1
|
Correia SP, Moedas MF, Taylor LS, Naess K, Lim AZ, McFarland R, Kazior Z, Rumyantseva A, Wibom R, Engvall M, Bruhn H, Lesko N, Végvári Á, Käll L, Trost M, Alston CL, Freyer C, Taylor RW, Wedell A, Wredenberg A. Quantitative proteomics of patient fibroblasts reveal biomarkers and diagnostic signatures of mitochondrial disease. JCI Insight 2024; 9:e178645. [PMID: 39288270 PMCID: PMC11530135 DOI: 10.1172/jci.insight.178645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUNDMitochondrial diseases belong to the group of inborn errors of metabolism (IEM), with a prevalence of 1 in 2,000-5,000 individuals. They are the most common form of IEM, but, despite advances in next-generation sequencing technologies, almost half of the patients are left genetically undiagnosed.METHODSWe investigated a cohort of 61 patients with defined mitochondrial disease to improve diagnostics, identify biomarkers, and correlate metabolic pathways to specific disease groups. Clinical presentations were structured using human phenotype ontology terms, and mass spectrometry-based proteomics was performed on primary fibroblasts. Additionally, we integrated 6 patients carrying variants of uncertain significance (VUS) to test proteomics as a diagnostic expansion.RESULTSProteomic profiles from patient samples could be classified according to their biochemical and genetic characteristics, with the expression of 5 proteins (GPX4, MORF4L1, MOXD1, MSRA, and TMED9) correlating with the disease cohort, thus acting as putative biomarkers. Pathway analysis showed a deregulation of inflammatory and mitochondrial stress responses. This included the upregulation of glycosphingolipid metabolism and mitochondrial protein import, as well as the downregulation of arachidonic acid metabolism. Furthermore, we could assign pathogenicity to a VUS in MRPS23 by demonstrating the loss of associated mitochondrial ribosome subunits.CONCLUSIONWe established mass spectrometry-based proteomics on patient fibroblasts as a viable and versatile tool for diagnosing patients with mitochondrial disease.FUNDINGThe NovoNordisk Foundation, Knut and Alice Wallenberg Foundation, Wellcome Centre for Mitochondrial Research, UK Medical Research Council, and the UK NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children.
Collapse
Affiliation(s)
- Sandrina P. Correia
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Marco F. Moedas
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lucie S. Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Karin Naess
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Albert Z. Lim
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Robert McFarland
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Zuzanna Kazior
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anastasia Rumyantseva
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Wibom
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Engvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Helene Bruhn
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Lesko
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ákos Végvári
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lukas Käll
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden
| | - Matthias Trost
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Charlotte L. Alston
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Christoph Freyer
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Robert W. Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wredenberg
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Nasr Azadani H, Nassiri Toosi M, Shahmahmoodi S, Nejati A, Rahimi H, Farahmand M, Keshavarz A, Ghorbani Motlagh F, Samimi-Rad K. New insights into potential biomarkers and their roles in biological processes associated with hepatitis C-related liver cirrhosis by hepatic RNA-seq-based transcriptome profiling. Virus Res 2024; 349:199457. [PMID: 39216827 DOI: 10.1016/j.virusres.2024.199457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Chronic hepatitis C virus infection is a major cause of mortality due to liver cirrhosis globally. Despite the advances in recent therapeutic strategies, there is yet a high burden of HCV-related cirrhosis worldwide concerning low coverage of newly developed antiviral therapies, insufficient validity of the current diagnostic methods for cirrhosis, and incomplete understanding of the pathogenesis in this stage of liver disease. Hence we aimed to clarify the molecular events in HCV-related cirrhosis and identify a liver-specific gene signature to potentially improve diagnosis and prognosis of the disease. Through RNA-seq transcriptome profiling of liver samples of Iranian patients with HCV-related cirrhosis, the differentially expressed genes (DEGs) were identified and subjected to functional annotation including biological process (BP) and molecular function (MF) analysis and also KEGG pathway enrichment analysis. Furthermore, the validation of RNA-seq data was investigated for seven candidate genes using qRT-PCR. Moreover, the diagnostic and prognostic power of validated DEGs were analyzed in both forms of individual DEG and combined