1
|
Fan L, Tong W, Wei A, Mu X. Progress of proteolysis-targeting chimeras (PROTACs) delivery system in tumor treatment. Int J Biol Macromol 2024; 275:133680. [PMID: 38971291 DOI: 10.1016/j.ijbiomac.2024.133680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) can use the intrinsic protein degradation system in cells to degrade pathogenic target proteins, and are currently a revolutionary frontier of development strategy for tumor treatment with small molecules. However, the poor water solubility, low cellular permeability, and off-target side effects of most PROTACs have prevented them from passing the preclinical research stage of drug development. This requires the use of appropriate delivery systems to overcome these challenging hurdles and ensure precise delivery of PROTACs towards the tumor site. Therefore, the combination of PROTACs and multifunctional delivery systems will open up new research directions for targeted degradation of tumor proteins. In this review, we systematically reviewed the design principles and the most recent advances of various PROTACs delivery systems. Moreover, the constructive strategies for developing multifunctional PROTACs delivery systems were proposed comprehensively. This review aims to deepen the understanding of PROTACs drugs and promote the further development of PROTACs delivery system.
Collapse
Affiliation(s)
- Lianlian Fan
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Weifang Tong
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130021, China
| | - Anhui Wei
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
2
|
Gong B, Zhang W, Cong W, Gu Y, Ji W, Yin T, Zhou H, Hu H, Zhuang J, Luo Y, Liu Y, Gao J, Yin Y. Systemic Administration of Neurotransmitter-Derived Lipidoids-PROTACs-DNA Nanocomplex Promotes Tau Clearance and Cognitive Recovery for Alzheimer's Disease Therapy. Adv Healthc Mater 2024:e2400149. [PMID: 39007278 DOI: 10.1002/adhm.202400149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Alzheimer's disease (AD) poses a significant burden on the economy and healthcare systems worldwide. Although the pathophysiology of AD remains debatable, its progression is strongly correlated with the accumulation of tau aggregates. Therefore, tau clearance from brain lesions can be a promising strategy for AD therapy. To achieve this, the present study combined proteolysis-targeting chimera (PROTAC), a novel protein-degradation technique that mediates degradation of target proteins via the ubiquitin-proteasome system, and a neurotransmitter-derived lipidoid (NT-lipidoid) nanoparticle delivery system with high blood-brain barrier-penetration activity, to generate a novel nanomedicine named NPD. Peptide 1, a cationic tau-targeting PROTAC is loaded onto the positively charged nanoparticles using DNA-intercalation technology. The resulting nanomedicine displayed good encapsulation efficiency, serum stability, drug release profile, and blood-brain barrier-penetration capability. Furthermore, NPD potently induced tau clearance in both cultured neuronal cells and the brains of AD mice. Moreover, intravenous injection of NPD led to a significant improvement in the cognitive function of the AD mice, without any remarkable abnormalities, thereby supporting its clinical development. Collectively, the novel nanomedicine developed in this study may serve as an innovative strategy for AD therapy, since it effectively and specifically induces tau protein clearance in brain lesions, which in turn enhances cognition.
Collapse
Affiliation(s)
- Baofeng Gong
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Weicong Zhang
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Wei Cong
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yuankai Gu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Honglei Zhou
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Honggang Hu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Yi Luo
- New Drug Discovery and Development, Biotheus Inc., Zhuhai, 519080, China
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University of Medicine, Shanghai, 200240, China
| | - Yan Liu
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University of Medicine, Shanghai, 200240, China
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| |
Collapse
|
3
|
He H, Zhang X, Wang J, Liu Q, Zhang L, Chen L, Yuan Y, Zhao Z, Li H, Chen Z. Development of Degraders of Cyclin-Dependent Kinases 4 and 6 Based on Rational Drug Design. J Med Chem 2024; 67:11354-11364. [PMID: 38943626 DOI: 10.1021/acs.jmedchem.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Degradation of target proteins has been considered to be a promising therapeutic approach, but the rational design of compounds for degradation remains a challenge. In this study, we reasonably designed and synthesized only 10 compounds to discover effective CDK4/6 protein degraders. Among the newly synthesized compounds, 7f achieved dual degradation of CDK4/6 protein, with DC50 values of 10.5 and 2.5 nM, respectively. Compound 7f also exhibited inhibitory proliferative activity against Jurkat cells with an IC50 value of 0.18 μM. Furthermore, 7f induced cell apoptosis and G1 phase cell cycle arrest in a dose-dependent manner in Jurkat cells. In conclusion, these findings demonstrate the potential of 7f as a CDK4/6 degrader and a potential therapeutic strategy against cancer, thereby expanding the potential of CDK4/6 dual PROTACs.
Collapse
Affiliation(s)
- Huan He
- Innovation Center for AI and Drug Discovery (ICAIDD), East China Normal University, Shanghai 200062, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xingsen Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - LeiHao Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lu Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Yuan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Honglin Li
- Innovation Center for AI and Drug Discovery (ICAIDD), East China Normal University, Shanghai 200062, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Lingang Laboratory, Shanghai 200031, China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Li S, Yan W, Sun K, Miao J, Liu Z, Xu J, Wang X, Li B, Zhang Q. Norisoboldine, a Natural Alkaloid from Lindera aggregata (Sims) Kosterm, Promotes Osteogenic Differentiation via S6K1 Signaling Pathway and Prevents Bone Loss in OVX Mice. Mol Nutr Food Res 2024; 68:e2400193. [PMID: 38813717 DOI: 10.1002/mnfr.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Indexed: 05/31/2024]
Abstract
SCOPE Norisoboldine (NOR) is a major isoquinoline alkaloid component in the traditional Chinese herbal plant Lindera aggregata (Sims) Kosterm, with previously reported anti-osteoclast differentiation and antiarthritis properties. However, the roles of NOR on osteoblasts, bone marrow mesenchymal stem cells (BMSCs), and osteoporosis in vivo have never been well established. METHODS AND RESULTS This study investigates the ability of NOR to improve bone formation in vitro and in vivo. Osteoblasts and BMSCs are used to study the effect of NOR on osteogenic and adipogenic differentiation. It finds that NOR promotes osteogenic differentiation of osteoblasts and BMSCs, while inhibiting adipogenic differentiation of BMSCs by reducing the relative expression of peroxisome proliferator-activated receptor γ (Ppar-γ) and adiponectin, C1Q and collagen domain containing (Adipoq). Mechanistic studies show that NOR increases osteoblast differentiation through the mechanistic target of rapamycin kinase (mTOR)/ribosomal protein S6 kinase; polypeptide 1 (S6K1) pathway, and treatment with an mTOR inhibitor rapamycin blocked the NOR-induced increase in mineral accumulation. Finally, the study evaluates the therapeutic potential of NOR in a mouse model of ovariectomy (OVX)-induced bone loss. NOR prevents bone loss in both trabecular and cortical bone by increasing osteoblast number and phospho-S6K1 (p-S6K1) expression in osteoblasts. CONCLUSION NOR effects in enhancing osteoblast-induced bone formation via S6K1 pathway, suggesting the potential of NOR in osteoporosis treatment by increasing bone formation.
Collapse
Affiliation(s)
- Shiming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Wenliang Yan
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Kainong Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jingyuan Miao
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Zichao Liu
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jiayang Xu
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaoyu Wang
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Bo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
| | - Qian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
5
|
Zhao L, Zheng R, Rao X, Huang C, Zhou H, Yu X, Jiang X, Li S. Chemotherapy-Enabled Colorectal Cancer Immunotherapy of Self-Delivery Nano-PROTACs by Inhibiting Tumor Glycolysis and Avoiding Adaptive Immune Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309204. [PMID: 38239040 PMCID: PMC11022706 DOI: 10.1002/advs.202309204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Indexed: 04/18/2024]
Abstract
The chemo-regulation abilities of chemotherapeutic medications are appealing to address the low immunogenicity, immunosuppressive lactate microenvironment, and adaptive immune resistance of colorectal cancer. In this work, the proteolysis targeting chimera (PROTAC) of BRD4 (dBET57) is found to downregulate colorectal cancer glycolysis through the transcription inhibition of c-Myc, which also inhibits the expression of programmed death ligand 1 (PD-L1) to reverse immune evasion and avoid adaptive immune resistance. Based on this, self-delivery nano-PROTACs (designated as DdLD NPs) are further fabricated by the self-assembly of doxorubicin (DOX) and dBET57 with the assistance of DSPE-PEG2000. DdLD NPs can improve the stability, intracellular delivery, and tumor targeting accumulation of DOX and dBET57. Meanwhile, the chemotherapeutic effect of DdLD NPs can efficiently destroy colorectal cancer cells to trigger a robust immunogenic cell death (ICD). More importantly, the chemo-regulation effects of DdLD NPs can inhibit colorectal cancer glycolysis to reduce the lactate production, and downregulate the PD-L1 expression through BRD4 degradation. Taking advantages of the chemotherapy and chemo-regulation ability, DdLD NPs systemically activated the antitumor immunity to suppress the primary and metastatic colorectal cancer progression without inducing any systemic side effects. Such self-delivery nano-PROTACs may provide a new insight for chemotherapy-enabled tumor immunotherapy.
