1
|
Li H, Li K, Cheng W, Liu M, Wen L, Zhang Z, Zhang W, Su J, Cai W. Rapid Characterization of the Potential Active of Sinomenine in Rats by Ultra-High-Performance Liquid Chromatography-Quadrupole-Exactive Orbitrap Mass Spectrometry and Molecular Docking. J Sep Sci 2024; 47:e202400486. [PMID: 39375918 DOI: 10.1002/jssc.202400486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
Sinomenium acutum (Thunb.) Rehd. et Wils is widely used in the treatment of rheumatoid arthritis, with its alkaloid compound sinomenine (SIN) being renowned for its significant anti-inflammatory properties. However, despite its widespread application, the in vivo anti-inflammatory mechanisms and metabolic pathways of SIN remain incompletely understood. This study established a rapid and reliable method based on an ultra-high-performance liquid chromatography method coupled with Quadrupole-Exactive Orbitrap mass spectrometry and molecular docking to identify and characterize SIN and 69 metabolites in rat plasma, urine, and feces, revealing primary metabolic pathways of hydroxylation, demethylation, sulfation, and glucuronidation. Molecular docking results revealed that phase I reactions, including dedimethylation, demethylation, dehydrogenation, and dihydroxylation, along with their composite reactions, were pivotal in influencing SIN's in vivo anti-inflammatory activity. M28, M36, and M59 are potentially the most anti-inflammatory active metabolites of SIN in vivo. This comprehensive analysis unveils SIN's metabolic pathways, offering insights into its biological processes and suggesting a novel approach for exploring active drug constituents. These findings pave the way for further understanding SIN's anti-inflammatory mechanisms, contributing significantly to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Haixia Li
- College Pharmacy, Jiamusi University, Jiamusi, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - KaiLin Li
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
- School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Wenhui Cheng
- College Pharmacy, Jiamusi University, Jiamusi, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Mingjuan Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Linwen Wen
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Zexu Zhang
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Wendan Zhang
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Jin Su
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Wei Cai
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
2
|
Visconti A, Qiu H. Recent advances in serum response factor posttranslational modifications and their therapeutic potential in cardiovascular and neurological diseases. Vascul Pharmacol 2024; 156:107421. [PMID: 39209126 PMCID: PMC11626983 DOI: 10.1016/j.vph.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Serum Response Factor (SRF) is a key regulatory transcription factor present in various cell types throughout the body, playing essential roles in cellular functions under physiological conditions. Mutations and abnormal expression of SRF have been linked to the development of various diseases and disorders. Recent evidence highlights that post-translational modifications (PTMs) are critical for regulating SRF function in different cell types and contribute to disease pathogenesis. Targeting SRF-related PTMs is emerging as a promising therapeutic approach for treating SRF-associated diseases. In this review, we summarize recent advances in understanding SRF PTMs and their underlying regulatory mechanisms. We also explore the implications of SRF-PTM in related cardiovascular and neurological diseases and their potential for therapeutic intervention. This information underscores the significance of SRF PTMs in both physiological and pathological contexts, enhancing our understanding of disease mechanisms and paving the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexander Visconti
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| | - Hongyu Qiu
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; Clinical Translational Sciences (CTS) and Bio5 Institution, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
3
|
Gariballa N, Mohamed F, Badawi S, Ali BR. The double whammy of ER-retention and dominant-negative effects in numerous autosomal dominant diseases: significance in disease mechanisms and therapy. J Biomed Sci 2024; 31:64. [PMID: 38937821 PMCID: PMC11210014 DOI: 10.1186/s12929-024-01054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The endoplasmic reticulum (ER) employs stringent quality control mechanisms to ensure the integrity of protein folding, allowing only properly folded, processed and assembled proteins to exit the ER and reach their functional destinations. Mutant proteins unable to attain their correct tertiary conformation or form complexes with their partners are retained in the ER and subsequently degraded through ER-associated protein degradation (ERAD) and associated mechanisms. ER retention contributes to a spectrum of monogenic diseases with diverse modes of inheritance and molecular mechanisms. In autosomal dominant diseases, when mutant proteins get retained in the ER, they can interact with their wild-type counterparts. This interaction may lead to the formation of mixed dimers or aberrant complexes, disrupting their normal trafficking and function in a dominant-negative manner. The combination of ER retention and dominant-negative effects has been frequently documented to cause a significant loss of functional proteins, thereby exacerbating disease severity. This review aims to examine existing literature and provide insights into the impact of dominant-negative effects exerted by mutant proteins retained in the ER in a range of autosomal dominant diseases including skeletal and connective tissue disorders, vascular disorders, neurological disorders, eye disorders and serpinopathies. Most crucially, we aim to emphasize the importance of this area of research, offering substantial potential for understanding the factors influencing phenotypic variability associated with genetic variants. Furthermore, we highlight current and prospective therapeutic approaches targeted at ameliorating the effects of mutations exhibiting dominant-negative effects. These approaches encompass experimental studies exploring treatments and their translation into clinical practice.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Feda Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Ren X, Wang L, Liu L, Liu J. PTMs of PD-1/PD-L1 and PROTACs application for improving cancer immunotherapy. Front Immunol 2024; 15:1392546. [PMID: 38638430 PMCID: PMC11024247 DOI: 10.3389/fimmu.2024.1392546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Immunotherapy has been developed, which harnesses and enhances the innate powers of the immune system to fight disease, particularly cancer. PD-1 (programmed death-1) and PD-L1 (programmed death ligand-1) are key components in the regulation of the immune system, particularly in the context of cancer immunotherapy. PD-1 and PD-L1 are regulated by PTMs, including phosphorylation, ubiquitination, deubiquitination, acetylation, palmitoylation and glycosylation. PROTACs (Proteolysis Targeting Chimeras) are a type of new drug design technology. They are specifically engineered molecules that target specific proteins within a cell for degradation. PROTACs have been designed and demonstrated their inhibitory activity against the PD-1/PD-L1 pathway, and showed their ability to degrade PD-1/PD-L1 proteins. In this review, we describe how PROTACs target PD-1 and PD-L1 proteins to improve the efficacy of immunotherapy. PROTACs could be a novel strategy to combine with radiotherapy, chemotherapy and immunotherapy for cancer patients.
