1
|
Yang L, Han Y, Zhang T, Dong X, Ge J, Roy A, Zhu J, Lu T, Jeya Vandana J, de Silva N, Robertson CC, Xiang JZ, Pan C, Sun Y, Que J, Evans T, Liu C, Wang W, Naji A, Parker SCJ, Schwartz RE, Chen S. Human vascularized macrophage-islet organoids to model immune-mediated pancreatic β cell pyroptosis upon viral infection. Cell Stem Cell 2024; 31:1612-1629.e8. [PMID: 39232561 DOI: 10.1016/j.stem.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/05/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
There is a paucity of human models to study immune-mediated host damage. Here, we utilized the GeoMx spatial multi-omics platform to analyze immune cell changes in COVID-19 pancreatic autopsy samples, revealing an accumulation of proinflammatory macrophages. Single-cell RNA sequencing (scRNA-seq) analysis of human islets exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coxsackievirus B4 (CVB4) viruses identified activation of proinflammatory macrophages and β cell pyroptosis. To distinguish viral versus proinflammatory-macrophage-mediated β cell pyroptosis, we developed human pluripotent stem cell (hPSC)-derived vascularized macrophage-islet (VMI) organoids. VMI organoids exhibited enhanced marker expression and function in both β cells and endothelial cells compared with separately cultured cells. Notably, proinflammatory macrophages within VMI organoids induced β cell pyroptosis. Mechanistic investigations highlighted TNFSF12-TNFRSF12A involvement in proinflammatory-macrophage-mediated β cell pyroptosis. This study established hPSC-derived VMI organoids as a valuable tool for studying immune-cell-mediated host damage and uncovered the mechanism of β cell damage during viral exposure.
Collapse
Affiliation(s)
- Liuliu Yang
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institute of Health Science, Tianjin 301600, China.
| | - Yuling Han
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tuo Zhang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xue Dong
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jian Ge
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aadita Roy
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jiajun Zhu
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Tiankun Lu
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - J Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Catherine C Robertson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jenny Z Xiang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chendong Pan
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yanjie Sun
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Wei Wang
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
2
|
Ma X, Zhang W, Chen Y, Hu Q, Wang Z, Jiang T, Zeng Y, Efferth T. Paeoniflorin inhibited GSDMD to alleviate ANIT-induced cholestasis via pyroptosis signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156021. [PMID: 39255724 DOI: 10.1016/j.phymed.2024.156021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Cholestasis (CT) is a group of disorders caused by impaired production, secretion or excretion of bile. This may result in the deposition of bile components in the blood and liver, which in turn causes damage to liver cells and other tissues. If untreated, CT can progress to severe complications, including cirrhosis, liver failure, and potentially life-threatening conditions. OBJECTIVE This research was intended to elucidate the function and mechanism of Paeoniflorin (PF) in ameliorating ANIT-induced pyroptosis in CT. METHODS CT models were established in SD rats and HepG2 cells through ANIT treatment. Histological examination was conducted using haematoxylin and eosin (HE) staining to assess the histopathological alterations in the liver. Network pharmacology was employed to identify potential PF targets in CT treatment. To evaluate pyroptosis levels, various methods were used, including serum biochemical analysis, Enzyme-Linked Immunosorbent Assay (ELISA), immunofluorescence (IF), immunohistochemistry (IHC), Western blotting, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The HuProt™ 20K Chip was utilized to pinpoint potential PF-binding targets. PF's direct mechanisms in CT treatment were explored using molecular docking (MD), molecular dynamics simulations (MDS), Cellular Thermal Shift Assay (CETSA), and Surface Plasmon Resonance (SPR). RESULTS PF administration was found to alleviate ANIT-induced liver pathology, enhance liver function markers, and improve cell viability. Network pharmacology and pyroptosis inhibitor studies suggested that PF might mitigate CT via the NLRP3-dependent pyroptosis pathway. This hypothesis was further supported by Western blotting, IF, and IHC analyses, which indicated PF's potential to inhibit NLRP3-dependent pyroptosis in CT. GSDMD was identified as a target through HuProt™ 20K Chip screening. The binding affinity of PF to GSDMD was validated through MD, MDS, CETSA, and SPR techniques. Additionally, the regulatory impact of GSDMD on downstream inflammatory pathways was confirmed by ELISA and IHC. CONCLUSION PF exhibited a hepatoprotective effect in ANIT-induced CT, primarily by targeting GSDMD, thereby suppressing ANIT-induced pyroptosis and the subsequent release of inflammatory mediators.
