1
|
Guo W, Huang R, Bian J, Liao Q, You J, Yong X, Wang Y, Wen D, Fan X, Zhou C, Xu Z. Salidroside ameliorates macrophages lipid accumulation and atherosclerotic plaque by inhibiting Hif-1α-induced pyroptosis. Biochem Biophys Res Commun 2025; 742:151104. [PMID: 39642710 DOI: 10.1016/j.bbrc.2024.151104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Hipoxia-inducible factor 1 alpha (Hif-1α) is a significant risk factor for atherosclerotic cardiovascular disease. Salidroside (SAL) has demonstrated anti-oxidative and anti-cardiovascular disease effects. Currently, there are no relevant studies investigating the interaction between SAL and Hif-1α in the progression of atherosclerosis. METHODS Hif-1α was either knocked down or upregulated in Ana-1 macrophages-derived foam cells, and atherosclerosis ApoE-/- mice were treated with or without SAL. A Protein-protein network involving Hif-1α and pyroptosis-related genes was identified through bioinformatic analysis and validated in human vascular tissues. The Oil Red O and DiI staining were used to detect the intracellular ox-LDL accumulation. The HE and Oil Red O staining were employed to evaluate atherosclerotic plaque in vivo. The levels of relevant molecules were quantified using WB, qRT-PCR, ELISA, and immunohistochemistry. The target proteins of SAL were identified through Molecular docking and Cell Thermal Shift Assay (CESTA). RESULTS Both Hif-1α knockdown and SAL treatment markedly reduced lipid accumulation in macrophages-derived foam cells. Hif-1α was closely associated with Caspase1, Gsdmd, NRLP3, and IL-1β, and co-located in CD86+ macrophages-derived foam cells within atherosclerotic plaque. SAL inhibited Hif-1α-induced Caspase-1-dependent pyroptosis and lipid accumulation by directly bonding to Hif-1α. In vivo, SAL treatment decreased atherosclerotic plaque and improved plasma lipid profiles. Furthermore, SAL reduced M1 macrophages infiltration and the levels of Hif-1α, C-Caspase1, Gsdmd-N, NRLP3, IL-18, and IL-1β in atherosclerotic plaque. CONCLUSION SAL alleviated the lipid accumulation in macrophages and atherosclerotic plaques by inhibiting pyroptosis pathway via directly binding to Hif-1α, which may be a promising therapeutic strategy for AS treatment.
Collapse
Affiliation(s)
- Wen Guo
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China; Pharmacy Department, Department of Vascular Surgery, Cardiovascular Medicine, Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China; Affiliated hospital of Nanchong Health School of Sichuan Province, Nanchong, 637000, China
| | - Rong Huang
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Jiaojiao Bian
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Qing Liao
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Jun You
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Xi Yong
- Pharmacy Department, Department of Vascular Surgery, Cardiovascular Medicine, Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Yuquan Wang
- Pharmacy Department, Department of Vascular Surgery, Cardiovascular Medicine, Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Dan Wen
- Pharmacy Department, Department of Vascular Surgery, Cardiovascular Medicine, Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xiaochun Fan
- Key Laboratory of Traditional Chinese medicine for prevention and treatment of skeletal muscle disease, Nanchong Hospital of Traditional Chinese Medicine, Nanchong, 637000, China
| | - Chunyang Zhou
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China.
| | - Zhengmin Xu
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
2
|
Yao M, Wang X, Lin H, Shu H, Xu Z, Tang L, Guo W, Xu P. LncRNA Tug1 Regulates Post-Stroke Microglial Pyroptosis via PINK1/Parkin-Mediated Mitophagy. Inflammation 2024:10.1007/s10753-024-02219-8. [PMID: 39739230 DOI: 10.1007/s10753-024-02219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Microglia, the central nervous system's primary immune cells, play a key role in the progression of cerebral ischemic stroke, particularly through their involvement in pyroptosis. The long non-coding RNA taurine up-regulated gene 1 (Tug1) is elevated during ischemic stroke and is critical in driving post-stroke neuroinflammation. However, the underlying molecular mechanisms remain unclear. This study explores the biological role of Tug1 and its potential mechanisms in regulating pyroptosis in microglia. We utilized an in vivo photothrombosis (PT) mice model and an in vitro oxygen-glucose deprivation and reperfusion (OGD/R) BV2 cell model to explore the mechanisms underlying ischemic stroke. Initially, we assessed the expression levels of Tug1 in the OGD/R model in vitro and the PT model in vivo. Subsequently, we investigated the impact of Tug1 on microglial pyroptosis by knocking down Tug1, silencing the PTEN-induced putative kinase 1 (Pink1) expression, and employing the mitophagy inhibitor mdivi-1. Tug1 exacerbated microglial pyroptosis by inhibiting mitophagy in both in vivo and in vitro models. The increase in mitophagy observed following Tug1 knockdown was reversed by either silencing Pink1 expression or using the mitophagy inhibitor mdivi-1. This reversal resulted in exacerbated pyroptosis and worsened neurological damage. Further mechanistic studies revealed that Tug1 knockdown significantly reduced microglial pyroptosis and alleviated neuronal damage by enhancing PINK1/Parkin-mediated mitophagy. For the first time, this study reveals that Tug1 promotes hypoxia-induced microglial pyroptosis by inhibiting PINK1/Parkin-mediated mitophagy, potentially providing a promising therapeutic target for ischemic inflammatory injury.
Collapse
Affiliation(s)
- Meiling Yao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaobei Wang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Hao Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hui Shu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zongtang Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ling Tang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
3
|
Qu FX, Guo X, Liu XJ, Zhang SW, Xin Y, Li JY, Wang R, Xu CJ, Li HY, Lu CH. Treatment with a combination of myricitrin and exercise alleviates myocardial infarction in rats via suppressing Nrf2/HO-1 antioxidant pathway. Arch Biochem Biophys 2024; 761:110153. [PMID: 39271097 DOI: 10.1016/j.abb.2024.110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Myocardial infarction (MI) is the primary source of death in cardiovascular diseases. Myricitrin (MYR) is a phenolic compound known for its antioxidant properties. This study aimed to investigate the impact of MYR alone or combined with exercise on a rat model of MI and its underlying mechanism. Sprague-Dawley rats were randomized into 5 groups: sham-operated (Sham), MI-sedentary (MI-Sed), MI-exercise (MI-Ex), MI-sedentary + MYR (MI-Sed-MYR) and MI-exercise + MYR (MI-Ex-MYR). MI was induced through ligation of left anterior descending coronary artery. The treatment with exercise or MYR (30 mg/kg/d) gavage began one week after surgery, either individually or in combination. After 8 weeks, the rats were assessed for cardiac function. Myocardial injuries were estimated using triphenyltetrazolium chloride, sirius red and Masson staining. Changes in reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm), apoptosis and Nrf2/HO-1 pathway were analyzed by ROS kit, JC-1 kit, TUNEL assay, Western blot and immunohistochemistry. Both MYR and exercise treatments improved cardiac function, reduced infarct size, suppressed collagen deposition, and decreased myocardial fibrosis. Additionally, both MYR and exercise treatments lowered ROS production induced by MI, restored ΔΨm, and attenuated oxidative stress and apoptosis in cardiomyocytes. Importantly, the combination of MYR and exercise showed greater efficacy compared to individual treatments. Mechanistically, the combined intervention activated the Nrf2/HO-1 signaling pathway. These findings suggest that the synergistic effect of MYR and exercise may offer a promising therapeutic approach for alleviating MI.
