1
|
Zhang X, Zhong G, Jiang C, Ha X, Yang Q, Wu H. Exploring the potential anti-diabetic peripheral neuropathy mechanisms of Huangqi Guizhi Wuwu Decoction by network pharmacology and molecular docking. Metab Brain Dis 2024; 40:20. [PMID: 39565454 DOI: 10.1007/s11011-024-01474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/02/2024] [Indexed: 11/21/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is the most prevalent microvascular complication of diabetes and Huangqi Guizhi Wuwu Decoction (HGWD) is frequently employed in classical Chinese medicine for treating DPN. This study aims to investigate the potential therapeutic targets and mechanisms of HGWD for treating DPN using network pharmacology and molecular docking methodologies. The intersection targets of DPN and HGWD were retrieved from the databases, with the resulting intersection targets being imported into the STRING database to construct the protein-protein interaction (PPI) network. Cytoscape 3.9.1 was used to screen the core targets and plot the herb-active ingredient-target (H-A-T) network. To identify the pivotal signaling pathways, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on intersection targets. Molecular docking was subsequently conducted with AutoDock Vina to validate the binding energy between the core active ingredients and the core targets. 91 potential targets of HGWD were identified for the treatment of DPN. Topological analysis revealed core targets, including AKT1, TNF, PPARG, NFKB1, TP53, STAT3, PTGS2, HIF1A, ESR1, and GSK3B, alongside core active ingredients such as protoporphyrin, jaranol, kaempferol, quercetin, and isorhamnetin. GO and KEGG analyses indicated that PI3K/AKT, HIF-1, and AGE/RAGE signaling pathways could be crucial in treating DPN using HGWD. Furthermore, molecular docking results demonstrated robust binding activities between the active ingredients in HGWD and the identified core targets. The above results indicated that HGWD may exerting an anti-DPN effect by modulating the PI3K/AKT, HIF-1, and AGE/RAGE signaling pathways.
Collapse
Affiliation(s)
- Xueying Zhang
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Jiang
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China
| | - Xiaojun Ha
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China
| | - Qingjiang Yang
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China
| | - Haike Wu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China.
| |
Collapse
|
2
|
Rezaee A, Rahmanian P, Nemati A, Sohrabifard F, Karimi F, Elahinia A, Ranjbarpazuki A, Lashkarbolouki R, Dezfulian S, Zandieh MA, Salimimoghadam S, Nabavi N, Rashidi M, Taheriazam A, Hashemi M, Hushmandi K. NF-ĸB axis in diabetic neuropathy, cardiomyopathy and nephropathy: A roadmap from molecular intervention to therapeutic strategies. Heliyon 2024; 10:e29871. [PMID: 38707342 PMCID: PMC11066643 DOI: 10.1016/j.heliyon.2024.e29871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic illness defined by elevated blood glucose levels, mediating various tissue alterations, including the dysfunction of vital organs. Diabetes mellitus (DM) can lead to many consequences that specifically affect the brain, heart, and kidneys. These issues are known as neuropathy, cardiomyopathy, and nephropathy, respectively. Inflammation is acknowledged as a pivotal biological mechanism that contributes to the development of various diabetes consequences. NF-κB modulates inflammation and the immune system at the cellular level. Its abnormal regulation has been identified in several clinical situations, including cancer, inflammatory bowel illnesses, cardiovascular diseases, and Diabetes Mellitus (DM). The purpose of this review is to evaluate the potential impact of NF-κB on complications associated with DM. Enhanced NF-κB activity promotes inflammation, resulting in cellular harm and compromised organ performance. Phytochemicals, which are therapeutic molecules, can potentially decline the NF-κB level, therefore alleviating inflammation and the progression of problems correlated with DM. More importantly, the regulation of NF-κB can be influenced by various factors, such as TLR4 in DM. Highlighting these factors can facilitate the development of novel therapies in the future.