Collapse
Affiliation(s)
- Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zexin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
3
|
Ma D, Liu X, Li J, Wu H, Ma J, Tai W. ELMO1 regulates macrophage directed migration and attenuates inflammation via NF-κB signaling pathway in primary biliary cholangitis. Dig Liver Dis 2024; 56:1897-1905. [PMID: 38825413 DOI: 10.1016/j.dld.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND & AIMS Primary biliary cholangitis (PBC), a typical autoimmune liver disease, is characterized by an increased infiltration of immune cells. However, the specific molecular mechanisms regulating immune cell migration in PBC are unknown. Engulfment and cell motility 1 (ELMO1) plays an important function in cellular dynamics. In view of this, the aim of this study was to explore the expression of ELMO1 in PBC, its effects on the proliferation, migration, and secretion of inflammatory factors by the mainly regulated immune cells and the specific molecular mechanisms behind it. METHODS To determine the expression of ELMO1 in PBC and its major regulatory immune cells in PBC. The migratory and proliferative capacities of ELMO1-deficient macrophages were measured, and their pro-inflammatory cytokine secretion was also detected and explored mechanistically. RESULTS ELMO1 expression was up-regulated in the PBC patients and positively correlated with alkaline phosphatase (ALP). ELMO1 mainly regulated macrophages in the liver of PBC patients. Knockdown of ELMO1 did not affect macrophage proliferation, however,knockdown of ELMO1 significantly inhibited macrophage migration,downstream RAC1 activity was diminished, and reduced F-actin synthesis. Knockdown of ELMO1 reduced macrophage inflammatory factor secretion and NF-κB signaling pathway activity was decreased. CONCLUSIONS ELMO1 regulates macrophage directed migration and attenuates inflammation via NF-κB signaling pathway in primary biliary cholangitis.
Collapse
Affiliation(s)
- Di Ma
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China, 650101
| | - Xiaoxiao Liu
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China, 650101
| | - Jinyu Li
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China, 650101
| | - Hanxin Wu
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China, 650101
| | - Jiaxuan Ma
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China, 650101
| | - Wenlin Tai
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China, 650101.
| |
Collapse
|
4
|
Li X, Zhang L, Liu C, He Y, Li X, Xu Y, Gu C, Wang X, Wang S, Zhang J, Liu J. Construction of mitochondrial quality regulation genes-related prognostic model based on bulk-RNA-seq analysis in multiple myeloma. Biofactors 2024. [PMID: 39446019 DOI: 10.1002/biof.2135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Mitochondrial quality regulation plays an important role in affecting the treatment sensitivity of multiple myeloma (MM). We aimed to develop a mitochondrial quality regulation genes (MQRGs)-related prognostic model for MM patients. The Genomic Data Commons-MM of bulk RNA-seq, mutation, and single-cell RNA-seq (scRNA-seq) dataset were downloaded, and the MQRGs gene set was collected previous study. "maftools" and CIBERSORT were used for mutation and immune-infiltration analysis. Subsequently, the "ConsensusClusterPlus" was used to perform the unsupervised clustering analysis, "survminer" and "ssGSEA" R package was used for the Kaplan-Meier survival and enrichment analysis, "limma" R, univariate and Least Absolute Shrinkage and Selection Operator Cox were used for RiskScore model. The "timeROC" R package was used for Receiver Operating Characteristic Curve analysis. Finally, the "Seurat" R package was used for scRNA-seq analysis. These MQRGs are mainly located on chromosome-1,2,3,7, and 22 and had significant expression differences among age, gender, and stage groups, in which PPARGC1A and PPARG are the high mutation genes. Most MQRGs expression are closely associated with the plasma cells infiltration and can divide the patients into 2 different prognostic clusters (C1, C2). Then, 8 risk models were screened from 60 DEGs for RiskScore, which is an independent prognostic factor and effectively divided the patients into high and low risk groups with significant difference of immune checkpoint expression. Nomogram containing RiskScore can accurately predict patient prognosis, and a series of specific transcription factor PRDM1 and IRF1 were identified. We described the based molecular features and developed a high effective MQRGs-related prognostic model in MM.