Collapse
Affiliation(s)
- Feng-Xia Qu
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Xiao Guo
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Xiao-Jun Liu
- Department of Cardiac Surgery, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Shu-Wen Zhang
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Yue Xin
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Jing-Yuan Li
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Rong Wang
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Chen-Ji Xu
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Hai-Ying Li
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Chang-Hong Lu
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China.
| |
Collapse
|
4
|
Li W, Chen H, Zhu X, Lin M. LncRNA-TUG1: Implications in the Myocardial and Endothelial Cell Oxidative Stress Injury Caused by Hemorrhagic Shock and Fluid Resuscitation. FRONT BIOSCI-LANDMRK 2024; 29:376. [PMID: 39614432 DOI: 10.31083/j.fbl2911376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND LncRNA taurine-upregulated gene 1 (TUG1) can regulate vascular endothelial cell injury, a critical mechanism in treating hemorrhagic shock and fluid resuscitation (HS/R). Therefore, this study explored the influence of TUG1 in HS/R. METHODS An in vivo rat model of ischemia-reperfusion (I/R) injury post-HS/R and an in vitro model of oxidative stress injury in rat cardiomyocyte cell line (H9C2) were constructed. In vivo, we silenced TUG1 and quantified its expression along with inflammatory factors through quantitative reverse transcription polymerase chain reaction (qRT-PCR), mean arterial pressure (MAP) detection and blood gas analysis. Myocardial functional impairment was assessed via Triphenyl-2H-Tetrazolium Chloride (TTC), Hematoxylin and eosin, and Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) stainings. Oxidative stress level in rat serum was measured. In vitro, we examined the changes of cell viability, apoptosis, oxidative stress levels, inflammatory factor secretion and nuclear factor-κB (NF-κB)/p65 expression by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, Enzyme-linked immunosorbent assay (ELISA) and Western blot. RESULTS TUG1 level was elevated in rats of I/R model caused by HS/R. TUG1 silencing ameliorated the decline in MAP, acid-base imbalance and myocardial tissue damage, and suppressed oxidative stress and inflammatory factor levels in model rat. TUG1 silencing enhanced viability, impeded apoptosis, and reduced oxidative stress, inflammatory factor contents and NF-κB/p65 expression in H2O2 treated H9C2 cells. CONCLUSION TUG1 participates in regulating oxidative stress damage and inflammation induced by HS/R.
Collapse
Affiliation(s)
- Wei Li
- Intensive Care Unit, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, 350004 Fuzhou, Fujian, China
| | - Huaiyu Chen
- Intensive Care Unit, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, 350004 Fuzhou, Fujian, China
| | - Xueli Zhu
- Intensive Care Unit, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, 350004 Fuzhou, Fujian, China
| | - Mingrui Lin
- Intensive Care Unit, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, 350004 Fuzhou, Fujian, China
| |
Collapse
|
5
|
Wu T, Lu Y, Yu Y, Hua Y, Ge G, Zhao W, Chen K, Zhong Z, Zhang F. Long noncoding RNA AK144717 exacerbates pathological cardiac hypertrophy through modulating the cellular distribution of HMGB1 and subsequent DNA damage response. Cell Mol Life Sci 2024; 81:432. [PMID: 39395058 PMCID: PMC11470913 DOI: 10.1007/s00018-024-05464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/09/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024]
Abstract
DNA damage induced by oxidative stress during cardiac hypertrophy activates the ataxia telangiectasia mutated (ATM)-mediated DNA damage response (DDR) signaling, in turn aggravating the pathological cardiomyocyte growth. This study aims to identify the functional associations of long noncoding RNA (lncRNAs) with cardiac hypertrophy and DDR. The altered ventricular lncRNAs in the mice between sham and transverse aortic constriction (TAC) group were identified by microarray analysis, and a novel lncRNA AK144717 was found to gradually upregulate during the development of pathological cardiac hypertrophy induced by TAC surgery or angiotensin II (Ang II) stimulation. Silencing AK144717 had a similar anti-hypertrophic effect to that of ATM inhibitor KU55933 and also suppressed the activated ATM-DDR signaling induced by hypertrophic stimuli. The involvement of AK144717 in DDR and cardiac hypertrophy was closely related to its interaction with HMGB1, as silencing HMGB1 abolished the effects of AK144717 knockdown. The binding of AK144717 to HMGB1 prevented the interaction between HMGB1 and SIRT1, contributing to the increased acetylation and then cytosolic translocation of HMGB1. Overall, our study highlights the role of AK144717 in the hypertrophic response by interacting with HMGB1 and regulating DDR, hinting that AK144717 is a promising therapeutic target for pathological cardiac growth.
Collapse
Affiliation(s)
- Tianyu Wu
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Yao Lu
- Department of Cardiology, Xuzhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical University, No.199 Jiefang South Road, Xuzhou, 221009, PR China
| | - Yue Yu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Zhongshan Road 321, Nanjing, 210029, PR China
| | - Yan Hua
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Gaoyuan Ge
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Wei Zhao
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Kaiyan Chen
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Zhuen Zhong
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Fengxiang Zhang
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China.
