1
|
Wei J, Wang M, Wu Y. A disulfidptosis-related lncRNAs cluster to forecast the prognosis and immune landscapes of ovarian cancer. Front Genet 2024; 15:1397011. [PMID: 39045330 PMCID: PMC11263023 DOI: 10.3389/fgene.2024.1397011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
Objective Disulfidptosis is a newly recognized form of regulated cell death that has been linked to cancer progression and prognosis. Despite this association, the prognostic significance, immunological characteristics and treatment response of disulfidptosis-related lncRNAs (DRLs) in ovarian cancer have not yet been elucidated. Methods The lncRNA data and clinical information for ovarian cancer and normal samples were obtained from the UCSC XENA. Differential expression analysis and Pearson analysis were utilized to identify core DRLs, followed by LASSO algorithm. Random Survival Forest was used to construct a prognostic model. The relationships between risk scores, RNA methylation, immune cell infiltration, mutation, responses to immunotherapy and drug sensitivity analysis were further examined. Additionally, qRT-PCR experiments were conducted to validate the expression of the core DRLs in human ovarian cancer cells and normal ovarian cells and the scRNA-seq data of the core DRLs were obtained from the GEO dataset, available in the TISCH database. Results A total of 8 core DRLs were obtained to construct a prognostic model for ovarian cancer, categorizing all patients into low-risk and high-risk groups using an optimal cutoff value. The AUC values for 1-year, 3-year and 5-year OS in the TCGA cohort were 0.785, 0.810 and 0.863 respectively, proving a strong predictive capability of the model. The model revealed the high-risk group patients exhibited lower overall survival rates, higher TIDE scores and lower TMB levels compared to the low-risk group. Variations in immune cell infiltration and responses to therapeutic drugs were observed between the high-risk and low-risk groups. Besides, our study verified the correlations between the DRLs and RNA methylation. Additionally, qRT-PCR experiments and single-cell RNA sequencing data analysis were conducted to confirm the significance of the core DRLs at both cellular and scRNA-seq levels. Conclusion We constructed a reliable and novel prognostic model with a DRLs cluster for ovarian cancer, providing a foundation for further researches in the management of this disease.
Collapse
|
2
|
Ma Y, Wang Y, Wang C, Wang Y, Hu J, Zhang Z, Dong T, Chen X. miR-200a-3p promotes the malignancy of endometrial carcinoma through negative regulation of epithelial-mesenchymal transition. Discov Oncol 2024; 15:243. [PMID: 38916621 PMCID: PMC11199454 DOI: 10.1007/s12672-024-01106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND miR-200a-3p is involved in the progression of malignant behavior in various tumors, and its mechanism of action in endometrial cancer is speculated to be related to epithelial-mesenchymal transition (EMT). Therefore, this study explored the metastatic mechanism of miR-200a-3p and EMT in endometrial cancer, with the aim of identifying potential therapeutic targets. METHODS qRT-PCR was used to analyze miR-200a-3p expression in HEC-1B and Ishikawa cell lines. The cell proliferation assay, transwell assay, and cell scratch test were used to assess changes in the malignant phenotypes of cells after regulating miR-200a-3p expression. Changes in EMT-related protein zinc finger E-box binding homeobox 1 (ZEB1) were detected after regulating miR-200a-3p expression. An endometrial carcinoma transplantation mouse tumor model was constructed, and multiple EMT-related proteins were examined. RESULTS The expression of miR-200a-3p and ZEB1 in the endometrial cancer cell lines was higher than in normal endometrial epithelial cell lines (P < 0.05). After silencing miR-200a-3p, the expression of EMT-related protein ZEB1 increased, indicating a negative correlation. Simultaneously, the proliferation, invasion, and metastasis of endometrial cancer cells were significantly enhanced. After miR-200a-3p overexpression, the corresponding malignant phenotype was reversed (P < 0.05). In in vivo experiments, the degree of tumor malignancy and the expression level of EMT-related proteins were significantly reduced in the miR-200a-3p mimic group (P < 0.05). CONCLUSION This study found that miR-200a-3p is a promising target, regulating the EMT process and promoting endometrial cancer progression.