Collapse
Affiliation(s)
- Xiaohui Li
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ling Zhang
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chengcheng Liu
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yi He
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xudong Li
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yichuan Xu
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Cuiyin Gu
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaozhen Wang
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shuoting Wang
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jingwen Zhang
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiajun Liu
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Yang L, Han Y, Zhang T, Dong X, Ge J, Roy A, Zhu J, Lu T, Vandana JJ, de Silva N, Robertson CC, Xiang JZ, Pan C, Sun Y, Que J, Evans T, Liu C, Wang W, Naji A, Parker SC, Schwartz RE, Chen S. Human Vascularized Macrophage-Islet Organoids to Model Immune-Mediated Pancreatic β cell Pyroptosis upon Viral Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606734. [PMID: 39149298 PMCID: PMC11326194 DOI: 10.1101/2024.08.05.606734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
There is a paucity of human models to study immune-mediated host damage. Here, we utilized the GeoMx spatial multi-omics platform to analyze immune cell changes in COVID-19 pancreatic autopsy samples, revealing an accumulation of proinflammatory macrophages. Single cell RNA-seq analysis of human islets exposed to SARS-CoV-2 or Coxsackievirus B4 (CVB4) viruses identified activation of proinflammatory macrophages and β cell pyroptosis. To distinguish viral versus proinflammatory macrophage-mediated β cell pyroptosis, we developed human pluripotent stem cell (hPSC)-derived vascularized macrophage-islet (VMI) organoids. VMI organoids exhibited enhanced marker expression and function in both β cells and endothelial cells compared to separately cultured cells. Notably, proinflammatory macrophages within VMI organoids induced β cell pyroptosis. Mechanistic investigations highlighted TNFSF12-TNFRSF12A involvement in proinflammatory macrophage-mediated β cell pyroptosis. This study established hPSC-derived VMI organoids as a valuable tool for studying immune cell-mediated host damage and uncovered mechanism of β cell damage during viral exposure.
Collapse
Affiliation(s)
- Liuliu Yang
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institute of Health Science, Tianjin 301600, China
| | - Yuling Han
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tuo Zhang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xue Dong
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Jian Ge
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aadita Roy
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Jiajun Zhu
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Tiankun Lu
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - J. Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Catherine C. Robertson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jenny Z Xiang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chendong Pan
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yanjie Sun
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Wei Wang
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Stephen C.J. Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Robert E. Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA. New York 10021, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| |
Collapse
|
6
|
Sun H, Yisi Shan, Cao L, Wu X, Chen J, Yuan R, Qian M. Unveiling the hidden dangers: a review of non-apoptotic programmed cell death in anesthetic-induced developmental neurotoxicity. Cell Biol Toxicol 2024; 40:63. [PMID: 39093513 PMCID: PMC11297112 DOI: 10.1007/s10565-024-09895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/21/2024] [Indexed: 08/04/2024]
Abstract
Anesthetic-induced developmental neurotoxicity (AIDN) can arise due to various factors, among which aberrant nerve cell death is a prominent risk factor. Animal studies have reported that repeated or prolonged anesthetic exposure can cause significant neuroapoptosis in the developing brain. Lately, non-apoptotic programmed cell deaths (PCDs), characterized by inflammation and oxidative stress, have gained increasing attention. Substantial evidence suggests that non-apoptotic PCDs are essential for neuronal cell death in AIDN compared to apoptosis. This article examines relevant publications in the PubMed database until April 2024. Only original articles in English that investigated the potential manifestations of non-apoptotic PCD in AIDN were analysed. Specifically, it investigates necroptosis, pyroptosis, ferroptosis, and parthanatos, elucidating the signaling mechanisms associated with each form. Furthermore, this study explores the potential relevance of these non-apoptotic PCDs pathways to the pathological mechanisms underlying AIDN, drawing upon their distinctive characteristics. Despite the considerable challenges involved in translating fundamental scientific knowledge into clinical therapeutic interventions, this comprehensive review offers a theoretical foundation for developing innovative preventive and treatment strategies targeting non-apoptotic PCDs in the context of AIDN.