Collapse
Affiliation(s)
- Lin‐Ping Zhao
- Key Laboratory of Biological Targeting DiagnosisTherapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou510700P. R. China
| | - Rong‐Rong Zheng
- The Fifth Affiliated HospitalGuangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacologythe NMPA and State Key Laboratory of Respiratory Diseasethe School of Pharmaceutical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Xiao‐Na Rao
- The Fifth Affiliated HospitalGuangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacologythe NMPA and State Key Laboratory of Respiratory Diseasethe School of Pharmaceutical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Chu‐Yu Huang
- The Fifth Affiliated HospitalGuangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacologythe NMPA and State Key Laboratory of Respiratory Diseasethe School of Pharmaceutical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Hang‐Yu Zhou
- Key Laboratory of Biological Targeting DiagnosisTherapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou510700P. R. China
| | - Xi‐Yong Yu
- The Fifth Affiliated HospitalGuangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacologythe NMPA and State Key Laboratory of Respiratory Diseasethe School of Pharmaceutical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Xue‐Yan Jiang
- The Fifth Affiliated HospitalGuangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacologythe NMPA and State Key Laboratory of Respiratory Diseasethe School of Pharmaceutical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Shi‐Ying Li
- The Fifth Affiliated HospitalGuangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacologythe NMPA and State Key Laboratory of Respiratory Diseasethe School of Pharmaceutical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
- Department of Pulmonary and Critical Care MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510280P. R. China
| |
Collapse
|
6
|
Bhole RP, Patil S, Kapare HS, Chikhale RV, Gurav SS. PROTAC Beyond Cancer- Exploring the New Therapeutic Potential of Proteolysis Targeting Chimeras. Curr Top Med Chem 2024; 24:2050-2073. [PMID: 38963108 DOI: 10.2174/0115680266309968240621072550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024]
Abstract
In the realm of oncology, the transformative impact of PROTAC (PROteolysis TAgeting Chimeras) technology has been particularly pronounced since its introduction in the 21st century. Initially conceived for cancer treatment, PROTACs have evolved beyond their primary scope, attracting increasing interest in addressing a diverse array of medical conditions. This expanded focus includes not only oncological disorders but also viral infections, bacterial ailments, immune dysregulation, neurodegenerative conditions, and metabolic disorders. This comprehensive review explores the broadening landscape of PROTAC application, highlighting ongoing developments and innovations aimed at deploying these molecules across a spectrum of diseases. Careful consideration of the design challenges associated with PROTACs reveals that, when appropriately addressed, these compounds present significant advantages over traditional therapeutic approaches, positioning them as promising alternatives. To evaluate the efficacy of PROTAC molecules, a diverse array of assays is employed, ranging from High-Throughput Imaging (HTI) assays to Cell Painting assays, CRBN engagement assays, Fluorescence Polarization assays, amplified luminescent proximity homogeneous assays, Timeresolved fluorescence energy transfer assays, and Isothermal Titration Calorimetry assays. These assessments collectively contribute to a nuanced understanding of PROTAC performance. Looking ahead, the trajectory of PROTAC technology suggests its potential recognition as a versatile therapeutic strategy for an expansive range of medical conditions. Ongoing progress in this field sets the stage for PROTACs to emerge as valuable tools in the multifaceted landscape of medical treatments.
Collapse
Affiliation(s)
- Ritesh P Bhole
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
- Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyappeth, Pimpri, Pune, 411018, India
| | - Sapana Patil
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
| | - Harshad S Kapare
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
| | | | - Shailendra S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panjim, Goa, India
| |
Collapse
|
7
|
Joshi M, Dey P, De A. Recent advancements in targeted protein knockdown technologies-emerging paradigms for targeted therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1227-1248. [PMID: 38213543 PMCID: PMC10776596 DOI: 10.37349/etat.2023.00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/26/2023] [Indexed: 01/13/2024] Open
Abstract
A generalized therapeutic strategy for various disease conditions, including cancer, is to deplete or inactivate harmful protein targets. Various forms of protein or gene silencing molecules, e.g., small molecule inhibitors, RNA interference (RNAi), and microRNAs (miRNAs) have been used against druggable targets. Over the past few years, targeted protein degradation (TPD) approaches have been developed for direct degradation of candidate proteins. Among the TPD approaches, proteolysis targeting chimeras (PROTACs) have emerged as one of the most promising approaches for the selective elimination of proteins via the ubiquitin-proteasome system. Other than PROTACs, TPD methods with potential therapeutic use include intrabody-mediated protein knockdown and tripartite motif-21 (TRIM-21) mediated TRIM-Away. In this review, protein knockdown approaches, their modes of action, and their advantages over conventional gene knockdown approaches are summarized. In cancers, disease-associated protein functions are often executed by specific post-translational modifications (PTMs). The role of TRIM-Away is highlighted in the direct knockdown of PTM forms of target proteins. Moreover, the application challenges and the prospective clinical use of TPD approaches in various diseases are also discussed.
Collapse
Affiliation(s)
- Mansi Joshi
- Molecular Functional Imaging Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
- Life Science, Homi Bhabha National Institute, Mumbai 400094, India
| | - Pranay Dey
- Molecular Functional Imaging Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
- Life Science, Homi Bhabha National Institute, Mumbai 400094, India
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
- Life Science, Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
8
|
Ouyang M, Feng Y, Chen H, Liu Y, Tan C, Tan Y. Recent Advances in Optically Controlled PROTAC. Bioengineering (Basel) 2023; 10:1368. [PMID: 38135959 PMCID: PMC10740939 DOI: 10.3390/bioengineering10121368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Proteolysis-targeting chimera (PROTAC) technology is a groundbreaking therapeutic approach with significant clinical potential for degrading disease-inducing proteins within targeted cells. However, challenges related to insufficient target selectivity raise concerns about PROTAC toxicity toward normal cells. To address this issue, researchers are modifying PROTACs using various approaches to enhance their target specificity. This review highlights innovative optically controlled PROTACs as anti-cancer therapies currently used in clinical practice and explores the challenges associated with their efficacy and safety. The development of optically controlled PROTACs holds the potential to significantly expand the clinical applicability of PROTAC-based technology within the realm of drug discovery.
Collapse
Affiliation(s)
- Muzi Ouyang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (M.O.); (Y.F.); (H.C.); (Y.L.); (C.T.)
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ying Feng
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (M.O.); (Y.F.); (H.C.); (Y.L.); (C.T.)
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (M.O.); (Y.F.); (H.C.); (Y.L.); (C.T.)
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yanping Liu
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (M.O.); (Y.F.); (H.C.); (Y.L.); (C.T.)
| | - Chunyan Tan
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (M.O.); (Y.F.); (H.C.); (Y.L.); (C.T.)
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (M.O.); (Y.F.); (H.C.); (Y.L.); (C.T.)
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Abstract
Targeted protein degradation (TPD) has emerged as the most promising approach for the specific knockdown of disease-associated proteins and is achieved by exploiting the cellular quality control machinery. TPD technologies are highly advantageous in overcoming drug resistance as they degrade the whole target protein. Microtubules play important roles in many cellular processes and are among the oldest and most well-established targets for tumor chemotherapy. However, the development of drug resistance, risk of hypersensitivity reactions, and intolerable toxicities severely restrict the clinical applications of microtubule-targeting agents (MTAs). Microtubule degradation agents (MDgAs) operate via completely different mechanisms compared with traditional MTAs and are capable of overcoming drug resistance. The emergence of MDgAs has expanded the scope of TPD and provided new avenues for the discovery of tubulin-targeted drugs. Herein, we summarized the development of MDgAs, and discussed their degradation mechanisms, mechanisms of action on the binding sites, potential opportunities, and challenges.