biomarkers through receiver operating characteristic (ROC) analysis. Finally, we explored the pair-wise correlation of these six validated DEGs in a new approach. We identified 838 significant DEGs (padj ˂0.05) enriching 375 and 15 significant terms subjected to BP and MF, respectively (false discovery rate ˂ 0.01) and 46 significant pathways (p-value ˂ 0.05). Most of these biological processes and pathways were related to inflammation, immune responses, and cellular processes participating somewhat in the pathogenesis of liver disease. Interestingly, some neurological-associated genes and pathways were involved in HCV cirrhosis-related neuropsychiatric disorders. Out of seven candidate genes, six DEGs, including inflammation-related genes ISLR, LTB, ZAP70, KLRB1, and neuronal-related genes MOXD1 and Slitrk3 were significantly confirmed by qRT-PCR. There was a close agreement in the expression change results between RNA-seq and qRT-PCR for our candidate genes except for SAA2-SAA4 (P= 0.8). High validity and reproducibility of six novel DEGs as diagnostic and prognostic biomarkers were observed. We also found several pair-wise correlations between validated DEGs. Our findings indicate that the six genes LTB, ZAP70, KLRB1, ISLR, MOXD1, and Slitrk3 could stand as promising biomarkers for diagnosing of HCV-related cirrhosis. However, further studies are recommended to validate the diagnostic potential of these biomarkers and evaluate their capability as targets for the prevention and treatment of cirrhosis disease.
Collapse
Affiliation(s)
- Hossein Nasr Azadani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohssen Nassiri Toosi
- Liver Transplantation Research Center, Imam-Khomeini Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shohreh Shahmahmoodi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nejati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamzeh Rahimi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Farahmand
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Keshavarz
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghorbani Motlagh
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Katayoun Samimi-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Fredlund E, Andersson S, Hilgert E, Monferrer E, Álvarez-Hernán G, Karakaya S, Loontiens S, Bek JW, Gregor T, Lecomte E, Magnusson E, Miltenyte E, Cabirol M, Kyknas M, Engström N, Henriksson MA, Hammarlund E, Rosenblum JS, Noguera R, Speleman F, van Nes J, Mohlin S. MOXD1 is a lineage-specific gene and a tumor suppressor in neuroblastoma. SCIENCE ADVANCES 2024; 10:eado1583. [PMID: 38905335 PMCID: PMC11192077 DOI: 10.1126/sciadv.ado1583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Neuroblastoma is a childhood developmental cancer; however, its embryonic origins remain poorly understood. Moreover, in-depth studies of early tumor-driving events are limited because of the lack of appropriate models. Herein, we analyzed RNA sequencing data obtained from human neuroblastoma samples and found that loss of expression of trunk neural crest-enriched gene MOXD1 associates with advanced disease and worse outcome. Further, by using single-cell RNA sequencing data of human neuroblastoma cells and fetal adrenal glands and creating in vivo models of zebrafish, chick, and mouse, we show that MOXD1 is a determinate of tumor development. In addition, we found that MOXD1 expression is highly conserved and restricted to mesenchymal neuroblastoma cells and Schwann cell precursors during healthy development. Our findings identify MOXD1 as a lineage-restricted tumor-suppressor gene in neuroblastoma, potentiating further stratification of these tumors and development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Elina Fredlund
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Stina Andersson
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Elien Hilgert
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Ezequiel Monferrer
- Department of Pathology, Medical School, University of Valencia-INCLIVA Biomedical Health Research Institute, Valencia, Spain
- Low Prevalence Tumors, Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Guadalupe Álvarez-Hernán
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sinan Karakaya
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Siebe Loontiens
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Jan Willem Bek
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Tomas Gregor
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Estelle Lecomte
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Emma Magnusson
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Enrika Miltenyte
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Marie Cabirol
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Michail Kyknas
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Niklas Engström
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Marie Arsenian Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institute, Stockholm, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Emma Hammarlund
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jared S. Rosenblum
