1
|
Li C, Smirnova E, Schnitzler C, Crucifix C, Concordet JP, Brion A, Poterszman A, Schultz P, Papai G, Ben-Shem A. Structure of the human TIP60-C histone exchange and acetyltransferase complex. Nature 2024; 635:764-769. [PMID: 39260417 PMCID: PMC11578891 DOI: 10.1038/s41586-024-08011-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Chromatin structure is a key regulator of DNA transcription, replication and repair1. In humans, the TIP60-EP400 complex (TIP60-C) is a 20-subunit assembly that affects chromatin structure through two enzymatic activities: ATP-dependent exchange of histone H2A-H2B for H2A.Z-H2B, and histone acetylation. In yeast, however, these activities are performed by two independent complexes-SWR1 and NuA4, respectively2,3. How the activities of the two complexes are merged into one supercomplex in humans, and what this association entails for the structure and mechanism of the proteins and their recruitment to chromatin, are unknown. Here we describe the structure of the endogenous human TIP60-C. We find a three-lobed architecture composed of SWR1-like (SWR1L) and NuA4-like (NuA4L) parts, which associate with a TRRAP activator-binding module. The huge EP400 subunit contains the ATPase motor, traverses the junction between SWR1L and NuA4L twice and constitutes the scaffold of the three-lobed architecture. NuA4L is completely rearranged compared with its yeast counterpart. TRRAP is flexibly tethered to NuA4L-in stark contrast to its robust connection to the completely opposite side of NuA4 in yeast4-7. A modelled nucleosome bound to SWR1L, supported by tests of TIP60-C activity, suggests that some aspects of the histone exchange mechanism diverge from what is seen in yeast8,9. Furthermore, a fixed actin module (as opposed to the mobile actin subcomplex in SWR1; ref. 8), the flexibility of TRRAP and the weak effect of extranucleosomal DNA on exchange activity lead to a different, activator-based mode of enlisting TIP60-C to chromatin.
Collapse
Affiliation(s)
- Changqing Li
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Ekaterina Smirnova
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Charlotte Schnitzler
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Corinne Crucifix
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Jean Paul Concordet
- Museum National d'Histoire Naturelle, U 1154 Inserm UMR 7196 CNRS, Paris, France
| | - Alice Brion
- Museum National d'Histoire Naturelle, U 1154 Inserm UMR 7196 CNRS, Paris, France
| | - Arnaud Poterszman
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Patrick Schultz
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Gabor Papai
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Adam Ben-Shem
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France.
- CNRS, UMR 7104, Illkirch, France.
- Inserm, UMR S 1258, Illkirch, France.
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.
| |
Collapse
|
2
|
Zhang X, Zhou Y, Liu Y, Li B, Tian S, Zhang Z. Research Progress on the Mechanism and Function of Histone Acetylation Regulating the Interaction between Pathogenic Fungi and Plant Hosts. J Fungi (Basel) 2024; 10:522. [PMID: 39194848 DOI: 10.3390/jof10080522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Histone acetylation is a crucial epigenetic modification, one that holds the key to regulating gene expression by meticulously modulating the conformation of chromatin. Most histone acetylation enzymes (HATs) and deacetylation enzymes (HDACs) in fungi were originally discovered in yeast. The functions and mechanisms of HATs and HDACs in yeast that have been documented offer us an excellent entry point for gaining insights into these two types of enzymes. In the interaction between plants and pathogenic fungi, histone acetylation assumes a critical role, governing fungal pathogenicity and plant immunity. This review paper delves deep into the recent advancements in understanding how histone acetylation shapes the interaction between plants and fungi. It explores how this epigenetic modification influences the intricate balance of power between these two kingdoms of life, highlighting the intricate network of interactions and the subtle shifts in these interactions that can lead to either mutual coexistence or hostile confrontation.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Zhou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangzhi Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Kumar D, Kumar A. Molecular Determinants Involved in Candida albicans Biofilm Formation and Regulation. Mol Biotechnol 2024; 66:1640-1659. [PMID: 37410258 DOI: 10.1007/s12033-023-00796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Candida albicans is known for its pathogenicity, although it lives within the human body as a commensal member. The commensal nature of C. albicans is well controlled and regulated by the host's immune system as they live in the harmonized microenvironment. However, the development of certain unusual microhabitat conditions (change in pH, co-inhabiting microorganisms' population ratio, debilitated host-immune system) pokes this commensal fungus to transform into a pathogen in such a way that it starts to propagate very rapidly and tries to breach the epithelial barrier to enter the host's systemic circulations. In addition, Candida is infamous as a major nosocomial (hospital-acquired infection) agent because it enters the human body through venous catheters or medical prostheses. The hysterical mode of C. albicans growth builds its microcolony or biofilm, which is pathogenic for the host. Biofilms propose additional resistance mechanisms from host immunity or extracellular chemicals to aid their survival. Differential gene expressions and regulations within the biofilms cause altered morphology and metabolism. The genes associated with adhesiveness, hyphal/pseudo-hyphal growth, persister cell transformation, and biofilm formation by C. albicans are controlled by myriads of cell-signaling regulators. These genes' transcription is controlled by different molecular determinants like transcription factors and regulators. Therefore, this review has focused discussion on host-immune-sensing molecular determinants of Candida during biofilm formation, regulatory descriptors (secondary messengers, regulatory RNAs, transcription factors) of Candida involved in biofilm formation that could enable small-molecule drug discovery against these molecular determinants, and lead to disrupt the well-structured Candida biofilms effectively.