Collapse
Affiliation(s)
- Ying Ma
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Yiru Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Can Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Yan Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Jingshu Hu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Zexue Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Tuo Dong
- Department of Hygienic Microbiology, Public Health College, Harbin Medical University, No. 157 Baojian Road, Harbin, 150081, Heilongjiang, China.
| | - Xiuwei Chen
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
3
|
Giraud Q, Laporte J. Amphiphysin-2 (BIN1) functions and defects in cardiac and skeletal muscle. Trends Mol Med 2024; 30:579-591. [PMID: 38514365 DOI: 10.1016/j.molmed.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
Amphiphysin-2 is a ubiquitously expressed protein also known as bridging integrator 1 (BIN1), playing a critical role in membrane remodeling, trafficking, and cytoskeleton dynamics in a wide range of tissues. Mutations in the gene encoding BIN1 cause centronuclear myopathies (CNM), and recent evidence has implicated BIN1 in heart failure, underlining its crucial role in both skeletal and cardiac muscle. Furthermore, altered expression of BIN1 is linked to an increased risk of late-onset Alzheimer's disease and several types of cancer, including breast, colon, prostate, and lung cancers. Recently, the first proof-of-concept for potential therapeutic strategies modulating BIN1 were obtained for muscle diseases. In this review article, we discuss the similarities and differences in BIN1's functions in cardiac and skeletal muscle, along with its associated diseases and potential therapies.
Collapse
Affiliation(s)
- Quentin Giraud
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC, INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch-Graffenstaden, 67400, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC, INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch-Graffenstaden, 67400, France.
| |
Collapse
|
4
|
Hu Z, Yuan L, Yang X, Yi C, Lu J. The roles of long non-coding RNAs in ovarian cancer: from functions to therapeutic implications. Front Oncol 2024; 14:1332528. [PMID: 38725621 PMCID: PMC11079149 DOI: 10.3389/fonc.2024.1332528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/27/2024] [Indexed: 05/12/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are multifunctional and participate in a variety of biological processes and gene regulatory networks. The deregulation of lncRNAs has been extensively implicated in diverse human diseases, especially in cancers. Overwhelming evidence demonstrates that lncRNAs are essential to the pathophysiological processes of ovarian cancer (OC), acting as regulators involved in metastasis, cell death, chemoresistance, and tumor immunity. In this review, we illustrate the expanded functions of lncRNAs in the initiation and progression of OC and elaborate on the signaling pathways in which they pitch. Additionally, the potential clinical applications of lncRNAs as biomarkers in the diagnosis and treatment of OC were emphasized, cementing the bridge of communication between clinical practice and basic research.
Collapse
Affiliation(s)
- Zhong Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Lijin Yuan
- Department of Obstetrics and Gynecology, Huangshi Puren Hospital, Huangshi, Hubei, China
| | - Xiu Yang
- Department of Obstetrics and Gynecology, Huangshi Central Hospital, Huangshi, Hubei, China
| | - Cunjian Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jinzhi Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
5
|
Chen SY, Zhang FL, Zhang YL, Liao L, Deng L, Shao ZM, Liu GY, Li DQ. Spermatid perinuclear RNA-binding protein promotes UBR5-mediated proteolysis of Dicer to accelerate triple-negative breast cancer progression. Cancer Lett 2024; 586:216672. [PMID: 38280476 DOI: 10.1016/j.canlet.2024.216672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/17/2023] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer with no targeted therapy. Spermatid perinuclear RNA binding protein (STRBP), a poorly characterized RNA-binding protein (RBP), has an essential role in normal spermatogenesis and sperm function, but whether and how its dysregulation contributing to cancer progression has not yet been explored. Here, we report that STRBP functions as a novel oncogene to drive TNBC progression. STRBP expression was upregulated in TNBC tissues and correlated with poor disease prognosis. Functionally, STRBP promoted TNBC cell proliferation, migration, and invasion in vitro, and enhanced xenograft tumor growth and lung colonization in mice. Mechanistically, STRBP interacted with Dicer, a core component of the microRNA biogenesis machinery, and promoted its proteasomal degradation through enhancing its interaction with E3 ubiquitin ligase UBR5. MicroRNA-sequencing analysis identified miR-200a-3p as a downstream effector of STRBP, which was regulated by Dicer and affected epithelial-mesenchymal transition. Importantly, the impaired malignant phenotypes of TNBC cells caused by STRBP depletion were largely rescued by knockdown of Dicer, and these effects were compromised by transfection of miR-200a-3p mimics. Collectively, these findings revealed a previously unrecognized oncogenic role of STRBP in TNBC progression and identified STRBP as a promising target against TNBC.