Collapse
Affiliation(s)
- Chufeng Zhang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
10
|
Rathje OH, Perryman L, Payne RJ, Hamprecht DW. PROTACs Targeting MLKL Protect Cells from Necroptosis. J Med Chem 2023; 66:11216-11236. [PMID: 37535857 DOI: 10.1021/acs.jmedchem.3c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Mixed Lineage Kinase domain-Like pseudokinase (MLKL) is implicated in a broad range of diseases due to its role as the ultimate effector of necroptosis and has therefore emerged as an attractive drug target. Here, we describe the development of PROteolysis TArgeting Chimeras (PROTACs) as a novel approach to knock down MLKL through chemical means. A series of candidate degraders were synthesized from a high-affinity pyrazole carboxamide-based MLKL ligand leading to the identification of a PROTAC molecule that effectively degraded MLKL and completely abrogated cell death in a TSZ model of necroptosis. By leveraging the innate ability of these PROTACs to degrade MLKL in a dose-dependent manner, the quantitative relationship between MLKL levels and necroptosis was interrogated. This work demonstrates the feasibility of targeting MLKL using a PROTAC approach and provides a powerful tool to further our understanding of the role of MLKL within the necroptotic pathway.
Collapse
Affiliation(s)
- Oliver H Rathje
- Pharmaxis Ltd., 20 Rodborough Road, Frenchs Forest, NSW 2086, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Lara Perryman
- Pharmaxis Ltd., 20 Rodborough Road, Frenchs Forest, NSW 2086, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | |
Collapse
|
11
|
He Q, Zhou L, Yu D, Zhu R, Chen Y, Song M, Liu X, Liao Y, Ding T, Fan W, Yu W. Near-Infrared-Activatable PROTAC Nanocages for Controllable Target Protein Degradation and On-Demand Antitumor Therapy. J Med Chem 2023; 66:10458-10472. [PMID: 37279091 DOI: 10.1021/acs.jmedchem.3c00587] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As a novel protein knockdown tool, proteolysis targeting chimeras (PROTACs) can induce potent degradation of target proteins by hijacking E3 ubiquitin ligases. However, the uncontrollable protein disruption of PROTACs is prone to cause "off-target" toxicity after systemic administration. Herein, we designed a photocaged-PROTAC (phoBET1) and loaded it in UCNPs-based mesoporous silica nanoparticles (UMSNs) to construct a NIR light-activatable PROTAC nanocage (UMSNs@phoBET1) for controllable target protein degradation. Upon NIR light (980 nm) irradiation, UMSNs@phoBET1 nanocages could be activated to release active PROTAC via a controlled pattern for degrading bromodomain-containing protein 4 (BRD4) and inducing MV-4-11 cancer cell apoptosis. In vivo experiments demonstrated that UMSNs@phoBET1 nanocages were capable of responding to NIR light in tumor tissues to achieve BRD4 degradation and effectively suppress tumor growth. This NIR light-activatable PROTAC nanoplatform compensates for the current shortcomings of short-wavelength light-controlled PROTACs and presents a paradigm for the precise regulation of PROTACs in living tissues.
Collapse
Affiliation(s)
- Qi He
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Liming Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Daxin Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ren Zhu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, People's Republic of China
| | - Yue Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Mingbo Song
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Xintong Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yixian Liao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Tong Ding
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
12
|
Cronin SJF, Andrews NA, Latremoliere A. Peripheralized sepiapterin reductase inhibition as a safe analgesic therapy. Front Pharmacol 2023; 14:1173599. [PMID: 37251335 PMCID: PMC10213231 DOI: 10.3389/fphar.2023.1173599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The development of novel analgesics for chronic pain in the last 2 decades has proven virtually intractable, typically failing due to lack of efficacy and dose-limiting side effects. Identified through unbiased gene expression profiling experiments in rats and confirmed by human genome-wide association studies, the role of excessive tetrahydrobiopterin (BH4) in chronic pain has been validated by numerous clinical and preclinical studies. BH4 is an essential cofactor for aromatic amino acid hydroxylases, nitric oxide synthases, and alkylglycerol monooxygenase so a lack of BH4 leads to a range of symptoms in the periphery and central nervous system (CNS). An ideal therapeutic goal therefore would be to block excessive BH4 production, while preventing potential BH4 rundown. In this review, we make the case that sepiapterin reductase (SPR) inhibition restricted to the periphery (i.e., excluded from the spinal cord and brain), is an efficacious and safe target to alleviate chronic pain. First, we describe how different cell types that engage in BH4 overproduction and contribute to pain hypersensitivity, are themselves restricted to peripheral tissues and show their blockade is sufficient to alleviate pain. We discuss the likely safety profile of peripherally restricted SPR inhibition based on human genetic data, the biochemical alternate routes of BH4 production in various tissues and species, and the potential pitfalls to predictive translation when using rodents. Finally, we propose and discuss possible formulation and molecular strategies to achieve peripherally restricted, potent SPR inhibition to treat not only chronic pain but other conditions where excessive BH4 has been demonstrated to be pathological.
Collapse
Affiliation(s)
| | - Nick A. Andrews
- The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Alban Latremoliere
- Departments of Neurosurgery and Neuroscience, Johns Hopkins School of Medicine, Neurosurgery Pain Research Institute, Baltimore, MD, United States
| |
Collapse
|
13
|
Sincere NI, Anand K, Ashique S, Yang J, You C. PROTACs: Emerging Targeted Protein Degradation Approaches for Advanced Druggable Strategies. Molecules 2023; 28:molecules28104014. [PMID: 37241755 DOI: 10.3390/molecules28104014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
A potential therapeutic strategy to treat conditions brought on by the aberrant production of a disease-causing protein is emerging for targeted protein breakdown using the PROTACs technology. Few medications now in use are tiny, component-based and utilize occupancy-driven pharmacology (MOA), which inhibits protein function for a short period of time to temporarily alter it. By utilizing an event-driven MOA, the proteolysis-targeting chimeras (PROTACs) technology introduces a revolutionary tactic. Small-molecule-based heterobifunctional PROTACs hijack the ubiquitin-proteasome system to trigger the degradation of the target protein. The main challenge PROTAC's development facing now is to find potent, tissue- and cell-specific PROTAC compounds with favorable drug-likeness and standard safety measures. The ways to increase the efficacy and selectivity of PROTACs are the main focus of this review. In this review, we have highlighted the most important discoveries related to the degradation of proteins by PROTACs, new targeted approaches to boost proteolysis' effectiveness and development, and promising future directions in medicine.
Collapse
Affiliation(s)
- Nuwayo Ishimwe Sincere
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut 250103, India
| | - Jing Yang
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
14
|
O’Herin C, Moriuchi YW, Bemis TA, Kohlbrand AJ, Burkart MD, Cohen SM. Development of Human Carbonic Anhydrase II Heterobifunctional Degraders. J Med Chem 2023; 66:2789-2803. [PMID: 36735827 PMCID: PMC9969396 DOI: 10.1021/acs.jmedchem.2c01843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human carbonic anhydrase II (hCAII) is a metalloenzyme essential to critical physiological processes in the body. hCA inhibitors are used clinically for the treatment of indications ranging from glaucoma to epilepsy. Targeted protein degraders have emerged as a promising means of inducing the degradation of disease-implicated proteins by using the endogenous quality control mechanisms of a cell. Here, a series of heterobifunctional degrader candidates targeting hCAII were developed from a simple aryl sulfonamide fragment. Degrader candidates were functionalized to produce either cereblon E3 ubiquitin ligase (CRBN) recruiting proteolysis targeting chimeras (PROTACs) or adamantyl-based hydrophobic tags (HyTs). Screens in HEK293 cells identified two PROTAC small-molecule degraders of hCA. Optimization of linker length and composition yielded a degrader with sub-nanomolar potency and sustained depletion of hCAII over prolonged treatments. Mechanistic studies suggest that this optimized degrader depletes hCAII through the same mechanism as previously reported CRBN-recruiting heterobifunctional degraders.