| |
Collapse
|
6
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
7
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Overview of pyroptosis mechanism and in-depth analysis of cardiomyocyte pyroptosis mediated by NF-κB pathway in heart failure. Biomed Pharmacother 2024; 179:117367. [PMID: 39214011 DOI: 10.1016/j.biopha.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The pyroptosis of cardiomyocytes has become an essential topic in heart failure research. The abnormal accumulation of these biological factors, including angiotensin II, advanced glycation end products, and various growth factors (such as connective tissue growth factor, vascular endothelial growth factor, transforming growth factor beta, among others), activates the nuclear factor-κB (NF-κB) signaling pathway in cardiovascular diseases, ultimately leading to pyroptosis of cardiomyocytes. Therefore, exploring the underlying molecular biological mechanisms is essential for developing novel drugs and therapeutic strategies. However, our current understanding of the precise regulatory mechanism of this complex signaling pathway in cardiomyocyte pyroptosis is still limited. Given this, this study reviews the milestone discoveries in the field of pyroptosis research since 1986, analyzes in detail the similarities, differences, and interactions between pyroptosis and other cell death modes (such as apoptosis, necroptosis, autophagy, and ferroptosis), and explores the deep connection between pyroptosis and heart failure. At the same time, it depicts in detail the complete pathway of the activation, transmission, and eventual cardiomyocyte pyroptosis of the NF-κB signaling pathway in the process of heart failure. In addition, the study also systematically summarizes various therapeutic approaches that can inhibit NF-κB to reduce cardiomyocyte pyroptosis, including drugs, natural compounds, small molecule inhibitors, gene editing, and other cutting-edge technologies, aiming to provide solid scientific support and new research perspectives for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
8
|
Liu Y, Pan R, Ouyang Y, Gu W, Xiao T, Yang H, Tang L, Wang H, Xiang B, Chen P. Pyroptosis in health and disease: mechanisms, regulation and clinical perspective. Signal Transduct Target Ther 2024; 9:245. [PMID: 39300122 DOI: 10.1038/s41392-024-01958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Pyroptosis is a type of programmed cell death characterized by cell swelling and osmotic lysis, resulting in cytomembrane rupture and release of immunostimulatory components, which play a role in several pathological processes. Significant cellular responses to various stimuli involve the formation of inflammasomes, maturation of inflammatory caspases, and caspase-mediated cleavage of gasdermin. The function of pyroptosis in disease is complex but not a simple angelic or demonic role. While inflammatory diseases such as sepsis are associated with uncontrollable pyroptosis, the potent immune response induced by pyroptosis can be exploited as a therapeutic target for anti-tumor therapy. Thus, a comprehensive review of the role of pyroptosis in disease is crucial for further research and clinical translation from bench to bedside. In this review, we summarize the recent advancements in understanding the role of pyroptosis in disease, covering the related development history, molecular mechanisms including canonical, non-canonical, caspase 3/8, and granzyme-mediated pathways, and its regulatory function in health and multiple diseases. Moreover, this review also provides updates on promising therapeutic strategies by applying novel small molecule inhibitors and traditional medicines to regulate pyroptosis. The present dilemmas and future directions in the landscape of pyroptosis are also discussed from a clinical perspective, providing clues for scientists to develop novel drugs targeting pyroptosis.
Collapse
Affiliation(s)
- Yifan Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Oncology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Renjie Pan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Yuzhen Ouyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Neurology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Ling Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Bo Xiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| |
Collapse
|
9
|
Zhang Y, Shang Z, Xu S, Zhou G, Liu A. ELF5-Regulated lncRNA-TTN-AS1 Alleviates Myocardial Cell Injury via Recruiting PCBP2 to Increase CDK6 Stability in Myocardial Infarction. Mol Cell Biol 2024; 44:303-315. [PMID: 39034459 PMCID: PMC11296528 DOI: 10.1080/10985549.2024.2374083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Myocardial infarction (MI) seriously threatens the health of elderly people, and reducing myocardial injury is of great significance for the treatment of MI. LncRNA-TTN-AS1 shows protective effects on cardiomyocyte injury, while the role of TTN-AS1 in MI remains unknown. CCK8, flow cytometry, and JC-1 staining assessed cell viability, apoptosis and mitochondrial membrane potential (MMP), respectively. Cellular reactive oxygen species (ROS) and secreted lactate dehydrogenase (LDH) levels were measured. The interactions between ELF5, TTN-AS1, PCBP2 and CDK6 were explored using ChIP, luciferase reporter assay, RIP, and pull-down. The severity of MI in mice was evaluated using TTC, H&E, and TUNEL staining. The data revealed that OGD/R significantly induced ROS, mitochondrial injury and apoptosis in AC16 cells, while overexpression of ELF5 or TTN-AS1 reversed these phenomena. ELF5 transcriptionally activated TTN-AS1 through binding with its promoter. TTN-AS1 increased CDK6 stability via recruiting PCBP2. CDK6 knockdown abolished the inhibitory effects of TTN-AS1 overexpression on OGD/R-induced myocardial injury. Furthermore, overexpression of TTN-AS1 or ELF5 alleviated MI progression in mice by upregulating CDK6. Collectively, TTN-AS1 transcriptionally regulated by ELF5 alleviated myocardial apoptosis and injury during MI via recruiting PCBP2 to increase CDK6 stability, which shed new lights on exploring new strategies against MI.
Collapse
Affiliation(s)
- Yonglin Zhang
- Department of Cardiology, Binhai County People’s Hospital, Binhai, Jiangsu Province, China
| | - Zhenglu Shang
- Department of Cardiology, Wuxi Huishan District People’s Hospital, Wuxi, Jiangsu Province, China
| | - Shucan Xu
- Department of Cardiology, Binhai County People’s Hospital, Binhai, Jiangsu Province, China
| | - Guangzhi Zhou
- Department of Cardiology, Binhai County People’s Hospital, Binhai, Jiangsu Province, China
| | - Aijun Liu
- Department of Cardiology, Binhai County People’s Hospital, Binhai, Jiangsu Province, China
| |
Collapse
|
10
|
Chen H, Wu Y, Wang J, Li Y, Chen Y, Wang X, Lv H, Liu X. Tilianin enhances the antitumor effect of sufentanil on non-small cell lung cancer. J Biochem Mol Toxicol 2024; 38:e23761. [PMID: 38952040 DOI: 10.1002/jbt.23761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Non-small cell cancer (NSCLC) is the most common cancer in the world, but its effective therapeutic methods are limited. Tilianin and sufentanil alleviate various human tumors. This research aimed to clarify the functions and mechanisms of Tilianin and sufentanil in NSCLC. The functions of Tilianin and sufentanil on NSCLC cell viability, apoptosis, mitochondrial dysfunction, and immunity in vitro were examined using Cell Counting Kit-8 assay, flow cytometry, reactive oxygen species level analysis, CD8+ T cell percentage analysis, Western blot, and enzyme-linked immunosorbent assay, respectively. The molecular mechanism regulated by Tilianin and sufentanil in NSCLC was assessed using Western blot, and immunofluorescence assays. Meanwhile, the roles of Tilianin and sufentanil in NSCLC tumor growth, apoptosis, and immunity in vivo were determined by establishing a tumor xenograft mouse model, immunohistochemistry, and Western blot assays. When sufentanil concentration was proximity 2 nM, the inhibition rate of NSCLC cell viability was 50%. The IC50 for A549 cells was 2.36 nM, and the IC50 for H1299 cells was 2.18 nM. The IC50 of Tilianin for A549 cells was 38.7 μM, and the IC50 of Tilianin for H1299 cells was 44.6 μM. Functionally, 0.5 nM sufentanil and 10 μM Tilianin reduced NSCLC cell (A549 and H1299) viability in a dose-dependent manner. Also, 0.5 nM sufentanil and 10 μM Tilianin enhanced NSCLC cell apoptosis, yet this impact was strengthened after a combination of Tilianin and Sufentanil. Furthermore, 0.5 nM sufentanil and 10 μM Tilianin repressed NSCLC cell mitochondrial dysfunction and immunity, and these impacts were enhanced after a combination of Tilianin and Sufentanil. Mechanistically, 0.5 nM sufentanil and 10 μM Tilianin repressed the NF-κB pathway in NSCLC cells, while this repression was strengthened after a combination of Tilianin and Sufentanil. In vivo experimental data further clarified that 1 µg/kg sufentanil and 10 mg/kg Tilianin reduced NSCLC growth, immunity, and NF-κB pathway-related protein levels, yet these trends were enhanced after a combination of Tilianin and Sufentanil. Tilianin strengthened the antitumor effect of sufentanil in NSCLC.