Collapse
Affiliation(s)
- Si-Yu Chen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Fang-Lin Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yin-Ling Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Li Liao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Deng
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhi-Min Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Guang-Yu Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Chen SY, Cao JL, Li KP, Wan S, Yang L. BIN1 in cancer: biomarker and therapeutic target. J Cancer Res Clin Oncol 2023; 149:7933-7944. [PMID: 36890396 DOI: 10.1007/s00432-023-04673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND The bridging integrator 1 (BIN1) protein was originally identified as a pro-apoptotic tumor suppressor that binds to and inhibits oncogenic MYC transcription factors. BIN1 has complex physiological functions participating in endocytosis, membrane cycling, cytoskeletal regulation, DNA repair deficiency, cell-cycle arrest, and apoptosis. The expression of BIN1 is closely related to the development of various diseases such as cancer, Alzheimer's disease, myopathy, heart failure, and inflammation. PURPOSE Because BIN1 is commonly expressed in terminally differentiated normal tissues and is usually undetectable in refractory or metastatic cancer tissues, this differential expression has led us to focus on human cancers associated with BIN1. In this review, we discuss the potential pathological mechanisms of BIN1 during cancer development and its feasibility as a prognostic marker and therapeutic target for related diseases based on recent findings on its molecular, cellular, and physiological roles. CONCLUSION BIN1 is a tumor suppressor that regulates cancer development through a series of signals in tumor progression and microenvironment. It also makes BIN1 a feasible early diagnostic or prognostic marker for cancer.
Collapse
Affiliation(s)
- Si-Yu Chen
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Jin-Long Cao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Kun-Peng Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Shun Wan
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
7
|
Salamini-Montemurri M, Lamas-Maceiras M, Lorenzo-Catoira L, Vizoso-Vázquez Á, Barreiro-Alonso A, Rodríguez-Belmonte E, Quindós-Varela M, Cerdán ME. Identification of lncRNAs Deregulated in Epithelial Ovarian Cancer Based on a Gene Expression Profiling Meta-Analysis. Int J Mol Sci 2023; 24:10798. [PMID: 37445988 PMCID: PMC10341812 DOI: 10.3390/ijms241310798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest gynecological cancers worldwide, mainly because of its initially asymptomatic nature and consequently late diagnosis. Long non-coding RNAs (lncRNA) are non-coding transcripts of more than 200 nucleotides, whose deregulation is involved in pathologies such as EOC, and are therefore envisaged as future biomarkers. We present a meta-analysis of available gene expression profiling (microarray and RNA sequencing) studies from EOC patients to identify lncRNA genes with diagnostic and prognostic value. In this meta-analysis, we include 46 independent cohorts, along with available expression profiling data from EOC cell lines. Differential expression analyses were conducted to identify those lncRNAs that are deregulated in (i) EOC versus healthy ovary tissue, (ii) unfavorable versus more favorable prognosis, (iii) metastatic versus primary tumors, (iv) chemoresistant versus chemosensitive EOC, and (v) correlation to specific histological subtypes of EOC. From the results of this meta-analysis, we established a panel of lncRNAs that are highly correlated with EOC. The panel includes several lncRNAs that are already known and even functionally characterized in EOC, but also lncRNAs that have not been previously correlated with this cancer, and which are discussed in relation to their putative role in EOC and their potential use as clinically relevant tools.