Collapse
Affiliation(s)
- Aryan Rezaee
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirreza Nemati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farima Sohrabifard
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Elahinia
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Ranjbarpazuki
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rozhin Lashkarbolouki
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sadaf Dezfulian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Cheng Y, Kou Y, Wang J, Wang Y, Rong W, Han H, Zhang G. 5-Hydroxytryptamine 4 Receptor Agonist Attenuates Diabetic Enteric Neuropathy through Inhibition of the Receptor-Interacting Protein Kinase 3 Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:785-795. [PMID: 38311118 DOI: 10.1016/j.ajpath.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Necroptosis, considered as a form of programmed cell death, contributes to neural loss. The 5-hydroxytryptamine 4 receptor (5-HT4R) is involved in neurogenesis in the enteric nervous system. However, whether the activation of 5-HT4R can alleviate diabetic enteric neuropathy by inhibiting receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis is unclear. This study aimed to explore the beneficial effects of 5-HT4R agonist on enteric neuropathy in a mouse model of diabetes and the mechanisms underlying these effects. Diabetes developed neural loss in the colon of mice. 5-HT4Rs localized in submucosal and myenteric plexuses were confirmed. Administration of 5-HT4R agonist attenuated diabetes-induced colonic hypomotility and neural loss of the colon in mice. Remarkably, RIPK3, phosphorylated RIPK3, and its downstream target mixed lineage kinase domain-like protein (MLKL), two key proteins regulating necroptosis, were significantly up-regulated in the colon of diabetic mice. Treatment with 5-HT4R agonist appeared to inhibit diabetes-induced elevation of RIPK3, phosphorylated RIPK3, and MLKL in the colon of mice. Diabetes-induced up-regulation of MLKL in both the mucosa and the muscularis of the colon was prevented by Ripk3 deletion. Moreover, diabetes-evoked neural loss and delayed colonic transit were significantly inhibited by Ripk3 removal. These findings suggest that activation of 5-HT4Rs could potentially provide a protective effect against diabetic enteric neuropathy by suppressing RIPK3-mediated necroptosis.
Collapse
Affiliation(s)
- Yingying Cheng
- Songjiang Research Institute, Shanghai Songjing District Central Hospital, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueting Kou
- Songjiang Research Institute, Shanghai Songjing District Central Hospital, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Wang
- Songjiang Research Institute, Shanghai Songjing District Central Hospital, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wang
- Songjiang Research Institute, Shanghai Songjing District Central Hospital, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifang Rong
- Songjiang Research Institute, Shanghai Songjing District Central Hospital, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiu Han
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China.
| | - Guohua Zhang
- Songjiang Research Institute, Shanghai Songjing District Central Hospital, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Wang M, Wang P, Li B, Zhao G, Zhang N, Cao R. Protein inhibitor of activated STAT1 (PIAS1) alleviates cerebral infarction and inflammation after cerebral ischemia in rats. Heliyon 2024; 10:e24743. [PMID: 38617924 PMCID: PMC11015098 DOI: 10.1016/j.heliyon.2024.e24743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/01/2023] [Accepted: 01/12/2024] [Indexed: 04/16/2024] Open
Abstract
Background Ischemic stroke is a severe disorder with high incidence, disability rate and mortality. Multiple pathogenesis mechanisms are involved in ischemic stroke, such as inflammation and neuronal cell apoptosis. Protein inhibitor of activated signal transducer and activators of transcription 1 (PIAS1) plays a crucial role in various biological processes, including inflammation. PIAS1 is also downregulated in ischemia-reperfusion injury and involved in the disease processes. However, the role of PIAS1 in cerebral ischemia is unclear. Methods Sprague-Dawley (SD) rats were induced with middle cerebral artery occlusion (MCAO). The role and mechanisms of PIAS1 in ischemic cerebral infarction were explored by Longa test, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Morris water maze (MWM) test, hematoxylin-eosin (HE) staining, quantification of brain water content, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), Western blot and immunofluorescence assays. Results The expression of PIAS1 in MCAO-induced rat was declined compared to sham rats. Overexpression of PIAS1 reduced the Longa neurological scores, the percent of infarction area, the pathological abnormality, the escape latency of swimming and the percent of brain water content, and increased the number of platform crossings and time in the target quadrant in the MCAO-induced rats. Besides, overexpression of PIAS1 decreased the MCAO-induced the contents of IL-1β, IL-6 and TNF-α, but further elevated the concentrations of IL-10 in both sera and brain tissues. Moreover, overexpression of PIAS1 reversed the MCAO-induced apoptosis rate and the relative protein level of Bax, cleaved caspase3 and Bcl-2. Overexpression of PIAS1 also reversed the level of proteins involved in NF-κB pathway. Conclusion PIAS1 reduced inflammation and apoptosis, thereby alleviating ischemic cerebral infarction in MCAO-induced rats through regulation NF-κB pathway.