Collapse
Affiliation(s)
- Huixia Chen
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Yulin Wu
- Department of Anesthesia Operation Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jiazheng Wang
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Yike Li
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Yongxue Chen
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Xinbo Wang
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Hangyu Lv
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Xinyan Liu
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| |
Collapse
|
11
|
Abudalo R, Gammoh O, Altaber S, Bseiso Y, Qnais E, Wedyan M, Oqal M, Alqudah A. Mitigation of cisplatin-induced cardiotoxicity by Isorhamnetin: Mechanistic insights into oxidative stress, inflammation, and apoptosis modulation. Toxicol Rep 2024; 12:564-573. [PMID: 38798986 PMCID: PMC11127476 DOI: 10.1016/j.toxrep.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The flavonoid compound Isorhamnetin (IRMN) is known for its considerable pharmacological properties, which include antioxidant and anti-inflammatory effects, as well as significant protective actions on heart health. However, the potential of IRMN to guard against heart damage caused by cisplatin (CP), a common chemotherapeutic agent, and the specific mechanisms involved, remain unexplored areas. This research was designed to investigate how IRMN counters CP-induced heart toxicity. In our study, mice were orally given IRMN at 50 or 150 mg/kg/day for a week, followed by CP injections (5 mg/kg/day) on the third and sixth days. The animals were euthanized under sodium pentobarbital anesthesia (50 mg/kg, intraperitoneally) on the eighth day to collect blood and heart tissues for further examination. Our findings reveal that IRMN administration significantly reduced the heart damage and the elevation of heart injury markers such as cardiac troponin I, creatine kinase, and lactate dehydrogenase induced by CP. IRMN also effectively lowered oxidative stress markers, including reactive oxygen species and malondialdehyde, while boosting ATP production and antioxidants like superoxide dismutase, catalase, and glutathione. The compound's capability to diminish the levels of pro-inflammatory cytokines like tumor necrosis factor-alpha and interleukin-6, alongside modulating apoptosis-regulating proteins (enhancing Bcl-2 while suppressing Bax and Caspase-3 expression), further underscores its cardioprotective effect. Notably, IRMN modulated the p62-Keap1-Nrf2 signaling pathway, suggesting a mechanism through which it exerts its protective effects against CP-induced cardiac injury. These insights underscore the potential of IRMN as an effective adjunct in cancer therapy, offering a strategy to mitigate the cardiotoxic side effects of cisplatin.
Collapse
Affiliation(s)
- Rawan Abudalo
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Sara Altaber
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan
| | - Yousra Bseiso
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan
| | - Mohammed Wedyan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan
| | - Muna Oqal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| |
Collapse
|
12
|
Chi K, Yang S, Zhang Y, Zhao Y, Zhao J, Chen Q, Ge Y, Liu J. Exploring the mechanism of Tingli Pill in the treatment of HFpEF based on network pharmacology and molecular docking. Medicine (Baltimore) 2024; 103:e37727. [PMID: 38640300 PMCID: PMC11029988 DOI: 10.1097/md.0000000000037727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/21/2024] Open
Abstract
To explore the mechanism of action of Tingli Pill (TLP) in the treatment of heart failure with preserved ejection fraction (HFpEF) by using network pharmacology and molecular docking technology. The active components and targets of TLP were screened using the TCMSP and UniProt databases. HFpEF-related targets were identified using the OMIM and GeneCards databases. Drug-disease intersection targets were obtained via Venny 2.1.0, as well as establishing the "component-target" network and screening out the core active components. Construct a protein-protein interaction network of intersecting targets using the STRING database as well as Cytoscape software and filter the core targets. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of core targets were performed using the Metascape database. The core active components of TLP for HFpEF were quercetin, kaempferol, β-sitosterol, isorhamnetin and hederagenin. The core targets of TLP for HFpEF were JUN, MAPK1, TP53, AKT1, RELA, TNF, MAPK14, and IL16. Gene ontology enrichment analysis obtained 1528 biological processes, 85 cell components, and 140 molecular functions. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis yielded 1940 signaling pathways, mainly involved in lipid and atherosclerosis, regulation of apoptotic signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, oxidative stress, TNF signaling pathway, and IL-17 signaling pathway. TLP has the characteristics of multi-component, multi-target, and multi-pathway in the treatment of HFpEF. This study lays the foundation for revealing the pharmacodynamic substances and mechanism of TLP in the treatment of HFpEF.
Collapse
Affiliation(s)
- Kuo Chi
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Saisai Yang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yao Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongfa Zhao
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jiahe Zhao
- Medical Comprehensive Experimental Center, Hebei University, Baoding, China
| | - Qiuhan Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuan Ge
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Fathi M, Ghafouri-Fard S. Impacts of non-coding RNAs in the pathogenesis of varicocele. Mol Biol Rep 2024; 51:322. [PMID: 38393415 DOI: 10.1007/s11033-024-09280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Two classes of non-coding RNAs, namely lncRNAs and miRNAs have been reported to be involved in the pathogenesis of varicocele. MIR210HG, MLLT4-AS1, gadd7, and SLC7A11-AS1 are among lncRNAs whose expression has been changed in patients with varicocele in association with the sperm quality. Animal studies have also suggested contribution of NONRATG001060, NONRATG002949, NONRATG013271, NONRATG027523 and NONRATG023747 lncRNAs in this pathology. Meanwhile, expression of some miRNAs, such as miR-210-3p, miR-21, miR-34a, miR-122a, miR-181a, miR-34c and miR-192a has been altered in this condition. Some of these transcripts have the potential to predict the sperm quality. We summarize the impacts of lncRNAs and miRNAs in the pathogenesis of varicocele.
