1
|
Shen LP, Zhang WC, Deng JR, Qi ZH, Lin ZW, Wang ZD. Advances in the mechanism of small nucleolar RNA and its role in DNA damage response. Mil Med Res 2024; 11:53. [PMID: 39118131 PMCID: PMC11308251 DOI: 10.1186/s40779-024-00553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) were previously regarded as a class of functionally conserved housekeeping genes, primarily involved in the regulation of ribosome biogenesis by ribosomal RNA (rRNA) modification. However, some of them are involved in several biological processes via complex molecular mechanisms. DNA damage response (DDR) is a conserved mechanism for maintaining genomic stability to prevent the occurrence of various human diseases. It has recently been revealed that snoRNAs are involved in DDR at multiple levels, indicating their relevant theoretical and clinical significance in this field. The present review systematically addresses four main points, including the biosynthesis and classification of snoRNAs, the mechanisms through which snoRNAs regulate target molecules, snoRNAs in the process of DDR, and the significance of snoRNA in disease diagnosis and treatment. It focuses on the potential functions of snoRNAs in DDR to help in the discovery of the roles of snoRNAs in maintaining genome stability and pathological processes.
Collapse
Affiliation(s)
- Li-Ping Shen
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wen-Cheng Zhang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jia-Rong Deng
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhen-Hua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhong-Wu Lin
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhi-Dong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Chauhan W, Sudharshan SJ, Kafle S, Zennadi R. SnoRNAs: Exploring Their Implication in Human Diseases. Int J Mol Sci 2024; 25:7202. [PMID: 39000310 PMCID: PMC11240930 DOI: 10.3390/ijms25137202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) are earning increasing attention from research communities due to their critical role in the post-transcriptional modification of various RNAs. These snoRNAs, along with their associated proteins, are crucial in regulating the expression of a vast array of genes in different human diseases. Primarily, snoRNAs facilitate modifications such as 2'-O-methylation, N-4-acetylation, and pseudouridylation, which impact not only ribosomal RNA (rRNA) and their synthesis but also different RNAs. Functionally, snoRNAs bind with core proteins to form small nucleolar ribonucleoproteins (snoRNPs). These snoRNAs then direct the protein complex to specific sites on target RNA molecules where modifications are necessary for either standard cellular operations or the regulation of pathological mechanisms. At these targeted sites, the proteins coupled with snoRNPs perform the modification processes that are vital for controlling cellular functions. The unique characteristics of snoRNAs and their involvement in various non-metabolic and metabolic diseases highlight their potential as therapeutic targets. Moreover, the precise targeting capability of snoRNAs might be harnessed as a molecular tool to therapeutically address various disease conditions. This review delves into the role of snoRNAs in health and disease and explores the broad potential of these snoRNAs as therapeutic agents in human pathologies.
Collapse
Affiliation(s)
| | | | | | - Rahima Zennadi
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas St., Memphis, TN 38103, USA; (W.C.); (S.S.); (S.K.)
| |
Collapse
|
3
|
Wang LY, Song JN, Chen YX, Zhu Y, Ren HL, Li QQ, Zhang SH. Characterization the prognosis role and effects of snoRNAs in melanoma patients. Exp Dermatol 2024; 33:e14944. [PMID: 37772659 DOI: 10.1111/exd.14944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
Melanoma is a melanocyte-derived malignant cancer and is known for its early metastasis and high mortality rates. It is a highly cutaneous tumour disease that could be related to the abnormal immune microenvironment, and the identification of reliable diagnostic and prognostic markers is crucial for improving patient outcomes. In the search for biomarkers, various types of RNAs have been discovered and recognized as reliable prognostic markers. Among these, small nucleolar RNAs (snoRNAs) have emerged as a promising avenue for studying early diagnosis and prognostic markers in tumours due to their widespread presence in tissues, tumour specificity and stability. In our study, we analysed snoRNAs data from melanoma samples in the TCGA-SKCM cohort and developed a prognostic model comprising 12 snoRNAs (SNORD9, SNORA31, SNORD14E, SNORA14A, SNORA5A, SNORD83A, SNORA75, AL096855, AC007684, SNORD14A, SNORA65 and AC004839). This model exhibited unique prognostic accuracy and demonstrated a significant correlation with the immune infiltration tumour microenvironment. Additionally, analysis of the GSE213145 dataset, which explored the sensitivity and resistance of immune checkpoint inhibitors, further supported the potential of snoRNAs as prognostic markers for immunotherapy. Overall, our study contributes reliable prognostic and immune-related biomarkers for melanoma patients. These findings can offer valuable insights for the future discovery of novel melanoma treatment strategies and hold promise for improving clinical outcomes in melanoma patients.