Collapse
Affiliation(s)
- Dushyant Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India.
| |
Collapse
|
4
|
Lo TL, Wang Q, Nickson J, van Denderen BJW, Deveson Lucas D, Chai HX, Knott GJ, Weerasinghe H, Traven A. The C-terminal protein interaction domain of the chromatin reader Yaf9 is critical for pathogenesis of Candida albicans. mSphere 2024; 9:e0069623. [PMID: 38376217 PMCID: PMC10964406 DOI: 10.1128/msphere.00696-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Fungal infections cause a large health burden but are treated by only a handful of antifungal drug classes. Chromatin factors have emerged as possible targets for new antifungals. These targets include the reader proteins, which interact with posttranslationally modified histones to influence DNA transcription and repair. The YEATS domain is one such reader recognizing both crotonylated and acetylated histones. Here, we performed a detailed structure/function analysis of the Candida albicans YEATS domain reader Yaf9, a subunit of the NuA4 histone acetyltransferase and the SWR1 chromatin remodeling complex. We have previously demonstrated that the homozygous deletion mutant yaf9Δ/Δ displays growth defects and is avirulent in mice. Here we show that a YEATS domain mutant expected to inactivate Yaf9's chromatin binding does not display strong phenotypes in vitro, nor during infection of immune cells or in a mouse systemic infection model, with only a minor virulence reduction in vivo. In contrast to the YEATS domain mutation, deletion of the C-terminal domain of Yaf9, a protein-protein interaction module necessary for its interactions with SWR1 and NuA4, phenocopies the null mutant. This shows that the C-terminal domain is essential for Yaf9 roles in vitro and in vivo, including C. albicans virulence. Our study informs on the strategies for therapeutic targeting of Yaf9, showing that approaches taken for the mammalian YEATS domains by disrupting their chromatin binding might not be effective in C. albicans, and provides a foundation for studying YEATS proteins in human fungal pathogens.IMPORTANCEThe scarcity of available antifungal drugs and rising resistance demand the development of therapies with new modes of action. In this context, chromatin regulation may be a target for novel antifungal therapeutics. To realize this potential, we must better understand the roles of chromatin regulators in fungal pathogens. Toward this goal, here, we studied the YEATS domain chromatin reader Yaf9 in Candida albicans. Yaf9 uses the YEATS domain for chromatin binding and a C-terminal domain to interact with chromatin remodeling complexes. By constructing mutants in these domains and characterizing their phenotypes, our data indicate that the Yaf9 YEATS domain might not be a suitable therapeutic drug target. Instead, the Yaf9 C-terminal domain is critical for C. albicans virulence. Collectively, our study informs how a class of chromatin regulators performs their cellular and pathogenesis roles in C. albicans and reveals strategies to inhibit them.
Collapse
Affiliation(s)
- Tricia L. Lo
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Qi Wang
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Joshua Nickson
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Bryce J. W. van Denderen
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | | | - Her Xiang Chai
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Gavin J. Knott
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Harshini Weerasinghe
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| |
Collapse
|
5
|
McCrory C, Verma J, Tucey TM, Turner R, Weerasinghe H, Beilharz TH, Traven A. The short-chain fatty acid crotonate reduces invasive growth and immune escape of Candida albicans by regulating hyphal gene expression. mBio 2023; 14:e0260523. [PMID: 37929941 PMCID: PMC10746253 DOI: 10.1128/mbio.02605-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Macrophages curtail the proliferation of the pathogen Candida albicans within human body niches. Within macrophages, C. albicans adapts its metabolism and switches to invasive hyphal morphology. These adaptations enable fungal growth and immune escape by triggering macrophage lysis. Transcriptional programs regulate these metabolic and morphogenetic adaptations. Here we studied the roles of chromatin in these processes and implicate lysine crotonylation, a histone mark regulated by metabolism, in hyphal morphogenesis and macrophage interactions by C. albicans. We show that the short-chain fatty acid crotonate increases histone crotonylation, reduces hyphal formation within macrophages, and slows macrophage lysis and immune escape of C. albicans. Crotonate represses hyphal gene expression, and we propose that C. albicans uses diverse acylation marks to regulate its cell morphology in host environments. Hyphal formation is a virulence property of C. albicans. Therefore, a further importance of our study stems from identifying crotonate as a hyphal inhibitor.