Collapse
Affiliation(s)
- Mohadeseh Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Shuai ZQ, Wang ZX, Ren JL, Yang XK, Xu B. Differential expressions and potential clinical values of lncRNAs in the plasma exosomes of rheumatoid arthritis. Int Immunopharmacol 2024; 128:111511. [PMID: 38194746 DOI: 10.1016/j.intimp.2024.111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a common autoimmune disease with unclear pathogenesis. Progress in its clinical diagnosis and treatment mainly depends on the elucidation of its pathogenesis and the exploration of new biomarkers. Exosomes contain various biomolecules, including long non-coding ribonucleic acids (lncRNAs). lncRNAs may participate in the regulation of autoimmune and inflammatory processes during RA pathogenesis by transmitting these biomolecules via exosomes among different cells. Therefore, the investigation of lncRNAs in RA exosomes may be a feasible pathway to elucidate RA pathogenesis, identify new diagnostic biomarkers, and identify potential therapeutic targets. METHODS In the first phase of exosomal non-coding RNAs screening, exosomes were isolated from the peripheral blood of six patients with RA and healthy controls (HC). High-throughput RNA sequencing was performed to obtain lncRNA expression profiles, and 15 lncRNAs with the highest differential expression were selected as candidate lncRNAs. In the second phase of validation using real-time quantitative polymerase chain reaction (qRT-PCR), differential expression of the 15 candidate lncRNAs was verified in 42 patients with RA and their matched HC. Their potential value as RA diagnostic biomarkers was assessed using receiver operating characteristic (ROC) curve analysis. Their relationships with common clinical indices of RA were explored using Spearman's rank correlation and linear regression analyses. RESULT Compared to HC, patients with RA had 206 upregulated and 2,332 downregulated lncRNAs. Fifteen candidate lncRNAs were validated by qRT-PCR, of which 12 (SNHG6, RPS18P9, RPL21P28, EBLN3P, FAM153CP, RPL23P8, SNHG31, NORAD, H3P6, DLEU2, TUG1, and OIP5-AS1) were upregulated, and three (CXXC4-AS1, OLMALINC, and NPHP3-AS1) were downregulated. In the ROC analysis of the 15 candidate lncRNAs, the area under the curve (AUC) ranged from 0.847 (0.767, 0.927) for OLMALINC to 0.994 (0.984, 1.000) for CXXC4-AS1. Spearman rank correlation analysis revealed erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and disease activity score of 28 (DAS28) were correlated with seven, six, and five lncRNAs, respectively. Further linear regression analysis revealed a negative relationship between exosomal SNHG6 and ESR (B = -0.384, P = 0.006), and a positive relationship between SNHG31 and ESR (B = 0.381, P = 0.007). Exosomal SNHG6 also showed a negative relationship with CRP (B = -0.361, P = 0.019). Moreover, exosomal RPS18P9 and SNGH31 had a negative effect and a positive effect on DAS28, respectively (B = -0.463, P < 0.001; B = 0.586, P < 0.001), implying novel exosomal lncRNAs were the independent influencing factors of the main RA-related clinical indices. CONCLUSIONS lncRNAs in RA plasma exosomes have characteristic expression profiles, including some lncRNAs with potential as diagnostic biomarkers and therapeutic targets for RA.
Collapse
Affiliation(s)
- Zi-Qiang Shuai
- Department of Sports injury and arthroscopic surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Zhi-Xin Wang
- Departments of rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jia-Le Ren
- Departments of rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Xiao-Ke Yang
- Departments of rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China.
| | - Bin Xu
- Department of Sports injury and arthroscopic surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China.
| |
Collapse
|
15
|
Dang JY, Zhang W, Chu Y, Chen JH, Ji ZL, Feng P. Downregulation of salusins alleviates hypertrophic cardiomyopathy via attenuating oxidative stress and autophagy. Eur J Med Res 2024; 29:109. [PMID: 38336819 PMCID: PMC10854150 DOI: 10.1186/s40001-024-01676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Salusins, which are translated from the alternatively spliced mRNA of torsin family 2 member A (TOR2A), play a vital role in regulation of various cardiovascular diseases. However, it remains unclear precisely regarding their roles in hypertrophic cardiomyopathy (HCM). Therefore, this study was conducted to explore therapeutic effect and the underlying mechanisms of salusins on HCM. MATERIAL AND METHODS In vivo experiments, Sprague-Dawley rats were used to induce HCM model by angiotensin (Ang) II infusion for 4 weeks. The rats were randomly divided into four groups, namely, Saline + Control shRNA (n = 7), Ang II + Control shRNA (n = 8), Saline + TOR2A shRNA (n = 7), and Ang II + TOR2A shRNA groups (n = 8). After HCM induction, doppler echocardiography is recommended to evaluate heart function. In vitro experiments, primary neonatal rat cardiomyocytes (NRCMs) and cardiac fibroblasts (NRCFs) were obtained from newborn rats, and were treated with Ang II (10-6 M) for 24 h. RESULTS After treatment with Ang II, levels of salusin-α and salusin-β were elevated in serum and cardiac tissues of rats and in the neonatal rat cardiomyocytes and cardiac fibroblasts. Downregulation of salusins alleviated the Ang II-induced cardiac hypertrophy by suppressing the increased atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and beta-myosin heavy chain (β-MHC) and cardiac fibrosis by blocking collagen I, collagen III and transforming growth factor-beta (TGF-β), and it also attenuated oxidative stress by suppressing the increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels and reversing the decreased superoxide dismutase (SOD) activity and autophagy by inhibiting the increased microtubule-associated protein light chain 3B (LC3B), Beclin1, autophagy related gene (Atg) 3 and Atg5 in the cardiac tissues of Ang II-infused rats and in the Ang II-treated NRCMs. CONCLUSIONS All these findings suggest that the levels of salusins were elevated in the HCM, and targeting of salusins contributes to alleviation of cardiac hypertrophy and fibrosis probably via attenuating oxidative stress and autophagy. Accordingly, targeting of salusins may be a strategy for HCM therapy.