Collapse
Affiliation(s)
- Mingyang Wang
- Department of Rehabilitation Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Pingzhi Wang
- Department of Rehabilitation Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Bo Li
- Department of Rehabilitation Medicine, Shanxi Rongjun Hospital, Taiyuan, Shanxi, 030031, China
| | - Guohu Zhao
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Nan Zhang
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Ruifeng Cao
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| |
Collapse
|
5
|
Wang L, Zeng W, Wang C, Lu Y, Xiong X, Chen S, Huang Q, Yan F, Huang Q. SUMOylation and coupling of eNOS mediated by PIAS1 contribute to maintenance of vascular homeostasis. FASEB J 2024; 38:e23362. [PMID: 38102979 DOI: 10.1096/fj.202301963r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Endothelial dysfunction (ED) is commonly considered a crucial initiating step in the pathogenesis of numerous cardiovascular diseases. The coupling of endothelial nitric oxide synthase (eNOS) is important in maintaining normal endothelial functions. However, it still remains elusive whether and how eNOS SUMOylation affects the eNOS coupling. In the study, we investigate the roles and possible action mechanisms of protein inhibitor of activated STAT 1 (PIAS1) in ED. Human umbilical vein endothelial cells (HUVECs) treated with palmitate acid (PA) in vitro and ApoE-/- mice fed with high-fat diet (HFD) in vivo were constructed as the ED models. Our in vivo data show that PIAS1 alleviates the dysfunction of vascular endothelium by increasing nitric oxide (NO) level, reducing malondialdehyde (MDA) level, and activating the phosphatidylinositol 3-kinase-protein kinase B-endothelial nitric oxide synthase (PI3K-AKT-eNOS) signaling in ApoE-/- mice. Our in vitro data also show that PIAS1 can SUMOylate eNOS under endogenous conditions; moreover, it antagonizes the eNOS uncoupling induced by PA. The findings demonstrate that PIAS1 alleviates the dysfunction of vascular endothelium by promoting the SUMOylation and inhibiting the uncoupling of eNOS, suggesting that PIAS1 would become an early predictor of atherosclerosis and a new potential target of the hyperlipidemia-related cardiovascular diseases.