Collapse
Affiliation(s)
- Christopher McCrory
- Department of Biochemistry and Molecular Biology and Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Jiyoti Verma
- Department of Biochemistry and Molecular Biology and Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Timothy M. Tucey
- Department of Biochemistry and Molecular Biology and Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Rachael Turner
- Department of Biochemistry and Molecular Biology and Stem Cells and Development Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Harshini Weerasinghe
- Department of Biochemistry and Molecular Biology and Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Traude H. Beilharz
- Department of Biochemistry and Molecular Biology and Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Department of Biochemistry and Molecular Biology and Stem Cells and Development Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology and Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| |
Collapse
|
6
|
Khodavandi P, Hosseini A, Khodavandi A, Alizadeh F, Azizi A, Gerami M. Hyphae-specific genes: Possible molecular targets for magnetic iron oxide nanoparticles alone and combined with visible light in Candida albicans. Photodiagnosis Photodyn Ther 2023; 44:103822. [PMID: 37778716 DOI: 10.1016/j.pdpdt.2023.103822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Candida albicans readily develops resistance to fluconazole. Magnetic iron oxide nanoparticles (denoted as MION) and antimicrobial photodynamic therapy are attracting attention as therapeutic agents. This study aims to investigate the inhibitory efficacy of MION alone and combined with visible light against C. albicans and expression analysis of hyphal wall protein 1 (HWP1) and agglutinin-like sequence 1 (ALS1) genes in C. albicans. Antifungal susceptibility testing, photodynamic activity assay, reactive oxygen species (ROS) production assay and gene expression analysis were determined in C. albicans treated with MION alone and combined with visible light. MION at 1 × minimum inhibitory concentration (MIC) level (500 μg/mL) exhibited antifungal activity against C. albicans isolates. Further, 1 × MIC levels of MION alone and combined with visible light displayed remarkable fungicidal effects at 24 and 48 h after treatment. The MION combined with visible light caused the highest levels of ROS production by all C. albicans isolates. The relative RT-PCR data showed significant downregulation of HWP1 and ALS1 genes which are the key virulence genes in C. albicans. Differences in gene expression of HWP1 and ALS1 were more significant in MION combined with visible light treatments than MION alone. Our study sheds a novel light on facile development of effective treatment of C. albicans especially fluconazole-resistant C. albicans infections. The hyphae-specific genes HWP1 and ALS1 could be probable molecular targets for MION alone and combined with visible light in C. albicans.
Collapse
Affiliation(s)
| | - Asma Hosseini
- Department of Microbiology, Yasuj Branch, Islamic Azad University, Yasuj, Iran
| | - Alireza Khodavandi
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| | - Fahimeh Alizadeh
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| | - Arsalan Azizi
- Department of Pathology, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Majid Gerami
- Education Research Center, Yasuj University, Yasuj, Iran
| |
Collapse
|
7
|
Gao N, Dai B, Nie X, Zhao Q, Zhu W, Chen J. Fun30 nucleosome remodeller regulates white-to-opaque switching in Candida albicans. Acta Biochim Biophys Sin (Shanghai) 2023; 55:508-517. [PMID: 36896644 PMCID: PMC10160231 DOI: 10.3724/abbs.2023031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Candida albicans ( C. albicans) is an opportunistic pathogen in humans and possesses a white-opaque heritable switching system. Wor1 is a master regulator of white-opaque switching and is essential for opaque cell formation in C. albicans. However, the regulatory network of Wor1 in white-opaque switching is still vague. In this study, we obtain a series of Wor1-interacting proteins using LexA-Wor1 as bait. Among these proteins, function unknown now 30 (Fun30) interacts with Wor1 in vitro and in vivo. Fun30 expression is upregulated in opaque cells at the transcriptional and protein levels. Loss of FUN30 attenuates white-to-opaque switching, while ectopic expression of FUN30 significantly increases white-to-opaque switching in an ATPase activity-dependent manner. Furthermore, FUN30 upregulation is dependent on CO 2; loss of FLO8, a key CO 2-sensing transcriptional regulator, abolishes FUN30 upregulation. Interestingly, deletion of FUN30 affects the WOR1 expression regulation feedback loop. Thus, our results indicate that the chromatin remodeller Fun30 interacts with Wor1 and is required for WOR1 expression and opaque cell formation.
