocrine prostate cancer. Front Endocrinol (Lausanne) 2022; 13:1012005. [PMID: 36440195 PMCID: PMC9691667 DOI: 10.3389/fendo.2022.1012005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Prostate cancer is a common malignancy affecting men worldwide. While the vast majority of newly diagnosed prostate cancers are categorized as adenocarcinomas, a spectrum of uncommon tumor types occur including those with small cell and neuroendocrine cell features. Benign neuroendocrine cells exist in the normal prostate microenvironment, and these cells may give rise to primary neuroendocrine carcinomas. However, the more common development of neuroendocrine prostate cancer is observed after therapeutics designed to repress the signaling program regulated by the androgen receptor which is active in the majority of localized and metastatic adenocarcinomas. Neuroendocrine tumors are identified through immunohistochemical staining for common markers including chromogranin A/B, synaptophysin and neuron specific enolase (NSE). These markers are also common to neuroendocrine tumors that arise in other tissues and organs such as the gastrointestinal tract, pancreas, lung and skin. Notably, neuroendocrine prostate cancer shares biochemical features with nerve cells, particularly functions involving the secretion of a variety of peptides and proteins. These secreted factors have the potential to exert local paracrine effects, and distant endocrine effects that may modulate tumor progression, invasion, and resistance to therapy. This review discusses the spectrum of factors derived from neuroendocrine prostate cancers and their potential to influence the pathophysiology of localized and metastatic prostate cancer.
Collapse
Affiliation(s)
- Tarana Arman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
- *Correspondence: Peter S. Nelson,
| |
Collapse
|