Collapse
Affiliation(s)
- Martín Salamini-Montemurri
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Lidia Lorenzo-Catoira
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - María Quindós-Varela
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - M Esperanza Cerdán
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| |
Collapse
|
8
|
Lampropoulou DI, Papadimitriou M, Papadimitriou C, Filippou D, Kourlaba G, Aravantinos G, Gazouli M. The Role of EMT-Related lncRNAs in Ovarian Cancer. Int J Mol Sci 2023; 24:10079. [PMID: 37373222 DOI: 10.3390/ijms241210079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest cancers worldwide; late diagnosis and drug resistance are two major factors often responsible for high morbidity and treatment failure. Epithelial-to-mesenchymal transition (EMT) is a dynamic process that has been closely linked with cancer. Long non-coding RNAs (lncRNAs) have been also associated with several cancer-related mechanisms, including EMT. We conducted a literature search in the PubMed database in order to sum up and discuss the role of lncRNAs in regulating OC-related EMT and their underlying mechanisms. Seventy (70) original research articles were identified, as of 23 April 2023. Our review concluded that the dysregulation of lncRNAs is highly associated with EMT-mediated OC progression. A comprehensive understanding of lncRNAs' mechanisms in OC will help in identifying novel and sensitive biomarkers and therapeutic targets for this malignancy.
Collapse
Affiliation(s)
| | - Marios Papadimitriou
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Papadimitriou
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Filippou
- Department of Anatomy and Surgical Anatomy, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- National Organization for Medicines (EOF), 15562 Athens, Greece
| | - Georgia Kourlaba
- Department of Nursing, University of Peloponnese, 22100 Tripoli, Greece
| | | | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
9
|
Duan Y, Xu X. A signature based on anoikis-related genes for the evaluation of prognosis, immunoinfiltration, mutation, and therapeutic response in ovarian cancer. Front Endocrinol (Lausanne) 2023; 14:1193622. [PMID: 37383389 PMCID: PMC10295154 DOI: 10.3389/fendo.2023.1193622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023] Open
Abstract
Background Ovarian cancer (OC) is a highly lethal and aggressive gynecologic cancer, with an overall survival rate that has shown little improvement over the decades. Robust models are urgently needed to distinguish high-risk cases and predict reliable treatment options for OC. Although anoikis-related genes (ARGs) have been reported to contribute to tumor growth and metastasis, their prognostic value in OC remains unknown. The purpose of this study was to construct an ARG pair (ARGP)-based prognostic signature for patients with OC and elucidate the potential mechanism underlying the involvement of ARGs in OC progression. Methods The RNA-sequencing and clinical information data of OC patients were obtained from The Center Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A novel algorithm based on pairwise comparison was utilized to select ARGPs, followed by the Least Absolute Shrinkage and Selection Operator Cox analysis to construct a prognostic signature. The predictive ability of the model was validated using an external dataset, a receiver operating characteristic curve, and stratification analysis. The immune microenvironment and the proportion of immune cells were analyzed in high- and low-risk OC cases using seven algorithms. Gene set enrichment analysis and weighted gene co-expression network analysis were performed to investigate the potential mechanisms of ARGs in OC occurrence and prognosis. Results The 19-ARGP signature was identified as an important prognostic predictor for 1-, 2-, and 3-year overall survival of patients with OC. Gene function enrichment analysis showed that the high-risk group was characterized by the infiltration of immunosuppressive cells and the enrichment of adherence-related signaling pathway, suggesting that ARGs were involved in OC progression by mediating immune escape and tumor metastasis. Conclusion We constructed a reliable ARGP prognostic signature of OC, and our findings suggested that ARGs exerted a vital interplay in OC immune microenvironment and therapeutic response. These insights provided valuable information regarding the molecular mechanisms underlying this disease and potential targeted therapies.