Collapse
Affiliation(s)
- Jing-Yi Dang
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, No. 569 Xinsid Road, Xi'an, 710038, China
| | - Wei Zhang
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, No. 569 Xinsid Road, Xi'an, 710038, China
| | - Yi Chu
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, No. 569 Xinsid Road, Xi'an, 710038, China
| | - Jiang-Hong Chen
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, No. 569 Xinsid Road, Xi'an, 710038, China
| | - Zhao-Le Ji
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, No. 569 Xinsid Road, Xi'an, 710038, China
| | - Pin Feng
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, No. 569 Xinsid Road, Xi'an, 710038, China.
| |
Collapse
|
16
|
Sun Y, Chu S, Wang R, Xia R, Sun M, Gao Z, Xia Z, Zhang Y, Dong S, Wang T. Non-coding RNAs modulate pyroptosis in myocardial ischemia-reperfusion injury: A comprehensive review. Int J Biol Macromol 2024; 257:128558. [PMID: 38048927 DOI: 10.1016/j.ijbiomac.2023.128558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Reperfusion therapy is the most effective treatment for acute myocardial infarction. However, reperfusion itself can also cause cardiomyocytes damage. Pyroptosis has been shown to be an important mode of myocardial cell death during ischemia-reperfusion. Non-coding RNAs (ncRNAs) play critical roles in regulating pyroptosis. The regulation of pyroptosis by microRNAs, long ncRNAs, and circular RNAs may represent a new mechanism of myocardial ischemia-reperfusion injury. This review summarizes the currently known regulatory roles of ncRNAs in myocardial ischemia-reperfusion injury and interactions between ncRNAs. Potential therapeutic strategies using ncRNA modulation are also discussed.
Collapse
Affiliation(s)
- Yi Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujuan Chu
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rong Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rui Xia
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Meng Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhixiong Gao
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan Zhang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Siwei Dong
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| | - Tingting Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
17
|
Jalink EA, Schonk AW, Boon RA, Juni RP. Non-coding RNAs in the pathophysiology of heart failure with preserved ejection fraction. Front Cardiovasc Med 2024; 10:1300375. [PMID: 38259314 PMCID: PMC10800550 DOI: 10.3389/fcvm.2023.1300375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is the largest unmet clinical need in cardiovascular medicine. Despite decades of research, the treatment option for HFpEF is still limited, indicating our ongoing incomplete understanding on the underlying molecular mechanisms. Non-coding RNAs, comprising of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are non-protein coding RNA transcripts, which are implicated in various cardiovascular diseases. However, their role in the pathogenesis of HFpEF is unknown. Here, we discuss the role of miRNAs, lncRNAs and circRNAs that are involved in the pathophysiology of HFpEF, namely microvascular dysfunction, inflammation, diastolic dysfunction and cardiac fibrosis. We interrogated clinical evidence and dissected the molecular mechanisms of the ncRNAs by looking at the relevant in vivo and in vitro models that mimic the co-morbidities in patients with HFpEF. Finally, we discuss the potential of ncRNAs as biomarkers and potential novel therapeutic targets for future HFpEF treatment.
Collapse
Affiliation(s)
- Elisabeth A. Jalink
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Amber W. Schonk
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Reinier A. Boon
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research, Partner Site Frankfurt Rhein/Main, Frankfurt, Germany
| | - Rio P. Juni
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| |
Collapse
|
18
|
Wang Y, Xiong Z, Zhang Q, Liu M, Zhang J, Qi X, Jiang X, Yu W. Acetyl-11-Keto-β-Boswellic Acid Accelerates the Repair of Spinal Cord Injury in Rats by Resisting Neuronal Pyroptosis with Nrf2. Int J Mol Sci 2023; 25:358. [PMID: 38203528 PMCID: PMC10779011 DOI: 10.3390/ijms25010358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The primary aim of this study is to delve into the potential of Acetyl-11-keto-β-boswellic acid (AKBA) in ameliorating neuronal damage induced by acute spinal cord injury, as well as to unravel the intricate underlying mechanisms. A cohort of 40 Sprague-Dawley rats was meticulously categorized into four groups. Following a seven-day oral administration of AKBA, damaged spinal cord samples were meticulously procured for Nissl staining and electron microscopy to assess neuronal demise. Employing ELISA, immunofluorescence, Western blot (WB), and quantitative polymerase chain reaction (qPCR), the modulatory effects of AKBA within the context of spinal cord injury were comprehensively evaluated. Furthermore, employing an ex vivo extraction of spinal cord neurons, an ATP + LPS-induced pyroptotic injury model was established. The model was subsequently subjected to Nrf2 inhibition, followed by a battery of assessments involving ELISA, DCFH-DA staining, flow cytometry, immunofluorescence, and WB to decipher the effects of AKBA on the spinal cord neuron pyroptosis model. By engaging the Nrf2-ROS-NLRP3 pathway, AKBA exerted a repressive influence on the expression of the pyroptotic initiator protein Caspase-1, thereby mitigating the release of GSDMD and alleviating pyroptosis. Additionally, AKBA demonstrated the ability to attenuate the release of IL-18 and IL-1β, curbing neuronal loss and expediting the restorative processes within the context of spinal cord injury. Our study elucidates that AKBA can reduce spinal cord neuronal apoptosis, providing a basis for the development of AKBA as a clinical treatment for spinal cord injury.
Collapse
Affiliation(s)
- Yao Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Zongliang Xiong
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Qiyuan Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Mengmeng Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Jingjing Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Xinyue Qi
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Xiaowen Jiang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Wenhui Yu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
- Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
19
|
Haybar H, Sadati NS, Purrahman D, Mahmoudian-Sani MR, Saki N. lncRNA TUG1 as potential novel biomarker for prognosis of cardiovascular diseases. Epigenomics 2023; 15:1273-1290. [PMID: 38088089 DOI: 10.2217/epi-2023-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Globally, cardiovascular diseases (CVDs) are among the leading causes of death. In light of the high prevalence and mortality of CVDs, it is imperative to understand the molecules involved in CVD pathogenesis and the signaling pathways that they initiate. This may facilitate the development of more precise and expedient diagnostic techniques, the identification of more effective prognostic molecules and the identification of potential therapeutic targets. Numerous studies have examined the role of lncRNAs, such as TUG1, in CVD pathogenesis in recent years. According to this review article, TUG1 can be considered a biomarker for predicting the prognosis of CVD.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narjes Sadat Sadati
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Azzam HN, El-Derany MO, Wahdan SA, Faheim RM, Helal GK, El-Demerdash E. The role of mitochondrial/metabolic axis in development of tamoxifen resistance in breast cancer. Hum Cell 2023; 36:1877-1886. [PMID: 37646973 PMCID: PMC10587280 DOI: 10.1007/s13577-023-00977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Only a few investigations, to our knowledge, have examined the bioenergetics of Tamoxifen (TMX) resistant individuals and reported altered mitochondrial activity and metabolic profile. The primary cause of TMX resistance is firmly suggested to be metabolic changes. Metabolic variations and hypoxia have also been linked in a bidirectional manner. Increased hypoxic levels correlate with early recurrence and proliferation and have a negative therapeutic impact on breast cancer (BC) patients. Hypoxia, carcinogenesis, and patient death are all correlated, resulting in more aggressive traits, a higher chance of metastasis, and TMX resistance. Consequently, we sought to investigate the possible role of the metabolic/hypoxial axis Long non-coding RNA (LncRNA) Taurine up-regulated 1 (TUG-1), Micro-RNA 186-5p (miR-186), Sirtuin-3 (SIRT3), Peroxisome Proliferator Activator Receptor alpha (PPAR-α), and Hypoxia-Inducible Factor-1 (HIF-1) in the development of TMX resistance in BC patients and to correlate this axis with tumor progression. Interestingly, this will be the first time to explore epigenetic regulation of this axis in BC.