Collapse
|
15
|
Wang J, An M, Haubner BJ, Penninger JM. Cardiac regeneration: Options for repairing the injured heart. Front Cardiovasc Med 2023; 9:981982. [PMID: 36712238 PMCID: PMC9877631 DOI: 10.3389/fcvm.2022.981982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Cardiac regeneration is one of the grand challenges in repairing injured human hearts. Numerous studies of signaling pathways and metabolism on cardiac development and disease pave the way for endogenous cardiomyocyte regeneration. New drug delivery approaches, high-throughput screening, as well as novel therapeutic compounds combined with gene editing will facilitate the development of potential cell-free therapeutics. In parallel, progress has been made in the field of cell-based therapies. Transplantation of human pluripotent stem cell (hPSC)-derived cardiomyocytes (hPSC-CMs) can partially rescue the myocardial defects caused by cardiomyocyte loss in large animals. In this review, we summarize current cell-based and cell-free regenerative therapies, discuss the importance of cardiomyocyte maturation in cardiac regenerative medicine, and envision new ways of regeneration for the injured heart.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Meilin An
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Bernhard Johannes Haubner
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Josef M. Penninger
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC – Vienna BioCenter, Vienna, Austria
| |
Collapse
|
16
|
Ojasalu K, Lieber S, Sokol AM, Nist A, Stiewe T, Bullwinkel I, Finkernagel F, Reinartz S, Müller-Brüsselbach S, Grosse R, Graumann J, Müller R. The lysophosphatidic acid-regulated signal transduction network in ovarian cancer cells and its role in actomyosin dynamics, cell migration and entosis. Theranostics 2023; 13:1921-1948. [PMID: 37064875 PMCID: PMC10091871 DOI: 10.7150/thno.81656] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/25/2023] [Indexed: 04/18/2023] Open
Abstract
Lysophosphatidic acid (LPA) species accumulate in the ascites of ovarian high-grade serous cancer (HGSC) and are associated with short relapse-free survival. LPA is known to support metastatic spread of cancer cells by activating a multitude of signaling pathways via G-protein-coupled receptors of the LPAR family. Systematic unbiased analyses of the LPA-regulated signal transduction network in ovarian cancer cells have, however, not been reported to date. Methods: LPA-induced signaling pathways were identified by phosphoproteomics of both patient-derived and OVCAR8 cells, RNA sequencing, measurements of intracellular Ca2+ and cAMP as well as cell imaging. The function of LPARs and downstream signaling components in migration and entosis were analyzed by selective pharmacological inhibitors and RNA interference. Results: Phosphoproteomic analyses identified > 1100 LPA-regulated sites in > 800 proteins and revealed interconnected LPAR1, ROCK/RAC, PKC/D and ERK pathways to play a prominent role within a comprehensive signaling network. These pathways regulate essential processes, including transcriptional responses, actomyosin dynamics, cell migration and entosis. A critical component of this signaling network is MYPT1, a stimulatory subunit of protein phosphatase 1 (PP1), which in turn is a negative regulator of myosin light chain 2 (MLC2). LPA induces phosphorylation of MYPT1 through ROCK (T853) and PKC/ERK (S507), which is majorly driven by LPAR1. Inhibition of MYPT1, PKC or ERK impedes both LPA-induced cell migration and entosis, while interference with ROCK activity and MLC2 phosphorylation selectively blocks entosis, suggesting that MYPT1 figures in both ROCK/MLC2-dependent and -independent pathways. We finally show a novel pathway governed by LPAR2 and the RAC-GEF DOCK7 to be indispensable for the induction of entosis. Conclusion: We have identified a comprehensive LPA-induced signal transduction network controlling LPA-triggered cytoskeletal changes, cell migration and entosis in HGSC cells. Due to its pivotal role in this network, MYPT1 may represent a promising target for interfering with specific functions of PP1 essential for HGSC progression.
Collapse
Affiliation(s)
- Kaire Ojasalu
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Sonja Lieber
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Anna M. Sokol
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Imke Bullwinkel
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Florian Finkernagel
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
- Bioinformatics Core Facility, Philipps University, Marburg, Germany
| | - Silke Reinartz
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Sabine Müller-Brüsselbach
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Robert Grosse
- Institut for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University, Freiburg, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Institute for Translational Proteomics, Philipps University, Marburg, Germany
| | - Rolf Müller
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
- ✉ Corresponding author: Rolf Müller, Center for Tumor Biology and Immunology (ZTI), Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany. . Phone: +49 6421 2866236
| |
Collapse
|
17
|
Liu M, Martyn AP, Quinn RJ. Natural product-based PROteolysis TArgeting Chimeras (PROTACs). Nat Prod Rep 2022; 39:2292-2307. [PMID: 36196977 DOI: 10.1039/d2np00038e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: upto 2022Natural products have an embedded recognition of protein surfaces. They possess this property as they are produced by biosynthetic enzymes and are substrates for one or more enzymes in the biosynthetic pathway. The inherent advantages, compared to synthetic compound libraries, is this ligand-protein binding which is, in many cases, a function of the 3-dimensional properties. Protein degradation is a recent novel therapeutic approach with several compounds now in the clinic. This review highlights the potential of PROteolysis TArgeting Chimeras (PROTACs) in the area of natural products. The approach will complement existing approaches such as the direct use of a bioactive natural product or its analogues, pharmacophore development and drug-antibody conjugates. The chemical synthesis and challenges of using natural product-based PROTACs are summarised. The review also highlights methods to detect the ternary complexes necessary for PROTAC mechanism of action.
Collapse
Affiliation(s)
- Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia.
| | - Alexander P Martyn
- Cancer and Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia.
| |
Collapse
|
18
|
Liu J, Peng Y, Inuzuka H, Wei W. Targeting micro-environmental pathways by PROTACs as a therapeutic strategy. Semin Cancer Biol 2022; 86:269-279. [PMID: 35798235 PMCID: PMC11000491 DOI: 10.1016/j.semcancer.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 10/31/2022]
Abstract
Tumor microenvironment (TME) composes of multiple cell types and non-cellular components, which supports the proliferation, metastasis and immune surveillance evasion of tumor cells, as well as accounts for the resistance to therapies. Therefore, therapeutic strategies using small molecule inhibitors (SMIs) and antibodies to block potential targets in TME are practical for cancer treatment. Targeted protein degradation using PROteolysis-TArgeting Chimera (PROTAC) technic has several advantages over traditional SMIs and antibodies, including overcoming drug resistance. Thus many PROTACs are currently under development for cancer treatment. In this review, we summarize the recent progress of PROTAC development that target TME pathways and propose the potential direction of future PROTAC technique to advance as novel cancer treatment options.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Yunhua Peng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
19
|
Sun Y, Yan K, Wang Y, Xu C, Wang D, Zhou W, Guo S, Han Y, Tang L, Shao Y, Shan S, Zhang QC, Tang Y, Zhang L, Xi Q. Context-dependent tumor-suppressive BMP signaling in diffuse intrinsic pontine glioma regulates stemness through epigenetic regulation of CXXC5. NATURE CANCER 2022; 3:1105-1122. [PMID: 35915262 DOI: 10.1038/s43018-022-00408-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The most lethal subtype of diffuse intrinsic pontine glioma (DIPG) is H3K27M. Although ACVR1 mutations have been implicated in the pathogenesis of this currently incurable disease, the impacts of bone morphogenetic protein (BMP) signaling on more than 60% of H3K27M DIPG carrying ACVR1 wild-type remain unknown. Here we show that BMP ligands exert potent tumor-suppressive effects against H3.3K27M and ACVR1 WT DIPG in a SMAD-dependent manner. Specifically, clinical data revealed that many DIPG tumors have exploited the capacity of CHRDL1 to hijack BMP ligands. We discovered that activation of BMP signaling promotes the exit of DIPG tumor cells from 'prolonged stem-cell-like' state to differentiation by epigenetically regulating CXXC5, which acts as a tumor suppressor and positive regulator of BMP signaling. Beyond showing how BMP signaling impacts DIPG, our study also identified the potent antitumor efficacy of Dacinostat for DIPG. Thus, our study delineates context-dependent features of the BMP signaling pathway in a DIPG subtype.
Collapse
Affiliation(s)
- Ye Sun
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Kun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Cheng Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dan Wang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Zhou
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuning Guo
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujie Han
- Department of Pathophysiology, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Tang
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China
| | - Yanqiu Shao
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shaobo Shan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiangfeng C Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujie Tang
- Department of Pathophysiology, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Beijing Key Laboratory of Brain Tumor, Beijing, China.