Collapse
Affiliation(s)
- Haiyan Sun
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Yisi Shan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Liyan Cao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Xiping Wu
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jiangdong Chen
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Rong Yuan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
| | - Min Qian
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
| |
Collapse
|
7
|
Jaume G, Peeters T, Song AH, Pettit R, Williamson DFK, Oldenburg L, Vaidya A, de Brot S, Chen RJ, Thiran JP, Le LP, Gerber G, Mahmood F. AI-driven Discovery of Morphomolecular Signatures in Toxicology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604355. [PMID: 39091765 PMCID: PMC11291055 DOI: 10.1101/2024.07.19.604355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Early identification of drug toxicity is essential yet challenging in drug development. At the preclinical stage, toxicity is assessed with histopathological examination of tissue sections from animal models to detect morphological lesions. To complement this analysis, toxicogenomics is increasingly employed to understand the mechanism of action of the compound and ultimately identify lesion-specific safety biomarkers for which in vitro assays can be designed. However, existing works that aim to identify morphological correlates of expression changes rely on qualitative or semi-quantitative morphological characterization and remain limited in scale or morphological diversity. Artificial intelligence (AI) offers a promising approach for quantitatively modeling this relationship at an unprecedented scale. Here, we introduce GEESE, an AI model designed to impute morphomolecular signatures in toxicology data. Our model was trained to predict 1,536 gene targets on a cohort of 8,231 hematoxylin and eosin-stained liver sections from Rattus norvegicus across 127 preclinical toxicity studies. The model, evaluated on 2,002 tissue sections from 29 held-out studies, can yield pseudo-spatially resolved gene expression maps, which we correlate with six key drug-induced liver injuries (DILI). From the resulting 25 million lesion-expression pairs, we established quantitative relations between up and downregulated genes and lesions. Validation of these signatures against toxicogenomic databases, pathway enrichment analyses, and human hepatocyte cell lines asserted their relevance. Overall, our study introduces new methods for characterizing toxicity at an unprecedented scale and granularity, paving the way for AI-driven discovery of toxicity biomarkers.
Collapse
Affiliation(s)
- Guillaume Jaume
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA
| | - Thomas Peeters
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Signal Processing Laboratory, EPFL, Lausanne, Switzerland
| | - Andrew H. Song
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA
| | - Rowland Pettit
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Drew F. K. Williamson
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Lukas Oldenburg
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Anurag Vaidya
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA
| | - Simone de Brot
- Institute of Animal Pathology, Vetsuisse, University of Bern, Switzerland
- COMPATH, Institute of Animal Pathology, University of Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern, Switzerland
| | - Richard J. Chen
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA
| | | | - Long Phi Le
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Harvard Data Science Initiative, Harvard University, Cambridge, MA
| | - Georg Gerber
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA
| | - Faisal Mahmood
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA
- Harvard Data Science Initiative, Harvard University, Cambridge, MA
| |
Collapse
|
8
|
Tan S, Lu X, Chen W, Pan B, Kong G, Wei L. Analysis and experimental validation of IL-17 pathway and key genes as central roles associated with inflammation in hepatic ischemia-reperfusion injury. Sci Rep 2024; 14:6423. [PMID: 38494504 PMCID: PMC10944831 DOI: 10.1038/s41598-024-57139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/14/2024] [Indexed: 03/19/2024] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) elicits an immune-inflammatory response that may result in hepatocyte necrosis and apoptosis, ultimately culminating in postoperative hepatic dysfunction and hepatic failure. The precise mechanisms governing the pathophysiology of HIRI remain incompletely understood, necessitating further investigation into key molecules and pathways implicated in disease progression to guide drug discovery and potential therapeutic interventions. Gene microarray data was downloaded from the GEO expression profile database. Integrated bioinformatic analyses were performed to identify HIRI signature genes, which were subsequently validated for expression levels and diagnostic efficacy. Finally, the gene expression was verified in an experimental HIRI model and the effect of anti-IL17A antibody intervention in three time points (including pre-ischemic, post-ischemic, and at 1 h of reperfusion) on HIRI and the expression of these genes was investigated. Bioinformatic analyses of the screened characterized genes revealed that inflammation, immune response, and cell death modulation were significantly associated with HIRI pathophysiology. CCL2, BTG2, GADD45A, FOS, CXCL10, TNFRSF12A, and IL-17 pathway were identified as key components involved in the HIRI. Serum and liver IL-17A expression were significantly upregulated during the initial phase of HIRI. Pretreatment with anti-IL-17A antibody effectively alleviated the damage of liver tissue, suppressed inflammatory factors, and serum transaminase levels, and downregulated the mRNA expression of CCL2, GADD45A, FOS, CXCL10, and TNFRSF12A. Injection of anti-IL17A antibody after ischemia and at 1 h of reperfusion failed to demonstrate anti-inflammatory and attenuating HIRI benefits relative to earlier intervention. Our study reveals that the IL-17 pathway and related genes may be involved in the proinflammatory mechanism of HIRI, which may provide a new perspective and theoretical basis for the prevention and treatment of HIRI.