Collapse
Affiliation(s)
- Li Wang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Wenjing Zeng
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Chaowen Wang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Yanli Lu
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Xiaowei Xiong
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Sheng Chen
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Qianqian Huang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Feixing Yan
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Qiren Huang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
6
|
Suresh Kumar H, Barnett EN, Fowlkes JL, Kalaitzoglou E, Annamalai RT. Biomechanical Stimulation of Muscle Constructs Influences Phenotype of Bone Constructs by Modulating Myokine Secretion. JBMR Plus 2023; 7:e10804. [PMID: 38025033 PMCID: PMC10652181 DOI: 10.1002/jbm4.10804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes is a chronic metabolic disorder that can lead to diabetic myopathy and bone diseases. The etiology of musculoskeletal complications in such metabolic disorders and the interplay between the muscular and osseous systems are not well understood. Exercise training promises to prevent diabetic myopathy and bone disease and offer protection. Although the muscle-bone interaction is largely biomechanical, the muscle secretome has significant implications for bone biology. Uncoupling effects of biophysical and biochemical stimuli on the adaptive response of bone during exercise training may offer therapeutic targets for diabetic bone disease. Here, we have developed an in vitro model to elucidate the effects of mechanical strain on myokine secretion and its impact on bone metabolism decoupled from physical stimuli. We developed bone constructs using cross-linked gelatin, which facilitated osteogenic differentiation of osteoprogenitor cells. Then muscle constructs were made from fibrin, which enabled myoblast differentiation and myotube formation. We investigated the myokine expression by muscle constructs under strain regimens replicating endurance (END) and high-intensity interval training (HIIT) in hyperglycemic conditions. In monocultures, both regimens induced higher expression of Il15 and Igf1, whereas END supported more myoblast differentiation and myotube maturation than HIIT. When co-cultured with bone constructs, HIIT regimen increased Glut4 expression in muscle constructs more than END, supporting higher glucose uptake. Likewise, the muscle constructs under the HIIT regimen promoted a healthier and more matured bone phenotype than END. Under static conditions, myostatin (Mstn) expression was significantly downregulated in muscle constructs co-cultured with bone constructs compared with monocultures. Together, our in vitro co-culture system allowed orthogonal manipulation of mechanical strain on muscle constructs while facilitating bone-muscle biochemical cross-talk. Such systems can provide an individualized microenvironment that allows decoupled biomechanical manipulation, help identify molecular targets, and develop engineered therapies for metabolic bone disease. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Edwina N. Barnett
- Department of Biomedical EngineeringUniversity of KentuckyLexingtonKYUSA
| | - John L. Fowlkes
- Barnstable Brown Diabetes CenterLexingtonKYUSA
- Department of PediatricsUniversity of KentuckyLexingtonKYUSA
| | - Evangelia Kalaitzoglou
- Barnstable Brown Diabetes CenterLexingtonKYUSA
- Department of PediatricsUniversity of KentuckyLexingtonKYUSA
| | | |
Collapse
|
7
|
Jin Q, Zhao T, Lin L, Yao X, Teng Y, Zhang D, Jin Y, Yang M. PIAS1 impedes vascular endothelial injury and atherosclerotic plaque formation in diabetes by blocking the RUNX3/TSP-1 axis. Hum Cell 2023; 36:1915-1927. [PMID: 37584829 DOI: 10.1007/s13577-023-00952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/03/2023] [Indexed: 08/17/2023]
Abstract
The protein PIAS1 functions as a type of ubiquitin-protease, which is known to play an important regulatory role in various diseases, including cardiovascular diseases and cancers. Its mechanism of action primarily revolves around regulating the transcription, translation, and modification of target proteins. This study investigates role and mechanism of PIAS1 in the RUNX3/TSP-1 axis and confirms its therapeutic effects on diabetes-related complications in animal models. A diabetic vascular injury was induced in human umbilical vein endothelial cells (HUVECs) by stimulation with H2O2 and advanced glycation end product (AGE), and a streptozotocin (STZ)-induced mouse model of diabetes was constructed, followed by detection of endogenous PIAS1 expression and SUMOylation level of RUNX3. Effects of PIAS1 concerning RUNX3 and TSP-1 on the HUVEC apoptosis and inflammation were evaluated using the ectopic expression experiments. Down-regulated PIAS1 expression and SUMOylation level of RUNX3 were identified in the H2O2- and AGE-induced HUVEC model of diabetic vascular injury and STZ-induced mouse models of diabetes. PIAS1 promoted the SUMOylation of RUNX3 at the K148 site of RUNX3. PIAS1-mediated SUMOylation of RUNX3 reduced RUNX3 transactivation activity, weakened the binding of RUNX3 to the promoter region of TSP-1, and caused downregulation of TSP-1 expression. PIASI decreased the expression of TSP-1 by inhibiting H2O2- and AGE-induced RUNX3 de-SUMOylation, thereby arresting the inflammatory response and apoptosis of HUVECs. Besides, PIAS1 reduced vascular endothelial injury and atherosclerotic plaque formation in mouse models of diabetes by inhibiting the RUNX3/TSP-1 axis. Our study proved that PIAS1 suppressed vascular endothelial injury and atherosclerotic plaque formation in mouse models of diabetes via the RUNX3/TSP-1 axis.