Collapse
Affiliation(s)
- Yiqi Duan
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao Xu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Mo Z, Li R, Cao C, Li Y, Zheng S, Wu R, Xue J, Hu J, Meng H, Zhai H, Huang W, Zheng F, Zhou B. Splicing factor SNRPA associated with microvascular invasion promotes hepatocellular carcinoma metastasis through activating NOTCH1/Snail pathway and is mediated by circSEC62/miR-625-5p axis. ENVIRONMENTAL TOXICOLOGY 2023; 38:1022-1037. [PMID: 36715182 DOI: 10.1002/tox.23745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/10/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Microvascular invasion (MVI) is a crucial risk factor related to the metastasis of hepatocellular carcinoma (HCC), but the underlying mechanisms remain to be revealed. Characterizing the inherent mechanisms of MVI may aid in the development of effective treatment strategies to improve the prognosis of HCC patients with metastasis. Through the Gene Expression Omnibus (GEO) database, we identified that small nuclear ribonucleoprotein polypeptide A (SNRPA) was related to MVI in HCC. SNRPA was overexpressed in MVI-HCC and correlated with poor patient survival. Mechanistically, SNRPA promoted the epithelial-mesenchymal transition (EMT)-like process for HCC cells to accelerate metastasis by activating the NOTCH1/Snail pathway in vitro and in vivo. Importantly, circSEC62 upregulated SNRPA expression in HCC cells via miR-625-5p sponging. Taking these results together, our study identified a novel regulatory mechanism among SNRPA, miR-625-5p, circSEC62 and the NOTCH1/Snail pathway in HCC, which promoted metastasis of HCC and may provide effective suggestions for improving the prognosis of HCC patients with metastasis.
Collapse
Affiliation(s)
- Zhaohong Mo
- Fifth Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruixi Li
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chuanlin Cao
- Fifth Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shiyang Zheng
- Department of Head and Neck surgery, Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Runxin Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jinhua Xue
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Jingxiong Hu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Meng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hang Zhai
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weiling Huang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fang Zheng
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Boxuan Zhou
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
11
|
Zhang M, Zhou J, Ji Y, Shu S, Zhang M, Liang Y. LncRNA-NONMMUT100923.1 regulates mouse embryonic palatal shelf adhesion by sponging miR-200a-3p to modulate medial epithelial cell desmosome junction during palatogenesis. Heliyon 2023; 9:e16329. [PMID: 37251885 PMCID: PMC10208945 DOI: 10.1016/j.heliyon.2023.e16329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Cleft palate (CP) is a common neonatal craniofacial defect caused by the adhesion and fusion dysfunction of bilateral embryonic palatal shelf structures. Long non-coding RNA (lncRNA) is involved in CP formation with regulatory mechanism unknown. In this study, all-trans retinoic acid (ATRA) was used to induced cleft palate in embryonic mice as model group. The RNA-sequencing was performed to screen differentially expressed genes between the normal and model group on embryonic day 16.5, and the expression of LncRNA-NONMMUT100923.1 and miR-200a-3p, Cdsn was confirmed by RT-PCR and western blotting. Colony formation, CCK-8 and EDU assays were performed to measure cell proliferation and apoptosis on mouse embryonic palatal shelf (MEPS) epithelial cells in vitro. Fluorescence in situ hybridization (FISH) and dual luciferase activity assays was used to investigate the regulatory effect of LncRNA-NONMMUT100923.1 on miRNA and its target genes. Up-regulation of LncRNA-NONMMUT100923.1 and Cdsn while downregulation of miR-200a-3p was found in the model group. The sponging effects of LncRNA-NONMMUT100923 on miR-200a-3p and the target gene relations between Cdsn and miR-200a-3p was confirmed. Low expression of miR-200a-3p was related to the increased expressed levels of Cdsn and the proliferation of MEPS epithelial cells. Thus, a potential ceRNA regulatory network in which LncRNA-NONMMUT100923.1 regulates Cdsn expression by competitively binding to endogenous miR-200a-3p during palatogenesis, which may inhibit MEPS adhesion by preventing the disintegration of the desmosome junction in medial edge epithelium cells. These findings indicate the regulatory role of lncRNA and provides a potential direction for target gene therapy of CP.