Collapse
Affiliation(s)
- Siyou Tan
- Department of Anesthesiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Jiefang West Road NO. 61, Changsha, 410005, China
| | - Xiang Lu
- Department of Anesthesiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Jiefang West Road NO. 61, Changsha, 410005, China
| | - Wenyan Chen
- Department of Anesthesiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Jiefang West Road NO. 61, Changsha, 410005, China
| | - Bingbing Pan
- Department of Anesthesiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Jiefang West Road NO. 61, Changsha, 410005, China
| | - Gaoyin Kong
- Department of Anesthesiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Jiefang West Road NO. 61, Changsha, 410005, China
- Clinical Research Center for Anesthesiology of ERAS in Hunan Province, Changsha, China
| | - Lai Wei
- Department of Anesthesiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Jiefang West Road NO. 61, Changsha, 410005, China.
- Clinical Research Center for Anesthesiology of ERAS in Hunan Province, Changsha, China.
| |
Collapse
|
9
|
Zhao M, Liu A, Wu J, Mo L, Lu F, Wan G. Il1r2 and Tnfrsf12a in transcranial magnetic stimulation effect of ischemic stroke via bioinformatics analysis. Medicine (Baltimore) 2024; 103:e36109. [PMID: 38277520 PMCID: PMC10817048 DOI: 10.1097/md.0000000000036109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 01/28/2024] Open
Abstract
Ischemic stroke refers to ischemic necrosis or softening of localized brain tissue. Transcranial magnetic stimulation (TMS) is a painless, noninvasive and green treatment method, which acts on the central nervous system through a pulsed magnetic field to assist in the treatment of central nervous system injury diseases. However, the role of Il1r2 and Tnfrsf12a in this is unknown. The ischemic stroke datasets GSE81302 and TMS datasets GSE230148 were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis (WGCNA) was performed. The construction and analysis of protein-protein interaction (PPI) network and functional enrichment analysis were performed. Draw heat map gene expression. Through the Comparative Toxicogenomics Database (CTD) to find the most relevant and core gene diseases. TargetScan was used to screen miRNAs regulating DEGs. A total of 39 DEGs were identified. According to gene ontology (GO) analysis results, in biological process (BP) analysis, they were mainly enriched in the positive regulation of apoptosis process, inflammatory response, positive regulation of p38MAPK cascade, and regulation of cell cycle. In cellular component (CC) analysis, they were mainly enriched in the cell surface, cytoplasm, and extracellular space. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, they were mainly enriched in nf-κB signaling pathway, fluid shear stress and atherosclerosis, P53 signaling pathway, TNF signaling pathway, and apoptosis. Among the enrichment items of metascape, negative regulation of T cell activation, hematopoietic cell lineage, positive regulation of apoptotic process, fluid shear stress and atherosclerosis were observed in GO enrichment items. Five core genes (Socs3, Irf1, Il1r2, Ccr1, and Tnfrsf12a) were obtained, which were highly expressed in ischemic stroke samples. Il1r2 and Tnfrsf12a were lowly expressed in TMS samples. CTD analysis found that the core gene (Socs3, Irf1 and Il1r2, Ccr1, Tnfrsf12a) and ischemic stroke, atherosclerosis, hypertension, hyperlipidemia, thrombosis, stroke, myocardial ischemia, myocardial infarction, and inflammation. Il1r2 and Tnfrsf12a are highly expressed in ischemic stroke, but lowly expressed in TMS samples.