Collapse
Affiliation(s)
- Qingsong Jin
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China
| | - Tiantian Zhao
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China
| | - Liangyan Lin
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China
| | - Xiaoyan Yao
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China
| | - Yaqin Teng
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China
| | - Dongdong Zhang
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China
| | - Yongjun Jin
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China.
| | - Meizi Yang
- Department of Pharmacology, School of Basic Medical Sciences, Binzhou Medical University, No. 522, Huanghe Third Road, Binzhou, 264003, People's Republic of China.
| |
Collapse
|
8
|
Mandel N, Büttner M, Poschet G, Kuner R, Agarwal N. SUMOylation Modulates Reactive Oxygen Species (ROS) Levels and Acts as a Protective Mechanism in the Type 2 Model of Diabetic Peripheral Neuropathy. Cells 2023; 12:2511. [PMID: 37947589 PMCID: PMC10648122 DOI: 10.3390/cells12212511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the prevalent type of peripheral neuropathy; it primarily impacts extremity nerves. Its multifaceted nature makes the molecular mechanisms of diabetic neuropathy intricate and incompletely elucidated. Several types of post-translational modifications (PTMs) have been implicated in the development and progression of DPN, including phosphorylation, glycation, acetylation and SUMOylation. SUMOylation involves the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to target proteins, and it plays a role in various cellular processes, including protein localization, stability, and function. While the specific relationship between high blood glucose and SUMOylation is not extensively studied, recent evidence implies its involvement in the development of DPN in type 1 diabetes. In this study, we investigated the impact of SUMOylation on the onset and progression of DPN in a type 2 diabetes model using genetically modified mutant mice lacking SUMOylation, specifically in peripheral sensory neurons (SNS-Ubc9-/-). Behavioural measurement for evoked pain, morphological analyses of nerve fibre loss in the epidermis, measurement of reactive oxygen species (ROS) levels, and antioxidant molecules were analysed over several months in SUMOylation-deficient and control mice. Our longitudinal analysis at 30 weeks post-high-fat diet revealed that SNS-Ubc9-/- mice exhibited earlier and more pronounced thermal and mechanical sensation loss and accelerated intraepidermal nerve fibre loss compared to control mice. Mechanistically, these changes are associated with increased levels of ROS both in sensory neuronal soma and in peripheral axonal nerve endings in SNS-Ubc9-/- mice. In addition, we observed compromised detoxifying potential, impaired respiratory chain complexes, and reduced levels of protective lipids in sensory neurons upon deletion of SUMOylation in diabetic mice. Importantly, we also identified mitochondrial malate dehydrogenase (MDH2) as a SUMOylation target, the activity of which is negatively regulated by SUMOylation. Our results indicate that SUMOylation is an essential neuroprotective mechanism in sensory neurons in type 2 diabetes, the deletion of which causes oxidative stress and an impaired respiratory chain, resulting in energy depletion and subsequent damage to sensory neurons.