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia-INCLIVA Biomedical Health Research Institute, Valencia, Spain
- Low Prevalence Tumors, Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Johan van Nes
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sofie Mohlin
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Chai H, Huang Y, Xu L, Song X, He M, Wang Q. A decentralized federated learning-based cancer survival prediction method with privacy protection. Heliyon 2024; 10:e31873. [PMID: 38845954 PMCID: PMC11153246 DOI: 10.1016/j.heliyon.2024.e31873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Background Survival prediction is one of the crucial goals in precision medicine, as accurate survival assessment can aid physicians in selecting appropriate treatment for individual patients. To achieve this aim, extensive data must be utilized to train the prediction model and prevent overfitting. However, the collection of patient data for disease prediction is challenging due to potential variations in data sources across institutions and concerns regarding privacy and ownership issues in data sharing. To facilitate the integration of cancer data from different institutions without violating privacy laws, we developed a federated learning-based data integration framework called AdFed, which can be used to evaluate patients' survival while considering the privacy protection problem by utilizing the decentralized federated learning technology and regularization method. Results AdFed was tested on different cancer datasets that contain the patients' information from different institutions. The experimental results show that AdFed using distributed data can achieve better performance in cancer survival prediction (AUC = 0.605) than the compared federated-learning-based methods (average AUC = 0.554). Additionally, to assess the biological interpretability of our method, in the case study we list 10 identified genes related to liver cancer selected by AdFed, among which 5 genes have been proved by literature review. Conclusions The results indicate that AdFed outperforms better than other federated-learning-based methods, and the interpretable algorithm can select biologically significant genes and pathways while ensuring the confidentiality and integrity of data.
Collapse
Affiliation(s)
- Hua Chai
- School of Mathematics and Big Data, Foshan University, Foshan, 528000, China
| | - Yiqian Huang
- School of Mathematics and Big Data, Foshan University, Foshan, 528000, China
| | - Lekai Xu
- School of Mathematics and Big Data, Foshan University, Foshan, 528000, China
| | - Xinpeng Song
- School of Mathematics and Big Data, Foshan University, Foshan, 528000, China
| | - Minfan He
- School of Mathematics and Big Data, Foshan University, Foshan, 528000, China
| | - Qingyong Wang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
- Anhui Provincial Engineering Research Center for Agricultural Information Perception and Intelligent Computing, Hefei, 230036, China
| |
Collapse
|
5
|
Lai Y, Dong H, Xu P, Wang J, Feng W, Zhao Z, Sha L. RNA N6-methyladenosine demethylase FTO targets MOXD1 promoting the malignant phenotype of gastric cancer. BMC Gastroenterol 2024; 24:29. [PMID: 38200441 PMCID: PMC10777655 DOI: 10.1186/s12876-023-03065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The m6A modified demethylase FTO affects the progression of gastric cancer (GC), and the role mechanism of FTO in GC is still unclear. We, here, explored the role of FTO and unrevealed the mechanisms of its function in GC. METHODS The expression and clinical prognosis of FTO in GC were examined via UALCAN and GEPIA online databases. Effect of FTO shRNA on GC cellular malignant phenotype were proved by CCK-8, Transwell, Wound healing assay and Flow cytometric assay. RNA-sequencing data of FTO depleted AGS cells were downloaded to analyze differentially expressed genes of FTO downstream. The GO and KEGG pathway enrichment were performed for the DEGs by DAVID. RT-qPCR and RIP-qPCR assay were applied to verify the MOXD1 mRNA and methylated mRNA in FTO shRNA group. The expression and clinical prognosis of MOXD1 in GC were explored via UALCAN, GEPIA and Kaplan-Meier plotter. The role and mechanism and of MOXD1 in GC cell lines were detected and analyzed. RESULTS The expression of FTO was found to be elevated in GC tissues compared with normal tissues, and worse survival were strongly related to high expression of FTO in GC. FTO silencing suppressed the proliferation, migration and promoted apoptosis of GC cells. A total of 5856 DEGs were obtained in between NC and FTO depleted AGS cell groups, and involved in the cancer related pathways. Here, FTO targets MOXD1 mRNA and promotes its expression via m6A methylation. MOXD1 upregulation was associated to poor prognosis of GC. MOXD1 silencing suppressed the malignant phenotype of GC cells. MOXD1 activated cancer -related signaling pathway (MAPK, TGF-β, NOTCH and JAK/STAT). CONCLUSIONS Our study demonstrated that FTO silencing decreased MOXD1 expression to inhibit the progression of GC via m6A methylation modification. FTO/MOXD1 may be potential targets for the treatment and prognosis of GC.
