1
|
Mu M, Liu G, Ding X, Xue L, Li D, Zhu Y, Zhang N, Wu J, Wang J. miR-520e and its promoter region DNA methylation as potential biomarkers in atherosclerosis. Biochem Cell Biol 2024; 102:385-393. [PMID: 38917487 DOI: 10.1139/bcb-2023-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
In atherosclerosis, DNA methylation plays a key regulatory role in the expression of related genes. However, the molecular mechanisms of these processes in human umbilical vein endothelial cells (HUVECs) are unclear. Here, using high-throughput sequencing from the Infinium HumanMethylation450 assay, we manifested that the cg19564375 methylation of miR-520e promoter region in the peripheral blood of acute coronary syndrome (ACS) patients was higher than that of healthy controls. As shown by RQ-MSP, the upstream DNA methylation level of the miR-520e promoter region was considerably increased in ACS patients. miR-520e was markedly downregulated in ACS patients compared with healthy controls. In the oxidized low-density lipoprotein (ox-LDL)-induced HUVECs injury model, DNA methylation of the upstream region of miR-520e was significantly increased. With increasing concentrations of the methylase inhibitor 5-Aza, miR-520e expression was upregulated. The silence of methyltransferase DNMT1, rather than DNMT3a or DNMT3b, abolished the influence of miR-520e expression by ox-LDL treatment in HUVECs. A dual luciferase reporter assay revealed that miR-520e regulated the TGFBR2 3'-untranslated region region. After silencing TGFBR2, the promoting effect of miR-520e inhibitor on cell proliferation and migration may be attenuated. In conclusion, the expression of miR-520e is modified by its promoter region DNA methylation, and miR-520e and its promoter region DNA methylation may be potential biomarkers in atherosclerosis.
Collapse
Affiliation(s)
- Mimi Mu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Gao Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Xiaoyu Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Lijun Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Dandan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Yunhua Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Nan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Jia Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Junjun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| |
Collapse
|
2
|
Nie Y, Song C, Huang H, Mao S, Ding K, Tang H. Chromatin modifiers in human disease: from functional roles to regulatory mechanisms. MOLECULAR BIOMEDICINE 2024; 5:12. [PMID: 38584203 PMCID: PMC10999406 DOI: 10.1186/s43556-024-00175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/21/2024] [Indexed: 04/09/2024] Open
Abstract
The field of transcriptional regulation has revealed the vital role of chromatin modifiers in human diseases from the beginning of functional exploration to the process of participating in many types of disease regulatory mechanisms. Chromatin modifiers are a class of enzymes that can catalyze the chemical conversion of pyrimidine residues or amino acid residues, including histone modifiers, DNA methyltransferases, and chromatin remodeling complexes. Chromatin modifiers assist in the formation of transcriptional regulatory circuits between transcription factors, enhancers, and promoters by regulating chromatin accessibility and the ability of transcription factors to acquire DNA. This is achieved by recruiting associated proteins and RNA polymerases. They modify the physical contact between cis-regulatory factor elements, transcription factors, and chromatin DNA to influence transcriptional regulatory processes. Then, abnormal chromatin perturbations can impair the homeostasis of organs, tissues, and cells, leading to diseases. The review offers a comprehensive elucidation on the function and regulatory mechanism of chromatin modifiers, thereby highlighting their indispensability in the development of diseases. Furthermore, this underscores the potential of chromatin modifiers as biomarkers, which may enable early disease diagnosis. With the aid of this paper, a deeper understanding of the role of chromatin modifiers in the pathogenesis of diseases can be gained, which could help in devising effective diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Yali Nie
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Chao Song
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Huang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuqing Mao
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Kai Ding
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Huifang Tang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Luo J, Chen M, Ji H, Su W, Song W, Zhang D, Su W, Liu S. Hypolipidemic and Anti-Obesity Effect of Anserine on Mice Orally Administered with High-Fat Diet via Regulating SREBP-1, NLRP3, and UCP-1. Mol Nutr Food Res 2024; 68:e2300471. [PMID: 38400696 DOI: 10.1002/mnfr.202300471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/23/2023] [Indexed: 02/25/2024]
Abstract
To investigate the efficacy of anserine on antiobesity, C57BL/6 mice are orally administered with a high-fat diet (HFD) and different doses of anserine (60, 120, and 240 mg/kg/day) for 16 weeks. Body weight, lipid, and epididymal fat content in mice are measured, and their liver damage is observed. The results display that the body weight, epididymal fat content, and low-density lipoprotein cholesterol (LDL-C) content in anserine groups are decreased by 4.36-18.71%, 7.57-35.12%, and 24.32-44.40%, respectively. To further investigate the antiobesity mechanism of anserine, the expression of SREBP-1, NLRP3, NF-κB p65 (p65), and p-NF-κB p65 (p-p65) proteins in the liver and peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1-α) and UCP-1 proteins in brown adipose tissue (BAT) is analyzed by Western blot. Results show that anserine can significantly decrease the expression of the NLRP3, p65, p-p65, and the SREBP-1 proteins and increase the expression of the PGC1-α and UCP-1 proteins. This study demonstrates that anserine lowered blood lipids and prevented obesity; its antiobesity mechanism may be related to the activation of brown fat by inflammation.