Collapse
Affiliation(s)
- Nicolas Mandel
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany (R.K.)
| | - Michael Büttner
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany (R.K.)
| | - Nitin Agarwal
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany (R.K.)
| |
Collapse
|
9
|
Zheng G, Ren J, Shang L, Bao Y. Role of autophagy in the pathogenesis and regulation of pain. Eur J Pharmacol 2023; 955:175859. [PMID: 37429517 DOI: 10.1016/j.ejphar.2023.175859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
Pain is a ubiquitous and highly concerned clinical symptom, usually caused by peripheral or central nervous injury, tissue damage, or other diseases. The long-term existence of pain can seriously affect daily physical function and quality of life and produce great torture on the physiological and psychological levels. However, the complex pathogenesis of pain involving molecular mechanisms and signaling pathways has not been fully elucidated, and managing pain remains highly challenging. As a result, finding new targets to pursue effective and long-term pain treatment strategies is required and urgent. Autophagy is an intracellular degradation and recycling process that maintains tissue homeostasis and energy supply, which can be cytoprotective and is vital in maintaining neural plasticity and proper nervous system function. Much evidence has shown that autophagy dysregulation is linked to the emergence of neuropathic pain, such as postherpetic neuralgia and cancer-related pain. Autophagy has also been connected to pain caused by osteoarthritis and lumbar disc degeneration. It is worth noting that in recent years, studies on traditional Chinese medicine have also proved that several traditional Chinese medicine monomers involve autophagy in the mechanism of pain relief. Therefore, autophagy can serve as a potential regulatory target to provide new ideas and inspiration for pain management.
Collapse
Affiliation(s)
- Guangda Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China.
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China.
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
10
|
Zhou J, Tan Q, Tong J, Tong Z, Wang C, Sun B, Fang M, Lv J. PIAS1 upregulation confers protection against Cerulein-induced acute pancreatitis via FTO downregulation by enhancing sumoylation of Foxa2. Genomics 2023; 115:110693. [PMID: 37532089 DOI: 10.1016/j.ygeno.2023.110693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/18/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVE This research discussed the specific mechanism by which PIAS1 affects acute pancreatitis (AP). METHODS PIAS1, Foxa2, and FTO expression was assessed in Cerulein-induced AR42J cells and mice. Loss- and gain-of-function assays and Cerulein induction were conducted in AR42J cells and mice for analysis. The relationship among PIAS1, Foxa2, and FTO was tested. Cell experiments run in triplicate, and eight mice for each animal group. RESULTS Cerulein-induced AP cells and mice had low PIAS1 and Foxa2 and high FTO. Cerulein induced pancreatic injury in mice and inflammation and oxidative stress in pancreatic tissues, which could be reversed by PIAS1 or Foxa2 upregulation or FTO downregulation. PIAS1 elevated SUMO modification of Foxa2 to repress FTO transcription. FTO upregulation neutralized the ameliorative effects of PIAS1 or Foxa2 upregulation on Cerulein-induced AR42J cell injury, inflammation, and oxidative stress. CONCLUSION PIAS1 upregulation diminished FTO transcription by increasing Foxa2 SUMO modification, thereby ameliorating Cerulein-induced AP.
Collapse
Affiliation(s)
- Jiandang Zhou
- Second Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, PR China
| | - Qiao Tan
- Second Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, PR China
| | - Jinxue Tong
- Second Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, PR China
| | - Zhekuan Tong
- Material Supply Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, PR China
| | - Chunlu Wang
- Department of Medical Administration, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, PR China
| | - Bei Sun
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Min Fang
- Second Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, PR China
| | - Jiachen Lv
- Second Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, PR China.
