1
|
Alaraby M, Abass D, Gutiérrez J, Velázquez A, Hernández A, Marcos R. Reproductive Toxicity of Nanomaterials Using Silver Nanoparticles and Drosophila as Models. Molecules 2024; 29:5802. [PMID: 39683959 DOI: 10.3390/molecules29235802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Reproductive toxicity is of special concern among the harmful effects induced by environmental pollutants; consequently, further studies on such a topic are required. To avoid the use of mammalians, lower eukaryotes like Drosophila are viable alternatives. This study addresses the gap in understanding the link between reproductive adverse outcomes and the presence of pollutants in reproductive organs by using Drosophila. Silver nanoparticles (AgNPs) were selected for their ease of internalization, detection, and widespread environmental presence. Both male and female flies were exposed to AgNPs (28 ± 4 nm, 100 and 400 µg/mL) for one week. Internalization and bioaccumulation of AgNPs in organs were assessed using transmission electron microscopy, confocal microscopy, and inductively coupled plasma mass spectrometry. Substantial accumulation of AgNPs in the gastrointestinal tract, Malpighian tubules, hemolymph, reproductive organs (ovaries and testes), and gametes were observed. The highest AgNP content was observed in testes. Exposure to AgNPs reduced ovary size and fecundity, though fertility and gender ratios of the offspring were unaffected. Significant deregulation of reproductive-related genes was observed, particularly in males. These findings underscore the utility of Drosophila as a model for evaluating reproductive hazards posed by AgNP exposure. The ease of AgNP internalization in Drosophila reproductive targets could be extrapolated to mammalians, raising concerns about the potential impacts of nanoparticle exposure on reproduction toxicity in humans.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Zoology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Doaa Abass
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Zoology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Javier Gutiérrez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Antonia Velázquez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Fang Y, Zhang F, Zhao F, Wang J, Cheng X, Ye F, He J, Zhao L, Su Y. RpL38 modulates germ cell differentiation by controlling Bam expression in Drosophila testis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2411-2425. [PMID: 39187660 DOI: 10.1007/s11427-024-2646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/07/2024] [Indexed: 08/28/2024]
Abstract
Switching from mitotic spermatogonia to meiotic spermatocytes is critical to producing haploid sperms during male germ cell differentiation. However, the underlying mechanisms of this switch remain largely unexplored. In Drosophila melanogaster, the gene RpL38 encodes the ribosomal protein L38, one component of the 60S subunit of ribosomes. We found that its depletion in spermatogonia severely diminished the production of mature sperms and thus led to the infertility of male flies. By examining the germ cell differentiation in testes, we found that RpL38-knockdown blocked the transition from spermatogonia to spermatocytes and accumulated spermatogonia in the testis. To understand the intrinsic reason for this blockage, we conducted proteomic analysis for these spermatogonia populations. Differing from the control spermatogonia, the accumulated spermatogonia in RpL38-knockdown testes already expressed many spermatocyte markers but lacked many meiosis-related proteins, suggesting that spermatogonia need to prepare some important proteins for meiosis to complete their switch into spermatocytes. Mechanistically, we found that the expression of bag of marbles (bam), a crucial determinant in the transition from spermatogonia to spermatocytes, was inhibited at both the mRNA and protein levels upon RpL38 depletion. We also confirmed that the bam loss phenocopied RpL38 RNAi in the testis phenotype and transcriptomic profiling. Strikingly, overexpressing bam was able to fully rescue the testis abnormality and infertility of RpL38-knockdown flies, indicating that bam is the key effector downstream of RpL38 to regulate spermatogonia differentiation. Overall, our data suggested that germ cells start to prepare meiosis-related proteins as early as the spermatogonial stage, and RpL38 in spermatogonia is required to regulate their transition toward spermatocytes in a bam-dependent manner, providing new knowledge for our understanding of the transition process from spermatogonia to spermatocytes in Drosophila spermatogenesis.