Collapse
Affiliation(s)
- Ning Gao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Baodi Dai
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyi Nie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qun Zhao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wencheng Zhu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
8
|
Reingold V, Staropoli A, Faigenboim A, Maymone M, Matveev S, Keppanan R, Ghanim M, Vinale F, Ment D. The SWC4 subunit of the SWR1 chromatin remodeling complex is involved in varying virulence of Metarhizium brunneum isolates offering role of epigenetic regulation of pathogenicity. Virulence 2022; 13:1252-1269. [PMID: 35891589 PMCID: PMC9336478 DOI: 10.1080/21505594.2022.2101210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The host – pathogen interaction is a multifactorial process subject to a co-evolutionary arms race consisting of rapid changes in both host and pathogen, controlled at the genetic and epigenetic levels. Previously, we showed intra-species variation in disease progression and pathogenicity in aphids for Metarhizium brunneum isolates MbK and Mb7. Herein, we compared genomic, epigenetic, and metabolomic variations between these isolates and their effects on pathogenicity. Genomic variation could not completely explain the observed differences between the isolates. However, differential N6-adenine methylation (6 mA) and its correlation to reduced expression of the essential SWC4 subunit of SWR1 chromatin-remodelling complex (SWR1-C) led us to hypothesize a role for swc4 in the varying pathogenicity. Mutagenesis of the essential swc4 gene in MbKisolate resulted in reduction of secondary-metabolite (SM) secretion and impaired virulence in Galleria mellonella. Our results suggest the role of SWC4 in the regulation of SMs and the role of both SWC4 and SWR1-C in virulence of M. brunneum isolates. A better understanding of epigenetic regulation of SM production and secretion in entomopathogenic fungi may enable theirmanipulation for better biocontrol performance, and expand possibilities for environmentally friendly pest control.
Collapse
Affiliation(s)
- Victoria Reingold
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel.,The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alessia Staropoli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.,Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
| | - Adi Faigenboim
- Institute of Plant Science, ARO, The Volcani Institute, Rishon Le Zion, Israel
| | - Marcel Maymone
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| | - Sabina Matveev
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| | - Ravindran Keppanan
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| | - Murad Ghanim
- Department of Entomology, Nematology and Chemistry Units, ARO, The Volcani Institute, Rishon LeZion, Israel
| | - Francesco Vinale
- Institute for Sustainable Plant Protection, National Research Council, Portici, Italy.,Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
9
|
Zhao Q, Dai B, Wu H, Zhu W, Chen J. Ino80 is required for H2A.Z eviction from hypha-specific promoters and hyphal development of Candida albicans. Mol Microbiol 2022; 118:92-104. [PMID: 35713098 PMCID: PMC9543228 DOI: 10.1111/mmi.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022]
Abstract
ATP‐dependent chromatin remodeling complexes play important roles in many essential cellular processes, including transcription regulation, DNA replication, and repair. Evicting H2A.Z, a variant of histone H2A, from the promoter of hypha‐specific genes is required for hyphal formation in Candida albicans. However, the mechanism that regulates H2A.Z removal during hyphal formation remains unknown. In this study, we demonstrated that Ino80, the core catalytic subunit of the INO80 complex, was recruited to hypha‐specific promoters during hyphal induction in Arp8 dependent manner and facilitated the removal of H2A.Z. Deleting INO80 or mutating the ATPase site of Ino80 impairs the expression of hypha‐specific genes (HSGs) and hyphal development. In addition, we showed that Ino80 was essential for the virulence of C. albicans during systemic infections in mice. Interestingly, Arp5, an INO80 complex‐specific component, acts in concert with Ino80 during DNA damage responses but is dispensable for hyphal induction. Our findings clarified that Ino80 was critical for hyphal development, DNA damage response, and pathogenesis in C. albicans.
Collapse
Affiliation(s)
- Qun Zhao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Baodi Dai
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongyu Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wencheng Zhu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
10
|
Lai Y, Wang L, Zheng W, Wang S. Regulatory Roles of Histone Modifications in Filamentous Fungal Pathogens. J Fungi (Basel) 2022; 8:565. [PMID: 35736048 PMCID: PMC9224773 DOI: 10.3390/jof8060565] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Filamentous fungal pathogens have evolved diverse strategies to infect a variety of hosts including plants and insects. The dynamic infection process requires rapid and fine-tuning regulation of fungal gene expression programs in response to the changing host environment and defenses. Therefore, transcriptional reprogramming of fungal pathogens is critical for fungal development and pathogenicity. Histone post-translational modification, one of the main mechanisms of epigenetic regulation, has been shown to play an important role in the regulation of gene expressions, and is involved in, e.g., fungal development, infection-related morphogenesis, environmental stress responses, biosynthesis of secondary metabolites, and pathogenicity. This review highlights recent findings and insights into regulatory mechanisms of histone methylation and acetylation in fungal development and pathogenicity, as well as their roles in modulating pathogenic fungi-host interactions.