Collapse
Affiliation(s)
- Yuexing Lai
- Department of Gastroenterology, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Hairong Dong
- Department of Gastroenterology, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Xu
- Department of Gastroenterology, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Jing Wang
- Department of Gastroenterology, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen Feng
- Department of Gastroenterology, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhenya Zhao
- Department of Gastroenterology, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Linyu Sha
- Department of Gastroenterology, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Shi P, Xu J, Cui H. The Recent Research Progress of NF-κB Signaling on the Proliferation, Migration, Invasion, Immune Escape and Drug Resistance of Glioblastoma. Int J Mol Sci 2023; 24:10337. [PMID: 37373484 PMCID: PMC10298967 DOI: 10.3390/ijms241210337] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and invasive primary central nervous system tumor in humans, accounting for approximately 45-50% of all primary brain tumors. How to conduct early diagnosis, targeted intervention, and prognostic evaluation of GBM, in order to improve the survival rate of glioblastoma patients, has always been an urgent clinical problem to be solved. Therefore, a deeper understanding of the molecular mechanisms underlying the occurrence and development of GBM is also needed. Like many other cancers, NF-κB signaling plays a crucial role in tumor growth and therapeutic resistance in GBM. However, the molecular mechanism underlying the high activity of NF-κB in GBM remains to be elucidated. This review aims to identify and summarize the NF-κB signaling involved in the recent pathogenesis of GBM, as well as basic therapy for GBM via NF-κB signaling.
Collapse
Affiliation(s)
- Pengfei Shi
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
| | - Jie Xu
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| |
Collapse
|
7
|
Hereditary Tyrosinemia Type 1 Mice under Continuous Nitisinone Treatment Display Remnants of an Uncorrected Liver Disease Phenotype. Genes (Basel) 2023; 14:genes14030693. [PMID: 36980965 PMCID: PMC10047938 DOI: 10.3390/genes14030693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Hereditary tyrosinemia type 1 (HT1) is a genetic disorder of the tyrosine degradation pathway (TIMD) with unmet therapeutic needs. HT1 patients are unable to fully break down the amino acid tyrosine due to a deficient fumarylacetoacetate hydrolase (FAH) enzyme and, therefore, accumulate toxic tyrosine intermediates. If left untreated, they experience hepatic failure with comorbidities involving the renal and neurological system and the development of hepatocellular carcinoma (HCC). Nitisinone (NTBC), a potent inhibitor of the 4-hydroxyphenylpyruvate dioxygenase (HPD) enzyme, rescues HT1 patients from severe illness and death. However, despite its demonstrated benefits, HT1 patients under continuous NTBC therapy are at risk to develop HCC and adverse reactions in the eye, blood and lymphatic system, the mechanism of which is poorly understood. Moreover, NTBC does not restore the enzymatic defects inflicted by the disease nor does it cure HT1. Here, the changes in molecular pathways associated to the development and progression of HT1-driven liver disease that remains uncorrected under NTBC therapy were investigated using whole transcriptome analyses on the livers of Fah- and Hgd-deficient mice under continuous NTBC therapy and after seven days of NTBC therapy discontinuation. Alkaptonuria (AKU) was used as a tyrosine-inherited metabolic disorder reference disease with non-hepatic manifestations. The differentially expressed genes were enriched in toxicological gene classes related to liver disease, liver damage, liver regeneration and liver cancer, in particular HCC. Most importantly, a set of 25 genes related to liver disease and HCC development was identified that was differentially regulated in HT1 vs. AKU mouse livers under NTBC therapy. Some of those were further modulated upon NTBC therapy discontinuation in HT1 but not in AKU livers. Altogether, our data indicate that NTBC therapy does not completely resolves HT1-driven liver disease and supports the sustained risk to develop HCC over time as different HCC markers, including Moxd1, Saa, Mt, Dbp and Cxcl1, were significantly increased under NTBC.