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China.
| |
Collapse
|
20
|
Liu JST, Ding Y, Schoenwaelder S, Liu X. Improving treatment for acute ischemic stroke—Clot busting innovation in the pipeline. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:946367. [PMID: 35978568 PMCID: PMC9376378 DOI: 10.3389/fmedt.2022.946367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Acute ischemic stroke is a consequence of disrupted blood flow to the brain, caused by thrombosis—the pathological formation of occlusive clots within blood vessels, which can embolize distally to downstream tissues and microvasculature. The highest priority of stroke treatment is the rapid removal of occlusive clots and restoration of tissue perfusion. Intravenous thrombolysis is the pharmacological standard-of-care for the dissolution of blood clots, wherein thrombolytic drugs are administered to restore vessel patency. While the introduction of recombinant tissue-plasminogen activator (rtPA) in 1996 demonstrated the benefit of acute thrombolysis for clot removal, this was countered by severe limitations in terms of patient eligibility, lytic efficacy, rethrombosis and safety implications. Development of safer and efficacious treatment strategies to improve clot lysis has not significantly progressed over many decades, due to the challenge of maintaining the necessary efficacy-safety balance for these therapies. As such, rtPA has remained the sole approved acute therapeutic for ischemic stroke for over 25 years. Attempts to improve thrombolysis with coadministration of adjunct antithrombotics has demonstrated benefit in coronary vessels, but remain contraindicated for stroke, given all currently approved antithrombotics adversely impact hemostasis, causing bleeding. This Perspective provides a brief history of stroke drug development, as well as an overview of several groups of emerging drugs which have the potential to improve thrombolytic strategies in the future. These include inhibitors of the platelet receptor glycoprotein VI and the signaling enzyme PI3-Kinase, novel anticoagulants derived from hematophagous creatures, and proteolysis-targeting chimeras.
Collapse
Affiliation(s)
- Joanna Shu Ting Liu
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yiran Ding
- Faculty of Science, School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Simone Schoenwaelder
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Simone Schoenwaelder
| | - Xuyu Liu
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Chemistry, The University of Sydney, Sydney, NSW, Australia
- Xuyu Liu
| |
Collapse
|
21
|
He M, Cao C, Ni Z, Liu Y, Song P, Hao S, He Y, Sun X, Rao Y. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct Target Ther 2022; 7:181. [PMID: 35680848 PMCID: PMC9178337 DOI: 10.1038/s41392-022-00999-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) technology is a new protein-degradation strategy that has emerged in recent years. It uses bifunctional small molecules to induce the ubiquitination and degradation of target proteins through the ubiquitin-proteasome system. PROTACs can not only be used as potential clinical treatments for diseases such as cancer, immune disorders, viral infections, and neurodegenerative diseases, but also provide unique chemical knockdown tools for biological research in a catalytic, reversible, and rapid manner. In 2019, our group published a review article "PROTACs: great opportunities for academia and industry" in the journal, summarizing the representative compounds of PROTACs reported before the end of 2019. In the past 2 years, the entire field of protein degradation has experienced rapid development, including not only a large increase in the number of research papers on protein-degradation technology but also a rapid increase in the number of small-molecule degraders that have entered the clinical and will enter the clinical stage. In addition to PROTAC and molecular glue technology, other new degradation technologies are also developing rapidly. In this article, we mainly summarize and review the representative PROTACs of related targets published in 2020-2021 to present to researchers the exciting developments in the field of protein degradation. The problems that need to be solved in this field will also be briefly introduced.
Collapse
Affiliation(s)
- Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Chaoguo Cao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, P. R. China
| | - Zhihao Ni
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yongbo Liu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Peilu Song
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Shuang Hao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yuna He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China.
- School of Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
22
|
Zhong T, Sun X, Yu L, Liu Y, Lin X, Rao Y, Wu W. PROTAC mediated FKBP12 degradation enhances Hepcidin expression via BMP signaling without immunosuppression activity. Signal Transduct Target Ther 2022; 7:163. [PMID: 35618726 PMCID: PMC9135734 DOI: 10.1038/s41392-022-00970-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 01/14/2023] Open
Affiliation(s)
- Tianbai Zhong
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiuyun Sun
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Li Yu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yongbo Liu
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Xin Lin
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Wei Wu
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
23
|
Brooks IR, Garrone CM, Kerins C, Kiar CS, Syntaka S, Xu JZ, Spagnoli FM, Watt FM. Functional genomics and the future of iPSCs in disease modeling. Stem Cell Reports 2022; 17:1033-1047. [PMID: 35487213 PMCID: PMC9133703 DOI: 10.1016/j.stemcr.2022.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 10/28/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are valuable in disease modeling because of their potential to expand and differentiate into virtually any cell type and recapitulate key aspects of human biology. Functional genomics are genome-wide studies that aim to discover genotype-phenotype relationships, thereby revealing the impact of human genetic diversity on normal and pathophysiology. In this review, we make the case that human iPSCs (hiPSCs) are a powerful tool for functional genomics, since they provide an in vitro platform for the study of population genetics. We describe cutting-edge tools and strategies now available to researchers, including multi-omics technologies, advances in hiPSC culture techniques, and innovations in drug development. Functional genomics approaches based on hiPSCs hold great promise for advancing drug discovery, disease etiology, and the impact of genetic variation on human biology.
Collapse
Affiliation(s)
- Imogen R Brooks
- St John's Institute of Dermatology, King's College London, London, SE1 9RT, UK
| | - Cristina M Garrone
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - Caoimhe Kerins
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Cher Shen Kiar
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
| | - Sofia Syntaka
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - Jessie Z Xu
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - Francesca M Spagnoli
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK.
| | - Fiona M Watt
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK; Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
24
|
Grohmann C, Magtoto CM, Walker JR, Chua NK, Gabrielyan A, Hall M, Cobbold SA, Mieruszynski S, Brzozowski M, Simpson DS, Dong H, Dorizzi B, Jacobsen AV, Morrish E, Silke N, Murphy JM, Heath JK, Testa A, Maniaci C, Ciulli A, Lessene G, Silke J, Feltham R. Development of NanoLuc-targeting protein degraders and a universal reporter system to benchmark tag-targeted degradation platforms. Nat Commun 2022; 13:2073. [PMID: 35440107 PMCID: PMC9019100 DOI: 10.1038/s41467-022-29670-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 03/25/2022] [Indexed: 11/22/2022] Open
Abstract
Modulation of protein abundance using tag-Targeted Protein Degrader (tTPD) systems targeting FKBP12F36V (dTAGs) or HaloTag7 (HaloPROTACs) are powerful approaches for preclinical target validation. Interchanging tags and tag-targeting degraders is important to achieve efficient substrate degradation, yet limited degrader/tag pairs are available and side-by-side comparisons have not been performed. To expand the tTPD repertoire we developed catalytic NanoLuc-targeting PROTACs (NanoTACs) to hijack the CRL4CRBN complex and degrade NanoLuc tagged substrates, enabling rapid luminescence-based degradation screening. To benchmark NanoTACs against existing tTPD systems we use an interchangeable reporter system to comparatively test optimal degrader/tag pairs. Overall, we find the dTAG system exhibits superior degradation. To align tag-induced degradation with physiology we demonstrate that NanoTACs limit MLKL-driven necroptosis. In this work we extend the tTPD platform to include NanoTACs adding flexibility to tTPD studies, and benchmark each tTPD system to highlight the importance of comparing each system against each substrate. tag-Targeted Protein Degrader (tTPD) systems are powerful tools for preclinical target validation. Here the authors extend the tTPD platform by developing NanoTACs that degrade NanoLuc tagged substrates and benchmark each tTPD system using an interchangeable tag reporter system.
Collapse
Affiliation(s)
- Christoph Grohmann
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Charlene M Magtoto
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Joel R Walker
- Promega Biosciences LLC, 277 Granada Drive, San Luis Obispo, CA, 93401, USA
| | - Ngee Kiat Chua
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Anna Gabrielyan
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mary Hall
- Promega Biosciences LLC, 277 Granada Drive, San Luis Obispo, CA, 93401, USA
| | - Simon A Cobbold
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Stephen Mieruszynski
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Martin Brzozowski
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Daniel S Simpson
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Hao Dong
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Bridget Dorizzi
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Annette V Jacobsen
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Emma Morrish
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Natasha Silke
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Joan K Heath
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrea Testa
- Amphista Therapeutics Ltd, Bo'Ness Road Newhouse, Glasgow, ML1 5UH, UK
| | - Chiara Maniaci
- Chemistry School of Natural and Environmental Sciences, Bedson Building, Newcastle University Edwards Walk, Newcastle, NE1 8QB, UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - John Silke
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Rebecca Feltham
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
25
|
Duan L, Xu X, Xu L, Wen C, Ouyang K, Li Z, Liang Y. ERα-Targeting PROTAC as a Chemical Knockdown Tool to Investigate the Estrogen Receptor Function in Rat Menopausal Arthritis. Front Pharmacol 2021; 12:764154. [PMID: 34916941 PMCID: PMC8669996 DOI: 10.3389/fphar.2021.764154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022] Open
Abstract
Proteolytic targeting chimeras (PROTACs) is a rapid and reversible chemical knockout method. Compared with traditional gene-editing tools, it can avoid potential genetic compensation, misunderstandings caused by spontaneous mutations, or gene knockouts that lead to embryonic death. To study the role of estrogen receptor alpha (ERα) in the occurrence and progression of menopausal arthritis, we report a chemical knockout strategy in which stable peptide-based (PROTACs) against ERα to inhibit their function. This chemical knockdown strategy can effectively and quickly inhibit ERα protein in vivo and in vitro. In the rat menopausal arthritis model, this study showed that inhibiting estrogen function by degrading ERα can significantly interfere with cartilage matrix metabolism and cause menopausal arthritis by up-regulating matrix metalloproteinase (MMP-13). The results of this study indicate that ERα is a crucial estrogen receptor for maintaining cartilage metabolism. Inhibition of ERα function by PROTACs can promote the progression of osteoarthritis.