Collapse
Affiliation(s)
- Yiling Lai
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilu Zheng
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
CaSWC4 regulates the immunity-thermotolerance tradeoff by recruiting CabZIP63/CaWRKY40 to target genes and activating chromatin in pepper. PLoS Genet 2022; 18:e1010023. [PMID: 35226664 PMCID: PMC8884482 DOI: 10.1371/journal.pgen.1010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
Pepper (Capsicum annuum) responds differently to high temperature stress (HTS) and Ralstonia solanacearum infection (RSI) but employs some shared transcription factors (TFs), such as CabZIP63 and CaWRKY40, in both cases. How the plant activates and balances these distinct responses, however, was unclear. Here, we show that the protein CaSWC4 interacts with CaRUVBL2 and CaTAF14b and they all act positively in pepper response to RSI and thermotolerance. CaSWC4 activates chromatin of immunity or thermotolerance related target genes of CaWRKY40 or CabZIP63 by promoting deposition of H2A.Z, H3K9ac and H4K5ac, simultaneously recruits CabZIP63 and CaWRKY40 through physical interaction and brings them to their targets (immunity- or thermotolerance-related genes) via binding AT-rich DNA element. The above process relies on the recruitment of CaRUVBL2 and TAF14 by CaSWC4 via physical interaction, which occurs at loci of immunity related target genes only when the plants are challenged with RSI, and at loci of thermotolerance related target genes only upon HTS. Collectively, our data suggest that CaSWC4 regulates rapid, accurate responses to both RSI and HTS by modulating chromatin of specific target genes opening and recruiting the TFs, CaRUVBL2 and CaTAF14b to the specific target genes, thereby helping achieve the balance between immunity and thermotolerance.
Collapse
|
12
|
Li X, Liu S, Li X, Li XD. YEATS Domains as Novel Epigenetic Readers: Structures, Functions, and Inhibitor Development. ACS Chem Biol 2022; 18:994-1013. [PMID: 35041380 DOI: 10.1021/acschembio.1c00945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interpretation of the histone posttranslational modifications (PTMs) by effector proteins, or readers, is an important epigenetic mechanism to regulate gene function. YEATS domains have been recently identified as novel readers of histone lysine acetylation and a variety of nonacetyl acylation marks. Accumulating evidence has revealed the association of dysregulated interactions between YEATS domains and histone PTMs with human diseases, suggesting the therapeutic potential of YEATS domain inhibition. Here, we discuss the molecular mechanisms adopted by YEATS domains in recognizing their preferred histone marks and the biological significance of such recognitions in normal cell physiology and pathogenesis of human diseases. Recent progress in the development of YEATS domain inhibitors is also discussed.
Collapse
Affiliation(s)
- Xin Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong G01, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Sha Liu
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong G01, China
| | - Xiang Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong G01, China
| | - Xiang David Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong G01, China
| |
Collapse
|
13
|
Qasim MN, Valle Arevalo A, Nobile CJ, Hernday AD. The Roles of Chromatin Accessibility in Regulating the Candida albicans White-Opaque Phenotypic Switch. J Fungi (Basel) 2021; 7:37. [PMID: 33435404 PMCID: PMC7826875 DOI: 10.3390/jof7010037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans, a diploid polymorphic fungus, has evolved a unique heritable epigenetic program that enables reversible phenotypic switching between two cell types, referred to as "white" and "opaque". These cell types are established and maintained by distinct transcriptional programs that lead to differences in metabolic preferences, mating competencies, cellular morphologies, responses to environmental signals, interactions with the host innate immune system, and expression of approximately 20% of genes in the genome. Transcription factors (defined as sequence specific DNA-binding proteins) that regulate the establishment and heritable maintenance of the white and opaque cell types have been a primary focus of investigation in the field; however, other factors that impact chromatin accessibility, such as histone modifying enzymes, chromatin remodelers, and histone chaperone complexes, also modulate the dynamics of the white-opaque switch and have been much less studied to date. Overall, the white-opaque switch represents an attractive and relatively "simple" model system for understanding the logic and regulatory mechanisms by which heritable cell fate decisions are determined in higher eukaryotes. Here we review recent discoveries on the roles of chromatin accessibility in regulating the C. albicans white-opaque phenotypic switch.
Collapse
Affiliation(s)
- Mohammad N. Qasim
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343, USA; (M.N.Q.); (A.V.A.); (C.J.N.)
- Quantitative and Systems Biology Graduate Program, University of California-Merced, Merced, CA 95343, USA
| | - Ashley Valle Arevalo
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343, USA; (M.N.Q.); (A.V.A.); (C.J.N.)
- Quantitative and Systems Biology Graduate Program, University of California-Merced, Merced, CA 95343, USA
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343, USA; (M.N.Q.); (A.V.A.); (C.J.N.)
- Health Sciences Research Institute, University of California-Merced, Merced, CA 95343, USA
| | - Aaron D. Hernday
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343, USA; (M.N.Q.); (A.V.A.); (C.J.N.)
- Health Sciences Research Institute, University of California-Merced, Merced, CA 95343, USA
| |
Collapse
|
14
|
Scacchetti A, Becker PB. Variation on a theme: Evolutionary strategies for H2A.Z exchange by SWR1-type remodelers. Curr Opin Cell Biol 2020; 70:1-9. [PMID: 33217681 DOI: 10.1016/j.ceb.2020.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023]
Abstract
Histone variants are a universal means to alter the biochemical properties of nucleosomes, implementing local changes in chromatin structure. H2A.Z, one of the most conserved histone variants, is incorporated into chromatin by SWR1-type nucleosome remodelers. Here, we summarize recent advances toward understanding the transcription-regulatory roles of H2A.Z and of the remodeling enzymes that govern its dynamic chromatin incorporation. Tight transcriptional control guaranteed by H2A.Z nucleosomes depends on the context provided by other histone variants or chromatin modifications, such as histone acetylation. The functional cooperation of SWR1-type remodelers with NuA4 histone acetyltransferase complexes, a recurring theme during evolution, is structurally implemented by species-specific strategies.