Collapse
|
8
|
Mancini A, Colapietro A, Cristiano L, Rossetti A, Mattei V, Gravina GL, Perez-Montoyo H, Yeste-Velasco M, Alfon J, Domenech C, Festuccia C. Anticancer effects of ABTL0812, a clinical stage drug inducer of autophagy-mediated cancer cell death, in glioblastoma models. Front Oncol 2022; 12:943064. [PMID: 36408162 PMCID: PMC9668006 DOI: 10.3389/fonc.2022.943064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most malignant adult brain tumor. Current standard of care treatments have very limited efficacy, being the patients´ overall survival 14 months and the 2-year survival rate less than 10%. Therefore, the treatment of GBM is an urgent unmet clinical need. METHODS The aim of this study was to investigate in vitro and in vivo the potential of ABTL0812, an oral anticancer compound currently in phase II clinical stage, as a novel therapy for GBM. RESULTS We showed that ABTL0812 inhibits cell proliferation in a wide panel of GBM cell lines and patient-derived glioblastoma stem cells (GSCs) with half maximal inhibitory concentrations (IC50s) ranging from 15.2 µM to 46.9 µM. Additionally, ABTL0812 decreased GSCs neurosphere formation. GBM cells aggressiveness is associated with a trans-differentiation process towards a less differentiated phenotype known as proneural to mesenchymal transition (PMT). ABTL0812 was shown to revert PMT and induce cell differentiation to a less malignant phenotype in GBM cell lines and GSCs, and consequently reduced cell invasion. As previously shown in other cancer types, we demonstrated that the molecular mechanism of action of ABTL0812 in glioblastoma involves the inhibition of Akt/mTORC1 axis by overexpression of TRIB3, and the activation of endoplasmic reticulum (ER) stress/unfolded protein response (UPR). Both actions converge to induce autophagy-mediated cell death. ABTL0812 anticancer efficacy was studied in vivo using subcutaneous and orthotopic intra-brain xenograft tumor models. We demonstrated that ABTL0812 impairs tumor growth and increases disease-free survival and overall survival of mice. Furthermore, the histological analysis of tumors indicated that ABTL0812 decreases angiogenesis. Finally, we investigated the combination of ABTL0812 with the standard of care treatments for GBM radiotherapy and temozolomide in an orthotopic model, detecting that ABTL0812 potentiates the efficacy of both treatments and that the strongest effect is obtained with the triple combination of ABTL0812+radiotherapy+temozolomide. CONCLUSIONS Overall, the present study demonstrated the anticancer efficacy of ABTL0812 as single agent and in combination with the GBM standard of care treatments in models of glioblastoma and supports the clinical investigation of ABTL0812 as a potential novel therapy for this aggressive brain tumor type.