Collapse
Affiliation(s)
- Yang Fang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Fengchao Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Fangzhen Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jiajia Wang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xinkai Cheng
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Fei Ye
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jiayu He
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Long Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Fisheries College, Ocean University of China, Qingdao, 266003, China.
| | - Ying Su
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
3
|
He Z, Fang Y, Zhang F, Liu Y, Cheng X, Wang J, Li D, Chen D, Wu F. Adenine nucleotide translocase 2 (Ant2) is required for individualization of spermatogenesis of Drosophila melanogaster. INSECT SCIENCE 2024; 31:1055-1072. [PMID: 38112480 DOI: 10.1111/1744-7917.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
Successful completion of spermatogenesis is crucial for the perpetuation of the species. In Drosophila, spermatid individualization, a process involving changes in mitochondrial structure and function is critical to produce functional mature sperm. Ant2, encoding a mitochondrial adenine nucleotide translocase, is highly expressed in male testes and plays a role in energy metabolism in the mitochondria. However, its molecular function remains unclear. Here, we identified an important role of Ant2 in spermatid individualization. In Ant2 knockdown testes, spermatid individualization complexes composed of F-actin cones exhibited a diffuse distribution, and mature sperms were absent in the seminal vesicle, thus leading to male sterility. The most striking effects in Ant2-knockdown spermatids were decrease in tubulin polyglycylation and disruption of proper mitochondria derivatives function. Excessive apoptotic cells were also observed in Ant2-knockdown testes. To further investigate the phenotype of Ant2 knockdown in testes at the molecular level, complementary transcriptome and proteome analyses were performed. At the mRNA level, 868 differentially expressed genes were identified, of which 229 genes were upregulated and 639 were downregulated induced via Ant2 knockdown. iTRAQ-labeling proteome analysis revealed 350 differentially expressed proteins, of which 117 proteins were upregulated and 233 were downregulated. The expression of glutathione transferase (GstD5, GstE5, GstE8, and GstD3), proteins involved in reproduction were significantly regulated at both the mRNA and protein levels. These results indicate that Ant2 is crucial for spermatid maturation by affecting mitochondrial morphogenesis.
Collapse
Affiliation(s)
- Zhen He
- Industrial Crops Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Yang Fang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Fengchao Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Yang Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Xinkai Cheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiajia Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Dechen Li
- Industrial Crops Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Dengsong Chen
- Industrial Crops Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Fan Wu
- Industrial Crops Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| |
Collapse
|
4
|
Cheng X, Jiang T, Huang Q, Ji L, Li J, Kong X, Zhu X, He X, Deng X, Wu T, Yu H, Shi Y, Liu L, Zhao X, Wang X, Chen H, Yu J. Exposure to Titanium Dioxide Nanoparticles Leads to Specific Disorders of Spermatid Elongation via Multiple Metabolic Pathways in Drosophila Testes. ACS OMEGA 2024; 9:23613-23623. [PMID: 38854533 PMCID: PMC11154731 DOI: 10.1021/acsomega.4c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have been extensively utilized in various applications. However, the regulatory mechanism behind the reproductive toxicity induced by TiO2 NP exposure remains largely elusive. In this study, we employed a Drosophila model to assess potential testicular injuries during spermatogenesis and conducted bulk RNA-Seq analysis to elucidate the underlying mechanisms. Our results reveal that while prolonged exposure to lower concentrations of TiO2 NPs (0.45 mg/mL) for 30 days did not manifest reproductive toxicity, exposure at concentrations of 0.9 and 1.8 mg/mL significantly impaired spermatid elongation in Drosophila testes. Notably, bulk RNA-seq analysis revealed that TiO2 NP exposure affected multiple metabolic pathways including carbohydrate metabolism and cytochrome P450. Importantly, the intervention of glutathione (GSH) significantly protected against reproductive toxicity induced by TiO2 NP exposure, as it restored the number of Orb-positive spermatid clusters in Drosophila testes. Our study provides novel insights into the specific detrimental effects of TiO2 NP exposure on spermatid elongation through multiple metabolic alterations in Drosophila testes and highlights the protective role of GSH in countering this toxicity.