| |
Collapse
|
11
|
Chen S, Gu X, Li R, An S, Wang Z. Genome-wide Analysis of Histone H3 Lysine 27 Trimethylation Profiles in Sciatic Nerve of Chronic Constriction Injury Rats. Neurochem Res 2023; 48:1945-1957. [PMID: 36763313 DOI: 10.1007/s11064-023-03879-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/12/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023]
Abstract
The histone H3 lysine 27 trimethylation (H3K27me3) is one of the most important chromatin modifications, which is associated with injury-activated gene expression in Schwann cells (SCs). However, the alteration of genome-wide H3K27me3 enrichments in the development of neuropathic pain is still unknown. Here, we applied the chromatin immunoprecipitation sequencing (ChIP-seq) approach to identify the alteration of differential enrichments of H3K27me3 in chronic constriction injury (CCI) sciatic nerve of rats and potential molecular mechanisms underlying the development of neuropathic pain. Our results indicated that CCI increased the numbers of SCs displaying H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) and H3K27me3 in the sciatic nerve. ChIP-seq data showed that CCI significantly changed H3K27me3 enrichments on gene promoters in the sciatic nerve. Bioinformatics analyses exhibited that genes gaining H3K27me3 were mostly associated with regulation of cell proliferation, response to stress and oxidation-reduction process. Genes losing this mark were enriched in neuronal generation, and MAPK, cAMP as well as ERBB signaling pathways. Importantly, IL1A, CCL2, NOS2, S100A8, BDNF, GDNF, ERBB3 and C3 were identified as key genes in neuropathic pain. CCI led to significant upregulation of key genes in the sciatic nerve. EZH2 inhibitor reversed CCI-induced increases of H3K27me3 and key gene protein levels, which were accompanied by relieved mechanical allodynia and thermal hyperalgesia in CCI rats. These results indicate that genes with differential enrichments of H3K27me3 in SCs function in various cellular processes and pathways, and many are linked to neuropathic pain after peripheral nerve injury.
Collapse
Affiliation(s)
- Shuhui Chen
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China
| | - Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China
| | - Ruidi Li
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China
| | - Shuhong An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China.
| | - Zhaojin Wang
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China.
| |
Collapse
|
12
|
Lin Y, Qu L, Wu J, Pu M, Huang Y, Cao Y. Identification of Adipogenesis Subgroups and Immune Infiltration Characteristics in Diabetic Peripheral Neuropathy. J Immunol Res 2023; 2023:3673094. [PMID: 36741233 PMCID: PMC9893521 DOI: 10.1155/2023/3673094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
Dysregulation of adipogenesis is related to diabetic peripheral neuropathy (DPN) pathogenesis, which may be mediated by immune infiltration. Nevertheless, the expression patterns of multiple adipogenesis-related genes and the differences of immune infiltration in different lipid metabolism levels remain unknown. GSE95849, a gene expression matrix containing DPN patients and healthy participants, was downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed adipogenesis-related genes (DEARGs) were screened by overlapping the adipogenesis-related genes with differentially expressed genes (DEGs). DPN patients from GSE24290 and GSE148059 were divided into two adipogenesis subgroups according to the expression of DEARGs. The single-sample gene set enrichment analysis (ssGSEA) was used to estimate the abundance of the immune cells between two subgroups. The analysis of immune infiltration suggested that a variety of immune cells and immune processes were elevated in the high expression group of DEARGs. The differentially expressed genes of the two subgroups were mainly enriched in biological processes and signaling pathways related to lipid metabolism. PPARG, FABP4, LIPE, FASN, SCD, DGAT2, PNPLA2, ADIPOQ, LEP, and CEBPA were identified as the hub genes of the two subgroups, whose related transcription factors (TFs) and miRNAs were predicted. An immunohistochemical assay was used to verify the expression of hub genes in DPN nerve tissues. Our comprehensive analysis of adipogenesis subgroups in DPN illustrated that different expression patterns of DEARGs may lead to different immune and inflammatory states. The identification of DEARGs may help to further distinguish the different characteristics of DPN patients and lay the foundation for targeted treatment. Our findings may bring a novel perspective to the diagnosis and treatment of DPN patients.