Collapse
Affiliation(s)
- Andrea Mancini
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Colapietro
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Loredana Cristiano
- Department of Clinical Medicine, Public Health, Life Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alessandra Rossetti
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| | - Giovanni Luca Gravina
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy,Division of Radiation Oncology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L’Aquila, Italy
| | - Héctor Perez-Montoyo
- R&D Department, Ability Pharmaceuticals, Parc Tecnològic del Vallès, Cerdanyola del Vallès, Barcelona, Spain
| | - Marc Yeste-Velasco
- R&D Department, Ability Pharmaceuticals, Parc Tecnològic del Vallès, Cerdanyola del Vallès, Barcelona, Spain
| | - Jose Alfon
- R&D Department, Ability Pharmaceuticals, Parc Tecnològic del Vallès, Cerdanyola del Vallès, Barcelona, Spain
| | - Carles Domenech
- R&D Department, Ability Pharmaceuticals, Parc Tecnològic del Vallès, Cerdanyola del Vallès, Barcelona, Spain
| | - Claudio Festuccia
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy,*Correspondence: Claudio Festuccia,
| |
Collapse
|
9
|
Villa C, Arrigoni F, Rivellini E, Lavitrano M, De Gioia L, Ferini-Strambi L, Combi R. Exome Sequencing in an ADSHE Family: VUS Identification and Limits. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12548. [PMID: 36231847 PMCID: PMC9565017 DOI: 10.3390/ijerph191912548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Autosomal dominant sleep-related hypermotor epilepsy (ADSHE) is the familial form of a focal epilepsy characterized by hyperkinetic focal seizures, mainly arising during non-rapid eye movements (NREM) sleep. Mutations associated with ADSHE account for a small proportion of the genetically determined cases, suggesting the existence of other disease-causing genes. Here, we reported the results obtained by performing trio-based whole-exome sequencing (WES) in an Italian family showing ADSHE and investigated the structural impact of putative variants by in silico modeling analysis. We identified a p.(Trp276Gly) variant in MOXD1 gene encoding the monooxigenase DBH like 1 protein, cosegregating with the disease and annotated as VUS under the ACMG recommendations. Structural bioinformatic analysis predicted a high destabilizing effect of this variant, due to the loss of important hydrophilic bonds and an expansion of cavity volume in the protein hydrophobic core. Although our data support a functional effect of the p.(Trp276Gly) variant, we highlight the need to identify additional families carrying MOXD1 mutations or functional analyses in suitable models to clarify its role in ADSHE pathogenesis. Moreover, we discuss the importance of VUS reporting due to the low rate of pathogenic variant identification by NGS in epilepsy and for future reinterpretation studies.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Eleonora Rivellini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Luigi Ferini-Strambi
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
- Department of Clinical Neurosciences, Vita-Salute San Raffaele University, 20127 Milan, Italy
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
10
|
Xie P, Zhang Y, Chen R, Zheng J, Cui G. PTBP3 promotes tumorigenesis of glioblastoma by stabilizing Twist1. Transl Oncol 2022; 25:101520. [PMID: 35987089 PMCID: PMC9411677 DOI: 10.1016/j.tranon.2022.101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
PTBP3 is upregulated in GBM and predicts poor prognosis. PTBP3 promotes proliferation, EMT, migration, and invasion of GBM. PTBP3 stabilizes Twist1 by decreasing its ubiquitination and degradation.
Objective Glioblastoma (GBM) is the most common malignancy tumor of central nervous system. PTBP3 was closely associated with the development of tumor. However, the function and molecular mechanism of PTBP3 in GBM is little known. Methods qPCR and immunoblotting were used to detect PTBP3 expression levels in glioma tissues and cells. CCK8, Edu, flow cytometry, wound healing, and transwell assays were used to examined the function of PTBP3 in GBM. qPCR, Immunoblotting, and ubiquitination assays were performed to identify the mechanism of PTBP3. Results We found that PTBP3 was upregulated in GBM, and high expression of PTBP3 correlated with the poor survival of GBM patients. PTBP3 knockdown reduced proliferation, invasion, and migration of GBM. Conversely, overexpressing PTBP3 has an opposite effect. Moreover, PTBP3 had an effect on the EMT of GBM. More importantly, we found that PTBP3 stabilized Twist1 by decreasing its ubiquitination and degradation. Furthermore, orthotopic xenograft models were used to demonstrate the PTBP3 on the development of GBM in vivo. Conclusion This study proved that PTBP3 promoted tumorigenesis of GBM by stabilizing Twist1, which provided a new therapeutic target for GBM.