Collapse
Affiliation(s)
- Xiaohui Ren
- Department of Respiratory Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lijuan Wang
- Department of Hospice Care, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Likun Liu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juan Liu
- Department of Special Needs Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Teng D, Wang W, Jia W, Song J, Gong L, Zhong L, Yang J. The effects of glycosylation modifications on monocyte recruitment and foam cell formation in atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167027. [PMID: 38237743 DOI: 10.1016/j.bbadis.2024.167027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
The monocyte recruitment and foam cell formation have been intensively investigated in atherosclerosis. Nevertheless, as the study progressed, it was obvious that crucial molecules participated in the monocyte recruitment and the membrane proteins in macrophages exhibited substantial glycosylation modifications. These modifications can exert a significant influence on protein functions and may even impact the overall progression of diseases. This article provides a review of the effects of glycosylation modifications on monocyte recruitment and foam cell formation. By elaborating on these effects, we aim to understand the underlying mechanisms of atherogenesis further and to provide new insights into the future treatment of atherosclerosis.
Collapse
Affiliation(s)
- Da Teng
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wenlong Wang
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wenjuan Jia
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Jikai Song
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Lei Gong
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China
| | - Lin Zhong
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China.
| | - Jun Yang
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Reisqs JB, Qu YS, Boutjdir M. Ion channel trafficking implications in heart failure. Front Cardiovasc Med 2024; 11:1351496. [PMID: 38420267 PMCID: PMC10899472 DOI: 10.3389/fcvm.2024.1351496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Heart failure (HF) is recognized as an epidemic in the contemporary world, impacting around 1%-2% of the adult population and affecting around 6 million Americans. HF remains a major cause of mortality, morbidity, and poor quality of life. Several therapies are used to treat HF and improve the survival of patients; however, despite these substantial improvements in treating HF, the incidence of HF is increasing rapidly, posing a significant burden to human health. The total cost of care for HF is USD 69.8 billion in 2023, warranting a better understanding of the mechanisms involved in HF. Among the most serious manifestations associated with HF is arrhythmia due to the electrophysiological changes within the cardiomyocyte. Among these electrophysiological changes, disruptions in sodium and potassium currents' function and trafficking, as well as calcium handling, all of which impact arrhythmia in HF. The mechanisms responsible for the trafficking, anchoring, organization, and recycling of ion channels at the plasma membrane seem to be significant contributors to ion channels dysfunction in HF. Variants, microtubule alterations, or disturbances of anchoring proteins lead to ion channel trafficking defects and the alteration of the cardiomyocyte's electrophysiology. Understanding the mechanisms of ion channels trafficking could provide new therapeutic approaches for the treatment of HF. This review provides an overview of the recent advances in ion channel trafficking in HF.
Collapse
Affiliation(s)
- Jean-Baptiste Reisqs
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
| | - Yongxia Sarah Qu
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
- Department of Cardiology, New York Presbyterian Brooklyn Methodist Hospital, New York, NY, United States
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY, United States
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
7
|
Xie JY, Ju J, Zhou P, Chen H, Wang SC, Wang K, Wang T, Chen XZ, Chen YC, Wang K. The mechanisms, regulations, and functions of histone lysine crotonylation. Cell Death Discov 2024; 10:66. [PMID: 38331935 PMCID: PMC10853258 DOI: 10.1038/s41420-024-01830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Histone lysine crotonylation (Kcr) is a new acylation modification first discovered in 2011, which has important biological significance for gene expression, cell development, and disease treatment. In the past over ten years, numerous signs of progress have been made in the research on the biochemistry of Kcr modification, especially a series of Kcr modification-related "reader", "eraser", and "writer" enzyme systems are identified. The physiological function of crotonylation and its correlation with development, heredity, and spermatogenesis have been paid more and more attention. However, the development of disease is usually associated with abnormal Kcr modification. In this review, we summarized the identification of crotonylation modification, Kcr-related enzyme system, biological functions, and diseases caused by abnormal Kcr. This knowledge supplies a theoretical basis for further exploring the function of crotonylation in the future.
Collapse
Affiliation(s)
- Jing-Yi Xie
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Jie Ju
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
- Department of Physiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China.
| | - Ping Zhou
- State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Hao Chen
- Department of Physiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Shao-Cong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xin-Zhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yan-Chun Chen
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang, 261053, China.
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|