Collapse
Affiliation(s)
- Yumin Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liyuan Qu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jintao Wu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
| | - Meicen Pu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yijuan Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Cao
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Shu F, Xiao H, Li QN, Ren XS, Liu ZG, Hu BW, Wang HS, Wang H, Jiang GM. Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets. Signal Transduct Target Ther 2023; 8:32. [PMID: 36646695 PMCID: PMC9842768 DOI: 10.1038/s41392-022-01300-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/19/2022] [Accepted: 12/18/2022] [Indexed: 01/17/2023] Open
Abstract
Autophagy is a conserved lysosomal degradation pathway where cellular components are dynamically degraded and re-processed to maintain physical homeostasis. However, the physiological effect of autophagy appears to be multifaced. On the one hand, autophagy functions as a cytoprotective mechanism, protecting against multiple diseases, especially tumor, cardiovascular disorders, and neurodegenerative and infectious disease. Conversely, autophagy may also play a detrimental role via pro-survival effects on cancer cells or cell-killing effects on normal body cells. During disorder onset and progression, the expression levels of autophagy-related regulators and proteins encoded by autophagy-related genes (ATGs) are abnormally regulated, giving rise to imbalanced autophagy flux. However, the detailed mechanisms and molecular events of this process are quite complex. Epigenetic, including DNA methylation, histone modifications and miRNAs, and post-translational modifications, including ubiquitination, phosphorylation and acetylation, precisely manipulate gene expression and protein function, and are strongly correlated with the occurrence and development of multiple diseases. There is substantial evidence that autophagy-relevant regulators and machineries are subjected to epigenetic and post-translational modulation, resulting in alterations in autophagy levels, which subsequently induces disease or affects the therapeutic effectiveness to agents. In this review, we focus on the regulatory mechanisms mediated by epigenetic and post-translational modifications in disease-related autophagy to unveil potential therapeutic targets. In addition, the effect of autophagy on the therapeutic effectiveness of epigenetic drugs or drugs targeting post-translational modification have also been discussed, providing insights into the combination with autophagy activators or inhibitors in the treatment of clinical diseases.
Collapse
Affiliation(s)
- Feng Shu
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Han Xiao
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Qiu-Nuo Li
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Xiao-Shuai Ren
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Zhi-Gang Liu
- grid.284723.80000 0000 8877 7471Cancer Center, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong China
| | - Bo-Wen Hu
- grid.452859.70000 0004 6006 3273Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Hong-Sheng Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
14
|
Mandel N, Agarwal N. Role of SUMOylation in Neurodegenerative Diseases. Cells 2022; 11:3395. [PMID: 36359791 PMCID: PMC9654019 DOI: 10.3390/cells11213395] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 09/26/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are irreversible, progressive diseases with no effective treatment. The hallmark of NDDs is the aggregation of misfolded, modified proteins, which impair neuronal vulnerability and cause brain damage. The loss of synaptic connection and the progressive loss of neurons result in cognitive defects. Several dysregulated proteins and overlapping molecular mechanisms contribute to the pathophysiology of NDDs. Post-translational modifications (PTMs) are essential regulators of protein function, trafficking, and maintaining neuronal hemostasis. The conjugation of a small ubiquitin-like modifier (SUMO) is a reversible, dynamic PTM required for synaptic and cognitive function. The onset and progression of neurodegenerative diseases are associated with aberrant SUMOylation. In this review, we have summarized the role of SUMOylation in regulating critical proteins involved in the onset and progression of several NDDs.
Collapse
Affiliation(s)
| | - Nitin Agarwal
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Wu H, Yin X, Zhao X, Wu Z, Xiao Y, Di Q, Sun P, Tang H, Quan J, Chen W. HDAC11 negatively regulates antifungal immunity by inhibiting Nos2 expression via binding with transcriptional repressor STAT3. Redox Biol 2022; 56:102461. [PMID: 36087429 PMCID: PMC9465110 DOI: 10.1016/j.redox.2022.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Han Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xiaofan Yin
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Zherui Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yue Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qianqian Di
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Ping Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Haimei Tang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jiazheng Quan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Weilin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|