Collapse
Affiliation(s)
- Hany N Azzam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Reham M Faheim
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Gouda K Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
- Preclinical & Translational Research Center, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
21
|
Wang Y, Li Q, Zhao J, Chen J, Wu D, Zheng Y, Wu J, Liu J, Lu J, Zhang J, Wu Z. Mechanically induced pyroptosis enhances cardiosphere oxidative stress resistance and metabolism for myocardial infarction therapy. Nat Commun 2023; 14:6148. [PMID: 37783697 PMCID: PMC10545739 DOI: 10.1038/s41467-023-41700-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023] Open
Abstract
Current approaches in myocardial infarction treatment are limited by low cellular oxidative stress resistance, reducing the long-term survival of therapeutic cells. Here we develop a liquid-crystal substrate with unique surface properties and mechanical responsiveness to produce size-controllable cardiospheres that undergo pyroptosis to improve cellular bioactivities and resistance to oxidative stress. We perform RNA sequencing and study cell metabolism to reveal increased metabolic levels and improved mitochondrial function in the preconditioned cardiospheres. We test therapeutic outcomes in a rat model of myocardial infarction to show that cardiospheres improve long-term cardiac function, promote angiogenesis and reduce cardiac remodeling during the 3-month observation. Overall, this study presents a promising and effective system for preparing a large quantity of functional cardiospheres, showcasing potential for clinical application.
Collapse
Affiliation(s)
- Yingwei Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Qi Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jupeng Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jiamin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Dongxue Wu
- Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Youling Zheng
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jiaxin Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jie Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jianlong Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jianhua Zhang
- Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Zheng Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
22
|
Karger A, Mansouri S, Leisegang MS, Weigert A, Günther S, Kuenne C, Wittig I, Zukunft S, Klatt S, Aliraj B, Klotz LV, Winter H, Mahavadi P, Fleming I, Ruppert C, Witte B, Alkoudmani I, Gattenlöhner S, Grimminger F, Seeger W, Pullamsetti SS, Savai R. ADPGK-AS1 long noncoding RNA switches macrophage metabolic and phenotypic state to promote lung cancer growth. EMBO J 2023; 42:e111620. [PMID: 37545364 PMCID: PMC10505917 DOI: 10.15252/embj.2022111620] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/08/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) influence the transcription of gene networks in many cell types, but their role in tumor-associated macrophages (TAMs) is still largely unknown. We found that the lncRNA ADPGK-AS1 was substantially upregulated in artificially induced M2-like human macrophages, macrophages exposed to lung cancer cells in vitro, and TAMs from human lung cancer tissue. ADPGK-AS1 is partly located within mitochondria and binds to the mitochondrial ribosomal protein MRPL35. Overexpression of ADPGK-AS1 in macrophages upregulates the tricarboxylic acid cycle and promotes mitochondrial fission, suggesting a phenotypic switch toward an M2-like, tumor-promoting cytokine release profile. Macrophage-specific knockdown of ADPGK-AS1 induces a metabolic and phenotypic switch (as judged by cytokine profile and production of reactive oxygen species) to a pro-inflammatory tumor-suppressive M1-like state, inhibiting lung tumor growth in vitro in tumor cell-macrophage cocultures, ex vivo in human tumor precision-cut lung slices, and in vivo in mice. Silencing ADPGK-AS1 in TAMs may thus offer a novel therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Annika Karger
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
| | - Siavash Mansouri
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Medical FacultyGoethe University FrankfurtFrankfurtGermany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of MedicineGoethe University FrankfurtFrankfurtGermany
- Frankfurt Cancer Institute (FCI)Goethe University FrankfurtFrankfurtGermany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
| | - Carsten Kuenne
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
| | - Ilka Wittig
- Functional Proteomics, Medical SchoolGoethe University FrankfurtFrankfurtGermany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurtGermany
| | - Stephan Klatt
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurtGermany
| | - Blerina Aliraj
- Institute of Biochemistry I, Faculty of MedicineGoethe University FrankfurtFrankfurtGermany
| | - Laura V Klotz
- Translational Lung Research Center (TLRC), Member of the DZLHeidelbergGermany
- Department of Thoracic SurgeryThoraxklinik at the University Hospital HeidelbergHeidelbergGermany
| | - Hauke Winter
- Translational Lung Research Center (TLRC), Member of the DZLHeidelbergGermany
- Department of Thoracic SurgeryThoraxklinik at the University Hospital HeidelbergHeidelbergGermany
| | - Poornima Mahavadi
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurtGermany
| | - Clemens Ruppert
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Biruta Witte
- Department of General and Thoracic SurgeryUniversity Hospital GiessenGiessenGermany
| | - Ibrahim Alkoudmani
- Department of General and Thoracic SurgeryUniversity Hospital GiessenGiessenGermany
| | | | - Friedrich Grimminger
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
- Frankfurt Cancer Institute (FCI)Goethe University FrankfurtFrankfurtGermany
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| |
Collapse
|
23
|
Xiong J, Zhou Q. The lncRNA HOTAIR attenuates pyroptosis of diabetic cardiomyocytes by recruiting FUS to regulate SIRT3 expression. Kaohsiung J Med Sci 2023; 39:458-467. [PMID: 37073806 DOI: 10.1002/kjm2.12676] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 04/20/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a serious cardiovascular complication of diabetes that severely affects the quality of life of diabetic patients. Long noncoding RNAs (lncRNAs) play important roles in the pathogenesis of DCM. However, the role of the lncRNA homeobox transcript antisense RNA (HOTAIR) in the progression of DCM remains unclear. The present study aimed to investigate the role of HOTAIR in high glucose (HG)-induced pyroptosis in cardiomyocytes. The expression of the lncRNA HOTAIR, FUS, and SIRT3 in H9C2 cardiomyocytes was detected by RT-qPCR. Western blotting was used to evaluate the expression of FUS and SIRT3 as well as that of pyroptosis- and inflammation-related proteins. RT-qPCR and ELISA were used to determine the expression and secretion of IL-1β and IL-18. RNA pulldown and RIP experiments were used to validate the binding relationship among HOTAIR, FUS, and SIRT3. Flow cytometry was performed to detect pyroptosis. HG induced pyroptosis and elevated the expression of proteins associated with pyroptosis and inflammation (NLRP3, GSDMD-N, cleaved caspase-1, IL-1β, and IL-18) in cardiomyocytes. HOTAIR and SIRT3 levels were decreased in HG-exposed H9C2 cells. Additionally, overexpression of HOTAIR inhibited the HG-induced pyroptosis and inflammatory response in cardiomyocytes. HOTAIR upregulated SIRT3 expression in H9C2 cells by targeting FUS. Moreover, SIRT3 upregulation suppressed HG-mediated pyroptosis of cardiomyocytes. Notably, SIRT3 depletion reversed the inhibitory effect of HOTAIR on HG-triggered pyroptosis in cardiomyocytes. Our research indicates that HOTAIR alleviates pyroptosis in diabetic cardiomyocytes through the FUS/SIRT3 axis, providing a potential marker for the diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Endocrinology, Third Xiangya Hospital, Changsha, Hunan Province, People's Republic of China