Collapse
Affiliation(s)
- Xinmeng Cheng
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Ting Jiang
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Qiuru Huang
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Li Ji
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiaxin Li
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiuwen Kong
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaoqi Zhu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xuxin He
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaonan Deng
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Tong Wu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Hao Yu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Yi Shi
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Lin Liu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xinyuan Zhao
- Department
of Occupational Medicine and Environmental Toxicology, Nantong Key
Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiaorong Wang
- Center
for Reproductive Medicine, Affiliated Maternity
and Child Health Care Hospital of Nantong University, Nantong 226018, China
- Nantong
Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong 226018, China
- Nantong
Key Laboratory of Genetics and Reproductive Medicine, Nantong 226018, China
| | - Hao Chen
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jun Yu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
5
|
Hatai D, Levenson MT, Rehan VK, Allard P. Inter- and trans-generational impacts of environmental exposures on the germline resolved at the single-cell level. CURRENT OPINION IN TOXICOLOGY 2024; 38:100465. [PMID: 38586548 PMCID: PMC10993723 DOI: 10.1016/j.cotox.2024.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Reproduction is a remarkably intricate process involving the interaction of multiple cell types and organ systems unfolding over long periods of time and that culminates with the production of gametes. The initiation of germ cell development takes place during embryogenesis but only completes decades later in humans. The complexity inherent to reproduction and its study has long hampered our ability to decipher how environmental agents disrupt this process. Single-cell approaches provide an opportunity for a deeper understanding of the action of toxicants on germline function and analyze how the response to their exposure is differentially distributed across tissues and cell types. In addition to single-cell RNA sequencing, other single-cell or nucleus level approaches such as ATAC-sequencing and multi-omics have expanded the strategies that can be implemented in reproductive toxicological studies to include epigenomic and the nuclear transcriptomic data. Here we will discuss the current state of single-cell technologies and how they can best be utilized to advance reproductive toxicological studies. We will then discuss case studies in two model organisms (Caenorhabditis elegans and mouse) studying different environmental exposures (alcohol and e-cigarettes respectively) to highlight the value of single-cell and single-nucleus approaches for reproductive biology and reproductive toxicology.
Collapse
Affiliation(s)
- Dylan Hatai
- UCLA Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Max T. Levenson
- UCLA Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Virender K. Rehan
- UCLA Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Patrick Allard
- UCLA Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Cui H, Huang Q, Li J, Zhou P, Wang Z, Cai J, Feng C, Deng X, Gu H, He X, Tang J, Wang X, Zhao X, Yu J, Chen X. Single-cell RNA sequencing analysis to evaluate antimony exposure effects on cell-lineage communications within the Drosophila testicular niche. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115948. [PMID: 38184976 DOI: 10.1016/j.ecoenv.2024.115948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
The increasing production and prevalence of antimony (Sb)-related products raise concerns regarding its potential hazards to reproductive health. Upon environmental exposure, Sb reportedly induces testicular toxicity during spermatogenesis; moreover, it is known to affect various testicular cell populations, particularly germline stem cell populations. However, the cell-cell communication resulting from Sb exposure within the testicular niche remains poorly understood. To address this gap, herein we analyzed testicular single-cell RNA sequencing data from Sb-exposed Drosophila. Our findings revealed that the epidermal growth factor receptor (EGFR) and WNT signaling pathways were associated with the stem cell niche in Drosophila testes, which may disrupt the homeostasis of the testicular niche in Drosophila. Furthermore, we identified several ligand-receptor pairs, facilitating the elucidation of intercellular crosstalk involved in Sb-mediated reproductive toxicology. We employed scRNA-seq analysis and conducted functional verification to investigate the expression patterns of core downstream factors associated with EGFR and WNT signatures in the testes under the influence of Sb exposure. Altogether, our results shed light on the potential mechanisms of Sb exposure-mediated testicular cell-lineage communications.
Collapse
Affiliation(s)
- Hongliang Cui
- Department of Urology, Nantong Hospital of Traditional Chinese Medicine, Nantong 226001, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiaxin Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Peiyao Zhou
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Zihan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiaying Cai
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Chenrui Feng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaonan Deng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Han Gu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xuxin He
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiaoke Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Jun Yu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Xia Chen
- Department of Obstetrics and Gynecology, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong University, Nantong 226001, China.
| |
Collapse
|
7
|
Sun C, Shao Y, Iqbal J. Insect Insights at the Single-Cell Level: Technologies and Applications. Cells 2023; 13:91. [PMID: 38201295 PMCID: PMC10777908 DOI: 10.3390/cells13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Single-cell techniques are a promising way to unravel the complexity and heterogeneity of transcripts at the cellular level and to reveal the composition of different cell types and functions in a tissue or organ. In recent years, advances in single-cell RNA sequencing (scRNA-seq) have further changed our view of biological systems. The application of scRNA-seq in insects enables the comprehensive characterization of both common and rare cell types and cell states, the discovery of new cell types, and revealing how cell types relate to each other. The recent application of scRNA-seq techniques to insect tissues has led to a number of exciting discoveries. Here we provide an overview of scRNA-seq and its application in insect research, focusing on biological applications, current challenges, and future opportunities to make new discoveries with scRNA-seq in insects.