Collapse
Affiliation(s)
- Ming Zhang
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jieyan Zhou
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yingwen Ji
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Shenyou Shu
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Mingjun Zhang
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yan Liang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563099, Guizhou, China
| |
Collapse
|
12
|
Li Z, Zheng B, Liu C, Zhao X, Zhao Y, Wang X, Hou L, Yang Z. BMSC-Derived Exosomes Alleviate Sepsis-Associated Acute Respiratory Distress Syndrome by Activating the Nrf2 Pathway to Reverse Mitochondrial Dysfunction. Stem Cells Int 2023; 2023:7072700. [PMID: 37035447 PMCID: PMC10081904 DOI: 10.1155/2023/7072700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 04/03/2023] Open
Abstract
Type II alveolar epithelial cell (AECII) apoptosis is one of the most vital causes of sepsis-induced acute respiratory distress syndrome (ARDS). Recent evidence has proved that bone mesenchymal stem cell-derived exosomes (BMSC-exos) can effectively reduce sepsis-induced ARDS. However, the function and molecular mechanism of BMSC-exos in sepsis-induced AECII apoptosis remain to be elucidated. In the present study, a more significant number of AECII apoptosis, high mitochondrial fission p-Drp1 protein levels, and low levels of mitochondrial biogenesis-related PGC1α, Tfam, and Nrf1 proteins accompanied with ATP content depression were confirmed in AECIIs in response to sepsis. Surprisingly, BMSC-exos successfully recovered mitochondrial biogenesis, including the upregulated expression of PGC1α, Tfam, Nrf1 proteins, and ATP contents, and prohibited p-Drp1-mediated mitochondrial fission by promoting Nrf2 expression. However, the aforementioned BMSC-exo reversal of mitochondrial dysfunction in AECIIs can be blocked by Nrf2 inhibitor ML385. Finally, BMSC-exos ameliorated the mortality rate, AECII apoptosis, inflammatory cytokine storm including HMGB1 and IL-6, and pathological lung damage in sepsis mice, which also could be prevented by ML385. These findings reveal a new mechanism of BMSC-exos in reversing mitochondrial dysfunction to alleviate AECII apoptosis, which may provide novel strategies for preventing and treating sepsis-induced ARDS.
Collapse
|
13
|
Through the Looking Glass: Updated Insights on Ovarian Cancer Diagnostics. Diagnostics (Basel) 2023; 13:diagnostics13040713. [PMID: 36832201 PMCID: PMC9955065 DOI: 10.3390/diagnostics13040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynaecological malignancy and the eighth most prevalent cancer in women, with an abysmal mortality rate of two million worldwide. The existence of multiple overlapping symptoms with other gastrointestinal, genitourinary, and gynaecological maladies often leads to late-stage diagnosis and extensive extra-ovarian metastasis. Due to the absence of any clear early-stage symptoms, current tools only aid in the diagnosis of advanced-stage patients, wherein the 5-year survival plummets further to less than 30%. Therefore, there is a dire need for the identification of novel approaches that not only allow early diagnosis of the disease but also have a greater prognostic value. Toward this, biomarkers provide a gamut of powerful and dynamic tools to allow the identification of a spectrum of different malignancies. Both serum cancer antigen 125 (CA-125) and human epididymis 4 (HE4) are currently being used in clinics not only for EOC but also peritoneal and GI tract cancers. Screening of multiple biomarkers is gradually emerging as a beneficial strategy for early-stage diagnosis, proving instrumental in administration of first-line chemotherapy. These novel biomarkers seem to exhibit an enhanced potential as a diagnostic tool. This review summarizes existing knowledge of the ever-growing field of biomarker identification along with potential future ones, especially for ovarian cancer.