| | - Qing Zhou
- Department of Cardiovascular Surgery, Hunan Provincial People's Hospital, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
24
|
Dang Y, Hua W, Zhang X, Sun H, Zhang Y, Yu B, Wang S, Zhang M, Kong Z, Pan D, Chen Y, Li S, Yuan L, Reinhardt JD, Lu X, Zheng Y. Anti-angiogenic effect of exo-LncRNA TUG1 in myocardial infarction and modulation by remote ischemic conditioning. Basic Res Cardiol 2023; 118:1. [PMID: 36635484 DOI: 10.1007/s00395-022-00975-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023]
Abstract
The successful use of exosomes in therapy after myocardial infarction depends on an improved understanding of their role in cardiac signaling and regulation. Here, we report that exosomes circulating after myocardial infarction (MI) carry LncRNA TUG1 which downregulates angiogenesis by disablement of the HIF-1α/VEGF-α axis and that this effect can be counterbalanced by remote ischemic conditioning (RIC). Rats with MI induced through left coronary artery ligation without (MI model) and with reperfusion (ischemia/reperfusion I/R model) were randomized to RIC, or MI (I/R) or sham-operated (SO) control. Data from one cohort study and one randomized-controlled trial of humans with MI were also utilized, the former involving patients who had not received percutaneous coronary intervention (PCI) and the latter patients with PCI. Exosome concentrations did not differ between intervention groups (RIC vs. control) in rats (MI and I/R model) as well as humans (with and without PCI). However, MI and I/R exosomes attenuated HIF-1α, VEGF-α, and endothelial function. LncRNA TUG1 was increased in MI and I/R exosomes, but decreased in SO and RIC exosomes. HIF-1α expression was downregulated with MI and I/R exosomes but increased with RIC exosomes. Exosome inhibition suppressed HIF-1α upregulation through RIC exosomes. VEGF-α was identified as HIF-1α-regulated target gene. Knockdown of HIF-1α decreased VEGF-α, endothelial cell capability, and tube formation. Overexpression of HIF-1α exerted opposite effects. Transfection and co-transfection of 293 T cells with exosome-inhibitor GW4869 and HIF-1α inhibitor si-HIF-1α confirmed the exosomal-LncRNA TUG1/HIF-1α/VEGF-α pathway. LncRNA TUG1 is a potential therapeutic target after MI with or without reperfusion through PCI.
Collapse
Affiliation(s)
- Yini Dang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Division of Gastroenterological Rehabilitation, Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjie Hua
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Xintong Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Hao Sun
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingjie Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Binbin Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Shengrui Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Min Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Division of Gastroenterological Rehabilitation, Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zihao Kong
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Division of Gastroenterological Rehabilitation, Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dijia Pan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Ying Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Shurui Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Liang Yuan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jan D Reinhardt
- Institute for Disaster Management and Reconstruction, Sichuan University, No. 122 Huanghezhong Road First Section, Chengdu, 610207, China. .,Swiss Paraplegic Research, Nottwil, Switzerland. .,Department of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland.
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China.
| | - Yu Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
25
|
Neuroprotection of Kaji-Ichigoside F1 via the BDNF/Akt/mTOR Signaling Pathways against NMDA-Induced Neurotoxicity. Int J Mol Sci 2022; 23:ijms232416150. [PMID: 36555790 PMCID: PMC9785992 DOI: 10.3390/ijms232416150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Kaji-ichigoside F1 (KF1), a natural oleanane-type triterpenoid saponin, is the main active constituent from Rosa roxburghii. In the southwest regions of China, particularly in Guizhou Province, this plant was used as a Miao ethnic medicine to prevent and treat dyspepsia, dysentery, hypoimmunity, and neurasthenia. In the present study, the neuroprotective effect of KF1 was evaluated against N-methyl-D-aspartate (NMDA)-induced neurotoxicity in vivo and in vitro. An NMDA-induced PC12 cell neurotoxicity assay showed that KF1 effectively improved cellular viability, inhibited the release of lactate dehydrogenase (LDH), and reduced cell apoptosis. Furthermore, KF1-treated NMDA-induced excitotoxicity mice displayed a remarkable capacity for improving spatial learning memory in the Y-maze and Morris water maze tests. In addition, KF1 increased the levels of the neurotransmitters 5-hydroxytryptamine, dopamine, and monoamine oxidase and reduced the calcium ion concentration in the hippocampus of mice. Hematoxylin and eosin and Nissl staining indicated that KF1 effectively reduced the impairment of neurons. Furthermore, Western blot assays showed that KF1 decreased NMDAR1 expression. In contrast, the NMDAR2B (NR2B), glutamate receptor (AMPA), TrkB, protein kinase B (AKT), mammalian target of rapamycin (mTOR), PSD95, and synapsin 1 were upregulated in NMDA-induced PC12 cells and an animal model. These results suggest that KF1 has a remarkable protective effect against NMDA-induced neurotoxicity, which is directly related to the regulation of the NMDA receptor and the activation of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) and BDNF/AKT/mTOR signaling pathways.
Collapse
|
26
|
Fan R, Jiang H, Hu Y, Xu Y, Zhou Y, Chen G, Liu Y, Yao Y, Qin W, Chen W, Huang F, Chen X. Stomatin-like protein-2 attenuates macrophage pyroptosis and H9c2 cells apoptosis by protecting mitochondrial function. Biochem Biophys Res Commun 2022; 636:112-120. [DOI: 10.1016/j.bbrc.2022.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/02/2022]
|