Collapse
Affiliation(s)
- Alessandro Scacchetti
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
15
|
Zhu W, Fan X, Zhao Q, Xu Y, Wang X, Chen J. Bre1 and Ubp8 regulate H2B mono-ubiquitination and the reversible yeast-hyphae transition in Candida albicans. Mol Microbiol 2020; 115:332-343. [PMID: 33010070 DOI: 10.1111/mmi.14619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023]
Abstract
The reversible yeast-hyphae transition of the human fungal pathogen Candida albicans is tightly linked to its pathogenicity. In this study, we show that histone H2B mono-ubiquitination (H2Bub) at lysine 123 was maintained at a low level in the yeast state, whereas it increased significantly during yeast-to-hyphae transition and decreased when hyphae converted to yeast. The increased H2Bub level is correlated with activation of the hyphal program. H2B ubiquitination and deubiquitination are dynamically regulated by the E3 ligase Bre1 and the deubiquitinase Ubp8 during the reversible yeast-hyphae transition. The functions of Bre1 and Ubp8 in hypha-specific gene (HSG) regulation appears to be direct because both are recruited to the coding regions of HSGs during hyphal induction. The sequential recruitment of Bre1 and Ubp8 to HSGs coding regions is important for the initiation and maintenance of HSG expression. Additionally, Ubp8 contributes to the pathogenicity of C. albicans during early infection in a mouse model. Our study is the first to link H2B ubiquitination to the morphological plasticity and pathogenicity of the human fungal pathogen C. albicans and shed light on potential antifungal treatments.
Collapse
Affiliation(s)
- Wencheng Zhu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xueyi Fan
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qun Zhao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yinxing Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiongjun Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
Chen J, Liu Q, Zeng L, Huang X. Protein Acetylation/Deacetylation: A Potential Strategy for Fungal Infection Control. Front Microbiol 2020; 11:574736. [PMID: 33133044 PMCID: PMC7579399 DOI: 10.3389/fmicb.2020.574736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Protein acetylation is a universal post-translational modification that fine-tunes the major cellular processes of many life forms. Although the mechanisms regulating protein acetylation have not been fully elucidated, this modification is finely tuned by both enzymatic and non-enzymatic mechanisms. Protein deacetylation is the reverse process of acetylation and is mediated by deacetylases. Together, protein acetylation and deacetylation constitute a reversible regulatory protein acetylation network. The recent application of mass spectrometry-based proteomics has led to accumulating evidence indicating that reversible protein acetylation may be related to fungal virulence because a substantial amount of virulence factors are acetylated. Additionally, the relationship between protein acetylation/deacetylation and fungal drug resistance has also been proven and the potential of deacetylase inhibitors as an anti-infective treatment has attracted attention. This review aimed to summarize the research progress in understanding fungal protein acetylation/deacetylation and discuss the mechanism of its mediation in fungal virulence, providing novel targets for the treatment of fungal infection.
Collapse
Affiliation(s)
- Junzhu Chen
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Lingbing Zeng
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Su S, Li X, Yang X, Li Y, Chen X, Sun S, Jia S. Histone acetylation/deacetylation in Candida albicans and their potential as antifungal targets. Future Microbiol 2020; 15:1075-1090. [PMID: 32854542 DOI: 10.2217/fmb-2019-0343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, the incidence of invasive fungal infections has significantly increased. Candida albicans (C. albicans) is the most common opportunistic fungal pathogen that infects humans. The limited number of available antifungal agents and the emergence of drug resistance pose difficulties to treatment, thus new antifungals are urgently needed. Through their functions in DNA replication, DNA repair and transcription, histone acetyltransferases (HATs) and histone deacetylases (HDACs) perform essential functions relating to growth, virulence, drug resistance and stress responses of C. albicans. Here, we summarize the physiological and pathological functions of HATs/HDACs, potential antifungal targets and underlying antifungal compounds that impact histone acetylation and deacetylation. We anticipate this review will stimulate the identification of new HAT/HDAC-related antifungal targets and antifungal agents.