Collapse
Affiliation(s)
- Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiao Xu
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Limei Xu
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Caining Wen
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Kan Ouyang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zigang Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| |
Collapse
|
26
|
Wang C, Zhang Y, Wu Y, Xing D. Developments of CRBN-based PROTACs as potential therapeutic agents. Eur J Med Chem 2021; 225:113749. [PMID: 34411892 DOI: 10.1016/j.ejmech.2021.113749] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022]
Abstract
Protease-targeted chimeras (PROTACs) are a new technology that is receiving much attention in the treatment of diseases. The mechanism is to inhibit protein function by hijacking the ubiquitin E3 ligase for protein degradation. Heterogeneous bifunctional PROTACs contain a ligand for recruiting E3 ligase, a linker, and another ligand to bind to the target protein for degradation. A variety of small-molecule PROTACs (CRBN, VHL, IAPs, MDM2, DCAF15, DCAF16, and RNF114-based PROTACs) have been identified so far. In particular, CRBN-based PROTACs (e.g., ARV-110 and ARV-471) have received more attention for their promising therapeutic intervention. To date, CRBN-based PRTOACs have been extensively explored worldwide and have excelled not only in cancer diseases but also in cardiovascular diseases, immune diseases, neurodegenerative diseases, and viral infections. In this review, we will provide a comprehensive update on the latest research progress in CRBN-based PRTOACs area. Following the criteria, such as disease area and drug target class, we will present the degradants in alphabetical order by target. We also provide our own perspective on the future prospects and potential challenges facing PROTACs.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Yudong Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
27
|
Flores G, Grohar PJ. One oncogene, several vulnerabilities: EWS/FLI targeted therapies for Ewing sarcoma. J Bone Oncol 2021; 31:100404. [PMID: 34976713 PMCID: PMC8686064 DOI: 10.1016/j.jbo.2021.100404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
EWS/FLI is the defining mutation of Ewing sarcoma. This oncogene drives malignant transformation and progression and occurs in a genetic background characterized by few other recurrent cooperating mutations. In addition, the tumor is absolutely dependent on the continued expression of EWS/FLI to maintain the malignant phenotype. However, EWS/FLI is a transcription factor and therefore a challenging drug target. The difficulty of directly targeting EWS/FLI stems from unique features of this fusion protein as well as the network of interacting proteins required to execute the transcriptional program. This network includes interacting proteins as well as upstream and downstream effectors that together reprogram the epigenome and transcriptome. While the vast number of proteins involved in this process challenge the development of a highly specific inhibitors, they also yield numerous therapeutic opportunities. In this report, we will review how this vast EWS-FLI transcriptional network has been exploited over the last two decades to identify compounds that directly target EWS/FLI and/or associated vulnerabilities.
Collapse
Affiliation(s)
- Guillermo Flores
- Van Andel Research Institute, Grand Rapids, MI, USA
- Michigan State University, College of Human Medicine, USA
| | - Patrick J Grohar
- Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3501 Civic Center Blvd., Philadelphia, PA, USA
| |
Collapse
|
28
|
Hu L, Chen F, Wu C, Wang J, Chen SS, Li XR, Wang J, Wu L, Ding JP, Wang JC, Huang C, Zheng H, Rao Y, Sun Y, Chang Z, Deng W, Luo C, Chin YE. Rapamycin recruits SIRT2 for FKBP12 deacetylation during mTOR activity modulation in innate immunity. iScience 2021; 24:103177. [PMID: 34712915 PMCID: PMC8529501 DOI: 10.1016/j.isci.2021.103177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a serine-threonine kinase involved in cellular innate immunity, metabolism, and senescence. FK506-binding protein 12 (FKBP12) inhibits mTOR kinase activity via direct association. The FKBP12-mTOR association can be strengthened by the immunosuppressant rapamycin, but the underlying mechanism remains elusive. We show here that the FKBP12-mTOR association is tightly regulated by an acetylation–deacetylation cycle. FKBP12 is acetylated on the lysine cluster (K45/K48/K53) by CREB-binding protein (CBP) in mammalian cells in response to nutrient treatment. Acetyl-FKBP12 associates with CBP acetylated Rheb. Rapamycin recruits SIRT2 with a high affinity for FKBP12 association and deacetylation. SIRT2-deacetylated FKBP12 then switches its association from Rheb to mTOR. Nutrient-activated mTOR phosphorylates IRF3S386 for the antiviral response. In contrast, rapamycin strengthening FKBP12-mTOR association blocks mTOR antiviral activity by recruiting SIRT2 to deacetylate FKBP12. Hence, on/off mTOR activity in response to environmental nutrients relies on FKBP12 acetylation and deacetylation status in mammalian cells. FKBP12-mTOR association is tightly regulated by an acetylation–deacetylation cycle SIRT2 is responsible for FKBP12 deacetylation Acetylation of Rheb is indispensable to mTOR activation mTOR phosphorylates IRF3 S386 for type-I interferon gene expression
Collapse
Affiliation(s)
- Lin Hu
- Institutes of Biological and Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Fuxian Chen
- Institutes of Biological and Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Chao Wu
- Institutes of Biological and Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jun Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Si-Si Chen
- Institute of Biochemistry and Cell Biology and Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xiang-Rong Li
- Institutes of Biological and Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jing Wang
- Institutes of Biological and Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Linpeng Wu
- Institutes of Biological and Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jian-Ping Ding
- Institute of Biochemistry and Cell Biology and Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jian-Chuan Wang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Chao Huang
- Institute of Biochemistry and Cell Biology and Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hui Zheng
- Institutes of Biological and Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yu Rao
- Laboratory of Membrane Biology, School of Medicine and School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yu Sun
- Institute of Biochemistry and Cell Biology and Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zhijie Chang
- Laboratory of Membrane Biology, School of Medicine and School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Deng
- Hematology center, cyrus Tang medical institute, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Y Eugene Chin
- Institutes of Biological and Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
29
|
PROTAC cell permeability and oral bioavailability: a journey into uncharted territory. Future Med Chem 2021; 14:123-126. [PMID: 34583518 DOI: 10.4155/fmc-2021-0208] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
The rise and rise of protein degradation: Opportunities and challenges ahead. Drug Discov Today 2021; 26:2889-2897. [PMID: 34419629 DOI: 10.1016/j.drudis.2021.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/07/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022]
Abstract
The transformational mechanism of action underpinning targeted protein degradation strategies, including proteolysis-targeting chimeras (PROTACs), gives potential for potent in vivo pharmacology and has allowed projects to move rapidly to the clinic. Despite this remarkable progress, there remain many opportunities to improve current, first-generation approaches even further. Our expanding knowledge will allow discovery of new degrading mechanisms with potential to address several limitations of current approaches, including improving scope and efficiency of degradation, improving drug-like properties of degraders, and reducing potential for the emergence of acquired resistance. Here, we discuss potential routes to realize these advances to expand TPD utility even further.