Collapse
Affiliation(s)
- Jing Luo
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
| | - Ming Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, 524088, P. R. China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, 524088, P. R. China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, 524088, P. R. China
- Key Laboratory of Advanced Processing of Aquatic, Product of Guangdong Higher Education Institution, Zhanjiang, 524088, P. R. China
| | - Weifeng Su
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
| | - Wenkui Song
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
| | - Di Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
| | - Weiming Su
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, 524088, P. R. China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, 524088, P. R. China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, 524088, P. R. China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, 524088, P. R. China
- Key Laboratory of Advanced Processing of Aquatic, Product of Guangdong Higher Education Institution, Zhanjiang, 524088, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| |
Collapse
|
4
|
Cao Y, Peng T, Ai C, Li Z, Lei X, Li G, Li T, Wang X, Cai S. Inhibition of SIRT6 aggravates p53-mediated ferroptosis in acute lung injury in mice. Heliyon 2023; 9:e22272. [PMID: 38034611 PMCID: PMC10685376 DOI: 10.1016/j.heliyon.2023.e22272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
Although studies have shown that protein 53 (p53)-mediated ferroptosis is involved in acute lung injury (ALI), the mechanism of its regulation remains unclear. The protective effects of Sirtuin 6 (SIRT6), a histone deacetylase, have been demonstrated in multiple diseases; however, further studies are needed to elucidate the role of SIRT6 in ALI. In the present study, we hypothesize that SIRT6 protects against lipopolysaccharide (LPS)-induced ALI by regulating p53-mediated ferroptosis. We observed that the inhibition of ferroptosis prevented LPS-induced ALI. The knockout of p53 blocked LPS-induced ferroptosis and ALI, suggesting that p53 facilitated ALI by promoting ferroptosis. In addition, the inhibition of SIRT6 aggravated LPS-induced ferroptosis and ALI, while the depression of ferroptosis blocked the exacerbation of lung injury induced by SIRT6 inhibition. The results suggest that SIRT6 protects against ALI by regulating ferroptosis. Furthermore, the inhibition of SIRT6 reinforced the p53 acetylation and the deletion of p53 rescued the exacerbation of ferroptosis induced by SIRT6 inhibition. The findings indicate that SIRT6 regulates the acetylation of p53 and prevents p53-mediated ferroptosis. In conclusion, our results indicate that SIRT6 protects against LPS-induced ALI by regulating p53-mediated ferroptosis, thereby demonstrating that SIRT6 holds great promise as a therapeutic target for ALI.
Collapse
Affiliation(s)
- Yuanyuan Cao
- Department of Critical Care Medicine, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, PR China
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou, 423000, PR China
| | - Tian Peng
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou, 423000, PR China
| | - Chenmu Ai
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou, 423000, PR China
| | - Zhiwang Li
- Department of Anesthesiology, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou, 423000, PR China
| | - Xiaobao Lei
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou, 423000, PR China
| | - Guicheng Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou, 423000, PR China
| | - Tao Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou, 423000, PR China
| | - Xiang Wang
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou, 423000, PR China
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, PR China
| |
Collapse
|
5
|
Wang Y, Liu T, Cai Y, Liu W, Guo J. SIRT6's function in controlling the metabolism of lipids and glucose in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1244705. [PMID: 37876546 PMCID: PMC10591331 DOI: 10.3389/fendo.2023.1244705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Diabetic nephropathy (DN) is a complication of diabetes mellitus (DM) and the main cause of excess mortality in patients with type 2 DM. The pathogenesis and progression of DN are closely associated with disorders of glucose and lipid metabolism. As a member of the sirtuin family, SIRT6 has deacetylation, defatty-acylation, and adenosine diphosphate-ribosylation enzyme activities as well as anti-aging and anticancer activities. SIRT6 plays an important role in glucose and lipid metabolism and signaling, especially in DN. SIRT6 improves glucose and lipid metabolism by controlling glycolysis and gluconeogenesis, affecting insulin secretion and transmission and regulating lipid decomposition, transport, and synthesis. Targeting SIRT6 may provide a new therapeutic strategy for DN by improving glucose and lipid metabolism. This review elaborates on the important role of SIRT6 in glucose and lipid metabolism, discusses the potential of SIRT6 as a therapeutic target to improve glucose and lipid metabolism and alleviate DN occurrence and progression of DN, and describes the prospects for future research.