Collapse
Affiliation(s)
- Shan Su
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Xiuyun Li
- Department of Pharmacy, Qilu Children’s Hospital, Shandong University, Jinan 250022, China
| | - Xinmei Yang
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, People’s Republic of China
| | - Yiman Li
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Xueqi Chen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Shujuan Sun
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, People’s Republic of China
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, People’s Republic of China
| | - Shuang Jia
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, People’s Republic of China
| |
Collapse
|
18
|
Scacchetti A, Schauer T, Reim A, Apostolou Z, Campos Sparr A, Krause S, Heun P, Wierer M, Becker PB. Drosophila SWR1 and NuA4 complexes are defined by DOMINO isoforms. eLife 2020; 9:e56325. [PMID: 32432549 PMCID: PMC7239659 DOI: 10.7554/elife.56325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
Histone acetylation and deposition of H2A.Z variant are integral aspects of active transcription. In Drosophila, the single DOMINO chromatin regulator complex is thought to combine both activities via an unknown mechanism. Here we show that alternative isoforms of the DOMINO nucleosome remodeling ATPase, DOM-A and DOM-B, directly specify two distinct multi-subunit complexes. Both complexes are necessary for transcriptional regulation but through different mechanisms. The DOM-B complex incorporates H2A.V (the fly ortholog of H2A.Z) genome-wide in an ATP-dependent manner, like the yeast SWR1 complex. The DOM-A complex, instead, functions as an ATP-independent histone acetyltransferase complex similar to the yeast NuA4, targeting lysine 12 of histone H4. Our work provides an instructive example of how different evolutionary strategies lead to similar functional separation. In yeast and humans, nucleosome remodeling and histone acetyltransferase complexes originate from gene duplication and paralog specification. Drosophila generates the same diversity by alternative splicing of a single gene.
Collapse
Affiliation(s)
- Alessandro Scacchetti
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-UniversityMunichGermany
| | - Tamas Schauer
- Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-UniversityMunichGermany
| | - Alexander Reim
- Department of Proteomics and Signal Transduction, Max Planck Institute of BiochemistryMunichGermany
| | - Zivkos Apostolou
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-UniversityMunichGermany
| | - Aline Campos Sparr
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-UniversityMunichGermany
| | - Silke Krause
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-UniversityMunichGermany
| | - Patrick Heun
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of EdinburghEdinburghUnited Kingdom
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute of BiochemistryMunichGermany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-UniversityMunichGermany
| |
Collapse
|
19
|
Wang Q, Verma J, Vidan N, Wang Y, Tucey TM, Lo TL, Harrison PF, See M, Swaminathan A, Kuchler K, Tscherner M, Song J, Powell DR, Sopta M, Beilharz TH, Traven A. The YEATS Domain Histone Crotonylation Readers Control Virulence-Related Biology of a Major Human Pathogen. Cell Rep 2020; 31:107528. [PMID: 32320659 DOI: 10.1016/j.celrep.2020.107528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Identification of multiple histone acylations diversifies transcriptional control by metabolism, but their functions are incompletely defined. Here we report evidence of histone crotonylation in the human fungal pathogen Candida albicans. We define the enzymes that regulate crotonylation and show its dynamic control by environmental signals: carbon sources, the short-chain fatty acids butyrate and crotonate, and cell wall stress. Crotonate regulates stress-responsive transcription and rescues C. albicans from cell wall stress, indicating broad impact on cell biology. The YEATS domain crotonylation readers Taf14 and Yaf9 are required for C. albicans virulence, and Taf14 controls gene expression, stress resistance, and invasive growth via its chromatin reader function. Blocking the Taf14 C terminus with a tag reduced virulence, suggesting that inhibiting Taf14 interactions with chromatin regulators impairs function. Our findings shed light on the regulation of histone crotonylation and the functions of the YEATS proteins in eukaryotic pathogen biology and fungal infections.
Collapse
Affiliation(s)
- Qi Wang
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Jiyoti Verma
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Nikolina Vidan
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia; Department of Molecular Biology, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Yanan Wang
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Timothy M Tucey
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Tricia L Lo
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Paul F Harrison
- Bioinformatics Platform, Monash University, Clayton 3800 VIC, Australia
| | - Michael See
- Bioinformatics Platform, Monash University, Clayton 3800 VIC, Australia
| | - Angavai Swaminathan
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Karl Kuchler
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, Vienna, Austria
| | - Michael Tscherner
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, Vienna, Austria
| | - Jiangning Song
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - David R Powell
- Bioinformatics Platform, Monash University, Clayton 3800 VIC, Australia
| | - Mary Sopta
- Department of Molecular Biology, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Traude H Beilharz
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia.