Collapse
Affiliation(s)
- Lei-Yun Wang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, China
| | - Jia-Nan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Yi-Xuan Chen
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhu
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, China
| | - Hui-Li Ren
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, China
| | - Qiu-Qi Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Shao-Hui Zhang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
4
|
Xu C, Bian Z, Wang X, Niu N, Liu L, Xiao Y, Zhu J, Huang N, Zhang Y, Chen Y, Wu Q, Sun F, Zhu X, Pan Q. SNORA56-mediated pseudouridylation of 28 S rRNA inhibits ferroptosis and promotes colorectal cancer proliferation by enhancing GCLC translation. J Exp Clin Cancer Res 2023; 42:331. [PMID: 38049865 PMCID: PMC10696674 DOI: 10.1186/s13046-023-02906-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies and is characterized by reprogrammed metabolism. Ferroptosis, a programmed cell death dependent on iron, has emerged as a promising strategy for CRC treatment. Although small nucleolar RNAs are extensively involved in carcinogenesis, it is unclear if they regulate ferroptosis during CRC pathogenesis. METHODS The dysregulated snoRNAs were identified using published sequencing data of CRC tissues. The expression of the candidate snoRNAs, host gene and target gene were assessed by real-time quantitative PCR (RT-qPCR), fluorescence in situ hybridization (FISH), immunohistochemistry (IHC) and western blots. The biological function of critical molecules was investigated using in vitro and in vivo strategies including Cell Counting Kit-8 (CCK8), colony formation assay, flow cytometry, Fe2+/Fe3+, GSH/GSSG and the xenograft mice models. The ribosomal activities were determined by polysome profiling and O-propargyl-puromycin (OP-Puro) assay. The proteomics was conducted to clarify the downstream targets and the underlying mechanisms were validated by IHC, Pearson correlation analysis, protein stability and rescue assays. The clinical significance of the snoRNA was explored using the Cox proportional hazard model, receiver operating characteristic (ROC) and survival analysis. RESULTS Here, we investigated the SNORA56, which was elevated in CRC tissues and plasma, and correlated with CRC prognosis. SNORA56 deficiency in CRC impaired proliferation and triggered ferroptosis, resulting in reduced tumorigenesis. Mechanistically, SNORA56 mediated the pseudouridylation of 28 S rRNA at the U1664 site and promoted the translation of the catalytic subunit of glutamate cysteine ligase (GCLC), an indispensable rate-limiting enzyme in the biosynthesis of glutathione, which can inhibit ferroptosis by suppressing lipid peroxidation. CONCLUSIONS Therefore, the SNORA56/28S rRNA/GCLC axis stimulates CRC progression by inhibiting the accumulation of cellular peroxides, and it may provide biomarker and therapeutic applications in CRC.
Collapse
Affiliation(s)
- Chang Xu
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Zhixuan Bian
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127, China
- Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, 572000, China
| | - Xinyue Wang
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Na Niu
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Li Liu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127, China
| | - Yixuan Xiao
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127, China
| | - Jiabei Zhu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127, China
| | - Nan Huang
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Yue Zhang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Yan Chen
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Qi Wu
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Fenyong Sun
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Xiaoli Zhu
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China.
| | - Qiuhui Pan
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127, China.
- Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, 572000, China.
| |
Collapse
|