Collapse
Affiliation(s)
- Peng Xie
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China; Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road(S.), Huai'an, Jiangsu 223002, P.R. China
| | - Yueqing Zhang
- Department of Neurosurgery, Huai'an Cancer Hospital, No19 shanyang Road, Huai'an, Jiangsu 223200, P.R. China
| | - Rui Chen
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road(S.), Huai'an, Jiangsu 223002, P.R. China
| | - Jinyu Zheng
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road(S.), Huai'an, Jiangsu 223002, P.R. China
| | - Gang Cui
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.
| |
Collapse
|
11
|
Bao JH, Lu WC, Duan H, Ye YQ, Li JB, Liao WT, Li YC, Sun YP. Identification of a novel cuproptosis-related gene signature and integrative analyses in patients with lower-grade gliomas. Front Immunol 2022; 13:933973. [PMID: 36045691 PMCID: PMC9420977 DOI: 10.3389/fimmu.2022.933973] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022] Open
Abstract
Background Cuproptosis is a newly discovered unique non-apoptotic programmed cell death distinguished from known death mechanisms like ferroptosis, pyroptosis, and necroptosis. However, the prognostic value of cuproptosis and the correlation between cuproptosis and the tumor microenvironment (TME) in lower-grade gliomas (LGGs) remain unknown. Methods In this study, we systematically investigated the genetic and transcriptional variation, prognostic value, and expression patterns of cuproptosis-related genes (CRGs). The CRG score was applied to quantify the cuproptosis subtypes. We then evaluated their values in the TME, prognostic prediction, and therapeutic responses in LGG. Lastly, we collected five paired LGG and matched normal adjacent tissue samples from Sun Yat-sen University Cancer Center (SYSUCC) to verify the expression of signature genes by quantitative real-time PCR (qRT-PCR) and Western blotting (WB). Results Two distinct cuproptosis-related clusters were identified using consensus unsupervised clustering analysis. The correlation between multilayer CRG alterations with clinical characteristics, prognosis, and TME cell infiltration were observed. Then, a well-performed cuproptosis-related risk model (CRG score) was developed to predict LGG patients' prognosis, which was evaluated and validated in two external cohorts. We classified patients into high- and low-risk groups according to the CRG score and found that patients in the low-risk group showed significantly higher survival possibilities than those in the high-risk group (P<0.001). A high CRG score implies higher TME scores, more significant TME cell infiltration, and increased mutation burden. Meanwhile, the CRG score was significantly correlated with the cancer stem cell index, chemoradiotherapy sensitivity-related genes and immune checkpoint genes, and chemotherapeutic sensitivity, indicating the association with CRGs and treatment responses. Univariate and multivariate Cox regression analyses revealed that the CRG score was an independent prognostic predictor for LGG patients. Subsequently, a highly accurate predictive model was established for facilitating the clinical application of the CRG score, showing good predictive ability and calibration. Additionally, crucial CRGs were further validated by qRT-PCR and WB. Conclusion Collectively, we demonstrated a comprehensive overview of CRG profiles in LGG and established a novel risk model for LGG patients' therapy status and prognosis. Our findings highlight the potential clinical implications of CRGs, suggesting that cuproptosis may be the potential therapeutic target for patients with LGG.
Collapse
Affiliation(s)
- Jia-hao Bao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wei-cheng Lu
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China
| | - Hao Duan
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ya-qi Ye
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China
| | - Jiang-bo Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wen-ting Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China,*Correspondence: Yang-peng Sun, ; Yong-chun Li, ; Wen-ting Liao,
| | - Yong-chun Li
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China,*Correspondence: Yang-peng Sun, ; Yong-chun Li, ; Wen-ting Liao,
| | - Yang-peng Sun
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China,*Correspondence: Yang-peng Sun, ; Yong-chun Li, ; Wen-ting Liao,
| |
Collapse
|