Collapse
|
31
|
Powell CE, Du G, Bushman JW, He Z, Zhang T, Fischer ES, Gray NS. Selective degradation-inducing probes for studying cereblon (CRBN) biology. RSC Med Chem 2021; 12:1381-1390. [PMID: 34458741 PMCID: PMC8372211 DOI: 10.1039/d0md00382d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Targeted protein degradation represents a rapidly growing area in drug discovery and development. Moreover, small molecules that induce the targeted degradation of a given protein also represent an important addition to the chemical probes toolbox as these compounds can achieve selective protein knockdown, thus providing an approach that is orthogonal to genetic knockdowns. In order to develop degradation-inducing chemical probes for studying cereblon (CRBN) biology, we generated six CRBN-CRBN (homo-PROTAC) degraders and six CRBN-VHL (hetero-PROTAC) degraders. From these compounds we identified two potent and selective CRBN degraders (ZXH-4-130 and ZXH-4-137), both of which are CRBN-VHL compounds. We characterized these lead degraders by quantitative proteomics in five cell lines (MM1.S, Kelly, SK-N-DZ, HEK293T, and MOLT-4) and observed high selectivity for CRBN in all cell lines. Furthermore, we directly compared our compounds to current lead CRBN degraders and demonstrated how these probes can be used as chemical knockdown reagents for studying CRBN-dependent processes. Overall, our work provides a roadmap for thorough degrader characterization by combination western and proteomic analysis, as illustrated by the identification of ZXH-4-130 and ZXH-4-137 as CRBN-knockdown tool compounds suitable for cell-based studies.
Collapse
Affiliation(s)
- Chelsea E Powell
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School Boston Massachusetts 02115 USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston Massachusetts 02215 USA
| | - Guangyan Du
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School Boston Massachusetts 02115 USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston Massachusetts 02215 USA
| | - Jonathan W Bushman
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School Boston Massachusetts 02115 USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston Massachusetts 02215 USA
| | - Zhixiang He
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School Boston Massachusetts 02115 USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston Massachusetts 02215 USA
| | - Tinghu Zhang
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School Boston Massachusetts 02115 USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston Massachusetts 02215 USA
| | - Eric S Fischer
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School Boston Massachusetts 02115 USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston Massachusetts 02215 USA
| | - Nathanael S Gray
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School Boston Massachusetts 02115 USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston Massachusetts 02215 USA
| |
Collapse
|
32
|
Reboud-Ravaux M. [Induced degradation of proteins by PROTACs and other strategies: towards promising drugs]. Biol Aujourdhui 2021; 215:25-43. [PMID: 34397373 DOI: 10.1051/jbio/2021007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 11/14/2022]
Abstract
Targeted protein degradation (TPD), discovered twenty years ago through the PROTAC technology, is rapidly developing thanks to the implication of many scientists from industry and academia. PROTAC chimeras are heterobifunctional molecules able to link simultaneously a protein to be degraded and an E3 ubiquitin ligase. This allows the protein ubiquitination and its degradation by 26S proteasome. PROTACs have evolved from small peptide molecules to small non-peptide and orally available molecules. It was shown that PROTACs are capable to degrade proteins considered as "undruggable" i.e. devoid of well-defined pockets and deep grooves possibly occupied by small molecules. Among these "hard to drug" proteins, several can be degraded by PROTACs: scaffold proteins, BAF complex, transcription factors, Ras family proteins. Two PROTACs are clinically tested for breast (ARV471) and prostate (ARV110) cancers. The protein degradation by proteasome is also induced by other types of molecules: molecular glues, hydrophobic tagging (HyT), HaloPROTACs and homo-PROTACs. Other cellular constituents are eligible to induced degradation: RNA-PROTACs for RNA binding proteins and RIBOTACs for degradation of RNA itself (SARS-CoV-2 RNA). TPD has recently moved beyond the proteasome with LYTACs (lysosome targeting chimeras) and MADTACs (macroautophagy degradation targeting chimeras). Several techniques such as screening platforms together with mathematical modeling and computational design are now used to improve the discovery of new efficient PROTACs.
Collapse
Affiliation(s)
- Michèle Reboud-Ravaux
- Sorbonne Université, Institut de Biologie Paris Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, 7 quai Saint-Bernard, 75252 Paris Cedex 05, France
| |
Collapse
|
33
|
Tomoshige S, Ishikawa M. In vivo synthetic chemistry of proteolysis targeting chimeras (PROTACs). Bioorg Med Chem 2021; 41:116221. [PMID: 34034148 DOI: 10.1016/j.bmc.2021.116221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/29/2022]
Abstract
Chemical knockdown of therapeutic targets using proteolysis targeting chimeras (PROTACs) is a rapidly developing field in drug discovery, but PROTACs are bifunctional molecules that generally show poor bioavailability due to their relatively high molecular weight. Recent developments aimed at the development of next-generation PROTACs include the in vivo synthesis of PROTAC molecules, and the exploitation of PROTACs as chemical tools for in vivo synthesis of ubiquitinated proteins. This short review covers recent advances in these areas and discusses the prospects for in vivo synthetic PROTAC technology.
Collapse
Affiliation(s)
- Shusuke Tomoshige
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Minoru Ishikawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
34
|
Whitfield JR, Soucek L. The long journey to bring a Myc inhibitor to the clinic. J Cell Biol 2021; 220:212429. [PMID: 34160558 PMCID: PMC8240852 DOI: 10.1083/jcb.202103090] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
The oncogene Myc is deregulated in the majority of human tumors and drives numerous hallmarks of cancer. Despite its indisputable role in cancer development and maintenance, Myc is still undrugged. Developing a clinical inhibitor for Myc has been particularly challenging owing to its intrinsically disordered nature and lack of a binding pocket, coupled with concerns regarding potentially deleterious side effects in normal proliferating tissues. However, major breakthroughs in the development of Myc inhibitors have arisen in the last couple of years. Notably, the direct Myc inhibitor that we developed has just entered clinical trials. Celebrating this milestone, with this Perspective, we pay homage to the different strategies developed so far against Myc and all of the researchers focused on developing treatments for a target long deemed undruggable.
Collapse
Affiliation(s)
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology, Edifici Cellex, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Peptomyc S.L., Barcelona, Spain
| |
Collapse
|
35
|
He M, Lv W, Rao Y. Opportunities and Challenges of Small Molecule Induced Targeted Protein Degradation. Front Cell Dev Biol 2021; 9:685106. [PMID: 34249939 PMCID: PMC8261656 DOI: 10.3389/fcell.2021.685106] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
Proteolysis targeting chimeras (PROTAC) represents a new type of small molecule induced protein degradation technology that has emerged in recent years. PROTAC uses bifunctional small molecules to induce ubiquitination of target proteins and utilizes intracellular proteasomes for chemical knockdown. It complements the gene editing and RNA interference for protein knockdown. Compared with small molecule inhibitors, PROTAC has shown great advantages in overcoming tumor resistance, affecting the non-enzymatic function of target proteins, degrading undruggable targets, and providing new rapid and reversible chemical knockout tools. At the same time, its challenges and problems also need to be resolved as a fast-developing newchemical biology technology.
Collapse
Affiliation(s)
- Ming He
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Wenxing Lv
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| |
Collapse
|
36
|
Reynders M, Trauner D. Optical control of targeted protein degradation. Cell Chem Biol 2021; 28:969-986. [PMID: 34115971 DOI: 10.1016/j.chembiol.2021.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/12/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Molecular glues and proteolysis targeting chimeras (PROTACs) have emerged as small-molecule tools that selectively induce the degradation of a chosen protein and have shown therapeutic promise. Recently, several approaches employing light as an additional stimulus to control induced protein degradation have been reported. Here, we analyze the principles guiding the design of such systems, provide a survey of the literature published to date, and discuss opportunities for further development. Light-responsive degraders enable the precise temporal and spatial control of protein levels, making them useful research tools but also potential candidates for human precision medicine.