Collapse
Affiliation(s)
- Ying Wang
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzi Cai
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Dong XC. Sirtuin 6-A Key Regulator of Hepatic Lipid Metabolism and Liver Health. Cells 2023; 12:cells12040663. [PMID: 36831330 PMCID: PMC9954390 DOI: 10.3390/cells12040663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Sirtuin 6 (SIRT6) is an NAD-dependent deacetylase/deacylase/mono-ADP ribosyltransferase, a member of the sirtuin protein family. SIRT6 has been implicated in hepatic lipid homeostasis and liver health. Hepatic lipogenesis is driven by several master regulators including liver X receptor (LXR), carbohydrate response element binding protein (ChREBP), and sterol regulatory element binding protein 1 (SREBP1). Interestingly, these three transcription factors can be negatively regulated by SIRT6 through direct deacetylation. Fatty acid oxidation is regulated by peroxisome proliferator activated receptor alpha (PPARα) in the liver. SIRT6 can promote fatty acid oxidation by the activation of PPARα or the suppression of miR-122. SIRT6 can also directly modulate acyl-CoA synthetase long chain family member 5 (ACSL5) activity for fatty acid oxidation. SIRT6 also plays a critical role in the regulation of total cholesterol and low-density lipoprotein (LDL)-cholesterol through the regulation of SREBP2 and proprotein convertase subtilisin/kexin type 9 (PCSK9), respectively. Hepatic deficiency of Sirt6 in mice has been shown to cause hepatic steatosis, inflammation, and fibrosis, hallmarks of alcoholic and nonalcoholic steatohepatitis. SIRT6 can dampen hepatic inflammation through the modulation of macrophage polarization from M1 to M2 type. Hepatic stellate cells are a key cell type in hepatic fibrogenesis. SIRT6 plays a strong anti-fibrosis role by the suppression of multiple fibrogenic pathways including the transforming growth factor beta (TGFβ)-SMAD family proteins and Hippo pathways. The role of SIRT6 in liver cancer is quite complicated, as both tumor-suppressive and tumor-promoting activities have been documented in the literature. Overall, SIRT6 has multiple salutary effects on metabolic homeostasis and liver health, and it may serve as a therapeutic target for hepatic metabolic diseases. To date, numerous activators and inhibitors of SIRT6 have been developed for translational research.
Collapse
Affiliation(s)
- X. Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
An R. MRTF may be the missing link in a multiscale mechanobiology approach toward macrophage dysfunction in space. Front Cell Dev Biol 2022; 10:997365. [PMID: 36172272 PMCID: PMC9510870 DOI: 10.3389/fcell.2022.997365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Macrophages exhibit impaired phagocytosis, adhesion, migration, and cytokine production in space, hindering their ability to elicit immune responses. Considering that the combined effect of spaceflight microgravity and radiation is multiscale and multifactorial in nature, it is expected that contradictory findings are common in the field. This theory paper reanalyzes research on the macrophage spaceflight response across multiple timescales from seconds to weeks, and spatial scales from the molecular, intracellular, extracellular, to the physiological. Key findings include time-dependence of both pro-inflammatory activation and integrin expression. Here, we introduce the time-dependent, intracellular localization of MRTF-A as a hypothetical confounder of macrophage activation. We discuss the mechanosensitive MRTF-A/SRF pathway dependence on the actin cytoskeleton/nucleoskeleton, microtubules, membrane mechanoreceptors, hypoxia, oxidative stress, and intracellular/extracellular crosstalk. By adopting a multiscale perspective, this paper provides the first mechanistic answer for a three-decade-old question regarding impaired cytokine secretion in microgravity—and strengthens the connection between the recent advances in mechanobiology, microgravity, and the spaceflight immune response. Finally, we hypothesize MRTF involvement and complications in treating spaceflight-induced cardiovascular, skeletal, and immune disease.
Collapse
Affiliation(s)
- Rocky An
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
- *Correspondence: Rocky An,
| |
Collapse
|