| |
Collapse
|
20
|
Espinosa-Cores L, Bouza-Morcillo L, Barrero-Gil J, Jiménez-Suárez V, Lázaro A, Piqueras R, Jarillo JA, Piñeiro M. Insights Into the Function of the NuA4 Complex in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:125. [PMID: 32153620 PMCID: PMC7047200 DOI: 10.3389/fpls.2020.00125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/28/2020] [Indexed: 05/14/2023]
Abstract
Chromatin remodeling plays a key role in the establishment and maintenance of gene expression patterns essential for plant development and responses to environmental factors. Post-translational modification of histones, including acetylation, is one of the most relevant chromatin remodeling mechanisms that operate in eukaryotic cells. Histone acetylation is an evolutionarily conserved chromatin signature commonly associated with transcriptional activation. Histone acetylation levels are tightly regulated through the antagonistic activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs). In plants, different families of HATs are present, including the MYST family, which comprises homologs of the catalytic subunit of the Nucleosome Acetyltransferase of H4 (NuA4) complex in yeast. This complex mediates acetylation of histones H4, H2A, and H2A.Z, and is involved in transcriptional regulation, heterochromatin silencing, cell cycle progression, and DNA repair in yeast. In Arabidopsis and, other plant species, homologs for most of the yeast NuA4 subunits are present and although the existence of this complex has not been demonstrated yet, compelling evidence supports the notion that this type of HAT complex functions from mosses to angiosperms. Recent proteomic studies show that several Arabidopsis homologs of NuA4 components, including the assembly platform proteins and the catalytic subunit, are associated in vivo with additional members of this complex suggesting that a NuA4-like HAT complex is present in plants. Furthermore, the functional characterization of some Arabidopsis NuA4 subunits has uncovered the involvement of these proteins in the regulation of different plant biological processes. Interestingly, for most of the mutant plants deficient in subunits of this complex characterized so far, conspicuous defects in flowering time are observed, suggesting a role for NuA4 in the control of this plant developmental program. Moreover, the participation of Arabidopsis NuA4 homologs in other developmental processes, such as gametophyte development, as well as in cell proliferation and stress and hormone responses, has also been reported. In this review, we summarize the current state of knowledge on plant putative NuA4 subunits and discuss the latest progress concerning the function of this chromatin modifying complex.
Collapse
|
21
|
Roles of the INO80 and SWR1 Chromatin Remodeling Complexes in Plants. Int J Mol Sci 2019; 20:ijms20184591. [PMID: 31533258 PMCID: PMC6770637 DOI: 10.3390/ijms20184591] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022] Open
Abstract
Eukaryotic genes are packed into a dynamic but stable nucleoprotein structure called chromatin. Chromatin-remodeling and modifying complexes generate a dynamic chromatin environment that ensures appropriate DNA processing and metabolism in various processes such as gene expression, as well as DNA replication, repair, and recombination. The INO80 and SWR1 chromatin remodeling complexes (INO80-c and SWR1-c) are ATP-dependent complexes that modulate the incorporation of the histone variant H2A.Z into nucleosomes, which is a critical step in eukaryotic gene regulation. Although SWR1-c has been identified in plants, plant INO80-c has not been successfully isolated and characterized. In this review, we will focus on the functions of the SWR1-c and putative INO80-c (SWR1/INO80-c) multi-subunits and multifunctional complexes in Arabidopsis thaliana. We will describe the subunit compositions of the SWR1/INO80-c and the recent findings from the standpoint of each subunit and discuss their involvement in regulating development and environmental responses in Arabidopsis.
Collapse
|
22
|
Talbert PB, Meers MP, Henikoff S. Old cogs, new tricks: the evolution of gene expression in a chromatin context. Nat Rev Genet 2019; 20:283-297. [PMID: 30886348 DOI: 10.1038/s41576-019-0105-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sophisticated gene-regulatory mechanisms probably evolved in prokaryotes billions of years before the emergence of modern eukaryotes, which inherited the same basic enzymatic machineries. However, the epigenomic landscapes of eukaryotes are dominated by nucleosomes, which have acquired roles in genome packaging, mitotic condensation and silencing parasitic genomic elements. Although the molecular mechanisms by which nucleosomes are displaced and modified have been described, just how transcription factors, histone variants and modifications and chromatin regulators act on nucleosomes to regulate transcription is the subject of considerable ongoing study. We explore the extent to which these transcriptional regulatory components function in the context of the evolutionarily ancient role of chromatin as a barrier to processes acting on DNA and how chromatin proteins have diversified to carry out evolutionarily recent functions that accompanied the emergence of differentiation and development in multicellular eukaryotes.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael P Meers
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| |
Collapse
|
23
|
Regulatory mechanisms controlling morphology and pathogenesis in Candida albicans. Curr Opin Microbiol 2019; 52:27-34. [PMID: 31129557 DOI: 10.1016/j.mib.2019.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
Candida albicans, a major human fungal pathogen, can cause a wide variety of both mucosal and systemic infections, particularly in immunocompromised individuals. Multiple lines of evidence suggest a strong association between virulence and the ability of C. albicans to undergo a reversible morphological transition from yeast to filamentous cells in response to host environmental cues. Most previous studies on mechanisms important for controlling the C. albicans morphological transition have focused on signaling pathways and sequence-specific transcription factors. However, in recent years a variety of novel mechanisms have been reported, including those involving global transcriptional regulation and translational control. A large-scale functional genomics screen has also revealed new roles in filamentation for certain key biosynthesis pathways. This review article will highlight several of these exciting recent discoveries and discuss how they are relevant to the development of novel antifungal strategies. Ultimately, components of mechanisms that control C. albicans morphogenesis and pathogenicity could potentially serve as viable antifungal targets.
Collapse
|