Collapse
|
14
|
Jacksi M, Schad E, Buday L, Tantos A. Absence of Scaffold Protein Tks4 Disrupts Several Signaling Pathways in Colon Cancer Cells. Int J Mol Sci 2023; 24:ijms24021310. [PMID: 36674824 PMCID: PMC9861885 DOI: 10.3390/ijms24021310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Tks4 is a large scaffold protein in the EGFR signal transduction pathway that is involved in several cellular processes, such as cellular motility, reactive oxygen species-dependent processes, and embryonic development. It is also implicated in a rare developmental disorder, Frank-ter Haar syndrome. Loss of Tks4 resulted in the induction of an EMT-like process, with increased motility and overexpression of EMT markers in colorectal carcinoma cells. In this work, we explored the broader effects of deletion of Tks4 on the gene expression pattern of HCT116 colorectal carcinoma cells by transcriptome sequencing of wild-type and Tks4 knockout (KO) cells. We identified several protein coding genes with altered mRNA levels in the Tks4 KO cell line, as well as a set of long non-coding RNAs, and confirmed these changes with quantitative PCR on a selected set of genes. Our results show a significant perturbation of gene expression upon the deletion of Tks4, suggesting the involvement of different signal transduction pathways over the well-known EGFR signaling.
Collapse
Affiliation(s)
- Mevan Jacksi
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Eva Schad
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - László Buday
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Department of Molecular Biology, Semmelweis University Medical School, 1094 Budapest, Hungary
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence:
| |
Collapse
|
15
|
The Long Non-Coding RNA SNHG12 as a Mediator of Carboplatin Resistance in Ovarian Cancer via Epigenetic Mechanisms. Cancers (Basel) 2022; 14:cancers14071664. [PMID: 35406435 PMCID: PMC8996842 DOI: 10.3390/cancers14071664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Epithelial ovarian cancer is a lethal malignancy in which recurrence and therapy resistance are the major causes of death. We investigated the transcriptome and DNA methylation profile of ovarian cancer cell lines sensitive and resistant to carboplatin, aiming to identify genes associated with therapy resistance. We focused on long non-coding RNAs (lncRNAs), known as epigenetic regulators of several cellular and biological processes. We found 11 lncRNAs associated with carboplatin resistance, including SNHG12 (small nucleolar RNA host gene 12), also confirmed in an external dataset (The Cancer Genome Atlas). SNHG12 gene silencing increased the sensitivity to carboplatin, giving evidence that this lncRNA contributes to resistance to carboplatin in ovarian cancer cell lines. We also demonstrated that SNHG12 could control the expression of nearby genes probably by altering epigenetic markers and modifying the transcript levels. Abstract Genetic and epigenetic changes contribute to intratumor heterogeneity and chemotherapy resistance in several tumor types. LncRNAs have been implicated, directly or indirectly, in the epigenetic regulation of gene expression. We investigated lncRNAs that potentially mediate carboplatin-resistance of cell subpopulations, influencing the progression of ovarian cancer (OC). Four carboplatin-sensitive OC cell lines (IGROV1, OVCAR3, OVCAR4, and OVCAR5), their derivative resistant cells, and two inherently carboplatin-resistant cell lines (OVCAR8 and Ovc316) were subjected to RNA sequencing and global DNA methylation analysis. Integrative and cross-validation analyses were performed using external (The Cancer Genome Atlas, TCGA dataset, n = 111 OC samples) and internal datasets (n = 39 OC samples) to identify lncRNA candidates. A total of 4255 differentially expressed genes (DEGs) and 14529 differentially methylated CpG positions (DMPs) were identified comparing sensitive and resistant OC cell lines. The comparison of DEGs between OC cell lines and TCGA-OC dataset revealed 570 genes, including 50 lncRNAs, associated with carboplatin resistance. Eleven lncRNAs showed DMPs, including the SNHG12. Knockdown of SNHG12 in Ovc316 and OVCAR8 cells increased their sensitivity to carboplatin. The results suggest that the lncRNA SNHG12 contributes to carboplatin resistance in OC and is a potential therapeutic target. We demonstrated that SNHG12 is functionally related to epigenetic mechanisms.
Collapse
|