Collapse
Affiliation(s)
- Man Zhao
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing
| | - Aixian Liu
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing
| | - Jiaojiao Wu
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing
| | - Linhong Mo
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing
| | - Fang Lu
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing
| | - Guiling Wan
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing
| |
Collapse
|
10
|
Yang C, Cheng X, Gao S, Pan Q. Integrating bulk and single-cell data to predict the prognosis and identify the immune landscape in HNSCC. J Cell Mol Med 2024; 28:e18009. [PMID: 37882107 PMCID: PMC10805493 DOI: 10.1111/jcmm.18009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
The complex interplay between tumour cells and the tumour microenvironment (TME) underscores the necessity for gaining comprehensive insights into disease progression. This study centres on elucidating the elusive the elusive role of endothelial cells within the TME of head and neck squamous cell carcinoma (HNSCC). Despite their crucial involvement in angiogenesis and vascular function, the mechanistic diversity of endothelial cells among HNSCC patients remains largely uncharted. Leveraging advanced single-cell RNA sequencing (scRNA-Seq) technology and the Scissor algorithm, we aimed to bridge this knowledge gap and illuminate the intricate interplay between endothelial cells and patient prognosis within the context of HNSCC. Here, endothelial cells were categorized into Scissorhigh and Scissorlow subtypes. We identified Scissor+ endothelial cells exhibiting pro-tumorigenic profiles and constructed a prognostic risk model for HNSCC. Additionally, four biomarkers also were identified by analysing the gene expression profiles of patients with HNSCC and a prognostic risk prediction model was constructed based on these genes. Furthermore, the correlations between endothelial cells and prognosis of patients with HNSCC were analysed by integrating bulk and single-cell sequencing data, revealing a close association between SHSS and the overall survival (OS) of HNSCC patients with malignant endothelial cells. Finally, we validated the prognostic model by RT-qPCR and IHC analysis. These findings enhance our comprehension of TME heterogeneity at the single-cell level and provide a prognostic model for HNSCC.
Collapse
Affiliation(s)
- Chunlong Yang
- Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Xiaoning Cheng
- Zhanjiang Central HospitalGuangdong Medical UniversityZhanjiangChina
| | - Shenglan Gao
- Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Qingjun Pan
- Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| |
Collapse
|
11
|
Watanabe N, Tamai R, Kiyoura Y. Alendronate augments lipid A‑induced IL‑1β release by ASC‑deficient RAW264 cells via AP‑1 activation. Exp Ther Med 2023; 26:577. [PMID: 38023354 PMCID: PMC10655061 DOI: 10.3892/etm.2023.12276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
Alendronate (ALN) is an anti-bone-resorptive drug with inflammatory side effects. ALN upregulates lipid A-induced interleukin (IL)-1α and IL-1β release by J774.1 cells via apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) activation. The present study examined whether ALN augmented lipid A-induced proinflammatory cytokine production using ASC-deficient mouse macrophage-like RAW264 cells. Pretreatment of RAW264 cells with ALN significantly augmented lipid A-induced IL-1β release, although ALN did not upregulate the expression of Toll-like receptor 4, myeloid differentiation factor 88 (MyD88) and caspase-11. Moreover, pretreatment of caspase-11-deficient RAW264.7 cells with ALN significantly augmented lipid A-induced IL-1β release. Notably, ALN upregulated the activation of FosB, c-Jun or JunD, but not c-Fos or NF-κB in RAW264 cells. Furthermore, pretreatment with the activator protein 1 (AP-1) inhibitor SR11302, but not the c-Fos inhibitor T-5224, before addition of ALN inhibited ALN-augmented IL-1β release by lipid A-treated RAW264 cells. SR11302 also reduced ALN-augmented lactate dehydrogenase release by the cells. These findings collectively suggested that ALN augmented lipid A-induced IL-1β release and cell membrane damage in ASC-deficient RAW264 cells via activation of AP-1, but not NF-κB.
Collapse
Affiliation(s)
- Noriyuki Watanabe
- Department of Oral Infectious Diseases, Ohu University Graduate School of Dentistry, Koriyama, Fukushima 963-8611, Japan
| | - Riyoko Tamai
- Department of Oral Infectious Diseases, Ohu University Graduate School of Dentistry, Koriyama, Fukushima 963-8611, Japan
- Department of Oral Medical Science, Ohu University School of Dentistry, Koriyama, Fukushima 963-8611, Japan
| | - Yusuke Kiyoura
- Department of Oral Infectious Diseases, Ohu University Graduate School of Dentistry, Koriyama, Fukushima 963-8611, Japan
- Department of Oral Medical Science, Ohu University School of Dentistry, Koriyama, Fukushima 963-8611, Japan
| |
Collapse
|