Collapse
Affiliation(s)
- Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Yongqi Shao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junaid Iqbal
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Martín-Zamora FM, Davies BE, Donnellan RD, Guynes K, Martín-Durán JM. Functional genomics in Spiralia. Brief Funct Genomics 2023; 22:487-497. [PMID: 37981859 PMCID: PMC10658182 DOI: 10.1093/bfgp/elad036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 11/21/2023] Open
Abstract
Our understanding of the mechanisms that modulate gene expression in animals is strongly biased by studying a handful of model species that mainly belong to three groups: Insecta, Nematoda and Vertebrata. However, over half of the animal phyla belong to Spiralia, a morphologically and ecologically diverse animal clade with many species of economic and biomedical importance. Therefore, investigating genome regulation in this group is central to uncovering ancestral and derived features in genome functioning in animals, which can also be of significant societal impact. Here, we focus on five aspects of gene expression regulation to review our current knowledge of functional genomics in Spiralia. Although some fields, such as single-cell transcriptomics, are becoming more common, the study of chromatin accessibility, DNA methylation, histone post-translational modifications and genome architecture are still in their infancy. Recent efforts to generate chromosome-scale reference genome assemblies for greater species diversity and optimise state-of-the-art approaches for emerging spiralian research systems will address the existing knowledge gaps in functional genomics in this animal group.
Collapse
Affiliation(s)
- Francisco M Martín-Zamora
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Billie E Davies
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Rory D Donnellan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Kero Guynes
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
9
|
Wang X, Zhou P, Zhang Z, Huang Q, Chen X, Ji L, Cheng X, Shi Y, Yu S, Tang J, Sun C, Zhao X, Yu J. A Drosophila model of gestational antimony exposure uncovers growth and developmental disorders caused by disrupting oxidative stress homeostasis. Free Radic Biol Med 2023; 208:418-429. [PMID: 37666440 DOI: 10.1016/j.freeradbiomed.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The toxic heavy metal antimony (Sb) is ubiquitous in our daily lives. Various models have shown that Sb induces neuronal and reproductive toxicity. However, little is known about the developmental toxicity of Sb exposure during gestation and the underlying mechanisms. To study its effects on growth and development, Drosophila stages from eggs to pupae were exposed to different Sb concentrations (0, 0.3, 0.6 and 1.2 mg/mL Sb); RNA sequencing was used to identify the underlying mechanism. The model revealed that prenatal Sb exposure significantly reduced larval body size and weight, the pupation and eclosion rates, and the number of flies at all stages. With 1.2 mg/mL Sb exposure in 3rd instar larvae, 484 genes were upregulated and 694 downregulated compared to controls. Biological analysis showed that the disrupted transcripts were related to the oxidative stress pathway, as verified by reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) and glutathione (GSH) intervention experiments. Sb exposure induced oxidative stress imbalance could be rectified by chelation and antioxidant effects of NAC/GSH. The Drosophila Schneider 2 (S2) model further demonstrated that NAC and GSH greatly ameliorated cell death induced by Sb exposure. In conclusion, gestational Sb exposure disrupted oxidative stress homeostasis, thereby impairing growth and development.
Collapse
Affiliation(s)
- Xiaoke Wang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Peiyao Zhou
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Ziyang Zhang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Xia Chen
- Department of Obstetrics and Gynecology, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong University, Nantong, 226001, China
| | - Li Ji
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Xinmeng Cheng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Yi Shi
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Chi Sun
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China.
| | - Jun Yu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
10
|
Xue J, Lv J. Analytical approach for specific populations at single-cell resolution: insights for ND-42 mediated mitochondrial derivative function during spermatid elongation. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2023; 12:107-108. [PMID: 38022873 PMCID: PMC10658163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Jiajia Xue
- Center for Reproductive Medicine, Dushu Lake Hospital Affiliated to Soochow University/Medical Center of Soochow University/Suzhou Dushu Lake Hospital Suzhou 215123, Jiangsu, China
| | - Jinxing Lv
- Center for Reproductive Medicine, Dushu Lake Hospital Affiliated to Soochow University/Medical Center of Soochow University/Suzhou Dushu Lake Hospital Suzhou 215123, Jiangsu, China
| |
Collapse
|