Collapse
Affiliation(s)
- Martin Reynders
- Department of Chemistry, New York University, New York, NY 10003, USA; Department of Chemistry, Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, NY 10003, USA; Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA; NYU Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
37
|
Voll AM, Meyners C, Taubert MC, Bajaj T, Heymann T, Merz S, Charalampidou A, Kolos J, Purder PL, Geiger TM, Wessig P, Gassen NC, Bracher A, Hausch F. Makrozyklische FKBP51‐Liganden enthüllen einen transienten Bindungsmodus mit erhöhter Selektivität. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andreas M. Voll
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Christian Meyners
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Martha C. Taubert
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Thomas Bajaj
- Research Group Neurohomeostasis Department of Psychiatry and Psychotherapy University of Bonn Venusberg Campus 1 53127 Bonn Deutschland
| | - Tim Heymann
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Stephanie Merz
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Anna Charalampidou
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Jürgen Kolos
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Patrick L. Purder
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Thomas M. Geiger
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Pablo Wessig
- Universität Potsdam Institut für Chemie Karl-Liebknecht-Straße 24–25 14476 Potsdam Deutschland
| | - Nils C. Gassen
- Research Group Neurohomeostasis Department of Psychiatry and Psychotherapy University of Bonn Venusberg Campus 1 53127 Bonn Deutschland
| | - Andreas Bracher
- Max-Planck-Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Felix Hausch
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| |
Collapse
|
38
|
Voll AM, Meyners C, Taubert MC, Bajaj T, Heymann T, Merz S, Charalampidou A, Kolos J, Purder PL, Geiger TM, Wessig P, Gassen NC, Bracher A, Hausch F. Macrocyclic FKBP51 Ligands Define a Transient Binding Mode with Enhanced Selectivity. Angew Chem Int Ed Engl 2021; 60:13257-13263. [PMID: 33843131 PMCID: PMC8252719 DOI: 10.1002/anie.202017352] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/14/2021] [Indexed: 12/28/2022]
Abstract
Subtype selectivity represents a challenge in many drug discovery campaigns. A typical example is the FK506 binding protein 51 (FKBP51), which has emerged as an attractive drug target. The most advanced FKBP51 ligands of the SAFit class are highly selective vs. FKBP52 but poorly discriminate against the homologs and off-targets FKBP12 and FKBP12.6. During a macrocyclization pilot study, we observed that many of these macrocyclic analogs have unanticipated and unprecedented preference for FKBP51 over FKBP12 and FKBP12.6. Structural studies revealed that these macrocycles bind with a new binding mode featuring a transient conformation, which is disfavored for the small FKBPs. Using a conformation-sensitive assay we show that this binding mode occurs in solution and is characteristic for this new class of compounds. The discovered macrocycles are non-immunosuppressive, engage FKBP51 in cells, and block the cellular effect of FKBP51 on IKKα. Our findings provide a new chemical scaffold for improved FKBP51 ligands and the structural basis for enhanced selectivity.
Collapse
Affiliation(s)
- Andreas M. Voll
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Christian Meyners
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Martha C. Taubert
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Thomas Bajaj
- Research Group NeurohomeostasisDepartment of Psychiatry and PsychotherapyUniversity of BonnVenusberg Campus 153127BonnGermany
| | - Tim Heymann
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Stephanie Merz
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Anna Charalampidou
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Jürgen Kolos
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Patrick L. Purder
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Thomas M. Geiger
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Pablo Wessig
- Universität PotsdamInstitut für ChemieKarl-Liebknecht-Strasse 24–2514476PotsdamGermany
| | - Nils C. Gassen
- Research Group NeurohomeostasisDepartment of Psychiatry and PsychotherapyUniversity of BonnVenusberg Campus 153127BonnGermany
| | - Andreas Bracher
- Max-Planck-Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Felix Hausch
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| |
Collapse
|
39
|
Wang Z, Ma Z, Shen Z. Selective degradation of the estrogen receptor in the treatment of cancers. J Steroid Biochem Mol Biol 2021; 209:105848. [PMID: 33610801 DOI: 10.1016/j.jsbmb.2021.105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
Estrogen receptor subtype α (ERα) plays key roles in breast cancers, and has been a target for endocrine therapy for a long time. Unfortunately, long-term treatment by Aromatase Inhibitors (AIs) or Selective Estrogen Receptor Modulators (SERMs) could cause drug resistance and also would increase the risk for uterine cancer. Therefore, novel anti-breast cancer drugs based on different mechanisms of action have received significant attention, especially through the strategies of selective degradation of ER. In this article, the latest research progress of selective targeting ER for degradation, including Selective ER Downregulators (SERDs), Proteolysis Targeting Chimaeras (PROTACs) and other techniques, was reviewed, and the applications and problems to be solved were prospected.
Collapse
Affiliation(s)
- Zunyuan Wang
- Institute of Materia Medica, Hangzhou Medical College, 310013 Hangzhou, Zhejiang, China
| | - Zhen Ma
- Institute of Materia Medica, Hangzhou Medical College, 310013 Hangzhou, Zhejiang, China
| | - Zhengrong Shen
- Institute of Materia Medica, Hangzhou Medical College, 310013 Hangzhou, Zhejiang, China.
| |
Collapse
|
40
|
Maneiro M, De Vita E, Conole D, Kounde CS, Zhang Q, Tate EW. PROTACs, molecular glues and bifunctionals from bench to bedside: Unlocking the clinical potential of catalytic drugs. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:67-190. [PMID: 34147206 DOI: 10.1016/bs.pmch.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The vast majority of currently marketed drugs rely on small molecules with an 'occupancy-driven' mechanism of action (MOA). Therefore, the efficacy of these therapeutics depends on a high degree of target engagement, which often requires high dosages and enhanced drug exposure at the target site, thus increasing the risk of off-target toxicities (Churcher, 2018 [1]). Although small molecule drugs have been successfully used as treatments for decades, tackling a variety of disease-relevant targets with a defined binding site, many relevant therapeutic targets remain challenging to drug due, for example, to lack of well-defined binding pockets or large protein-protein interaction (PPI) interfaces which resist interference (Dang et al., 2017 [2]). In the quest for alternative therapeutic approaches to address different pathologies and achieve enhanced efficacy with reduced side effects, ligand-induced targeted protein degradation (TPD) has gained the attention of many research groups both in academia and in industry in the last two decades. This therapeutic modality represents a novel paradigm compared to conventional small-molecule inhibitors. To pursue this strategy, heterobifunctional small molecule degraders, termed PROteolysis TArgeting Chimeras (PROTACs) have been devised to artificially redirect a protein of interest (POI) to the cellular protein homeostasis machinery for proteasomal degradation (Chamberlain et al., 2019 [3]). In this chapter, the development of PROTACs will first be discussed providing a historical perspective in parallel to the experimental progress made to understand this novel therapeutic modality. Furthermore, common strategies for PROTAC design, including assays and troubleshooting tips will be provided for the reader, before presenting a compendium of all PROTAC targets reported in the literature to date. Due to the recent advancement of these molecules into clinical trials, consideration of pharmacokinetics and pharmacodynamic properties will be introduced, together with the biotech landscape that has developed from the success of PROTACs. Finally, an overview of subsequent strategies for targeted protein degradation will be presented, concluding with further scientific quests triggered by the invention of PROTACs.
Collapse
Affiliation(s)
- M Maneiro
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - E De Vita
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - D Conole
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - C S Kounde
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - Q Zhang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - E W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom.
| |
Collapse
|
41
|
Dragovich PS, Pillow TH, Blake RA, Sadowsky JD, Adaligil E, Adhikari P, Chen J, Corr N, Dela Cruz-Chuh J, Del Rosario G, Fullerton A, Hartman SJ, Jiang F, Kaufman S, Kleinheinz T, Kozak KR, Liu L, Lu Y, Mulvihill MM, Murray JM, O'Donohue A, Rowntree RK, Sawyer WS, Staben LR, Wai J, Wang J, Wei B, Wei W, Xu Z, Yao H, Yu SF, Zhang D, Zhang H, Zhang S, Zhao Y, Zhou H, Zhu X. Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 2: Improvement of In Vitro Antiproliferation Activity and In Vivo Antitumor Efficacy. J Med Chem 2021; 64:2576-2607. [PMID: 33596073 DOI: 10.1021/acs.jmedchem.0c01846] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heterobifunctional compounds that direct the ubiquitination of intracellular proteins in a targeted manner via co-opted ubiquitin ligases have enormous potential to transform the field of medicinal chemistry. These chimeric molecules, often termed proteolysis-targeting chimeras (PROTACs) in the chemical literature, enable the controlled degradation of specific proteins via their direction to the cellular proteasome. In this report, we describe the second phase of our research focused on exploring antibody-drug conjugates (ADCs), which incorporate BRD4-targeting chimeric degrader entities. We employ a new BRD4-binding fragment in the construction of the chimeric ADC payloads that is significantly more potent than the corresponding entity utilized in our initial studies. The resulting BRD4-degrader antibody conjugates exhibit potent and antigen-dependent BRD4 degradation and antiproliferation activities in cell-based experiments. Multiple ADCs bearing chimeric BRD4-degrader payloads also exhibit strong, antigen-dependent antitumor efficacy in mouse xenograft assessments that employ several different tumor models.
Collapse
Affiliation(s)
- Peter S Dragovich
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas H Pillow
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert A Blake
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jack D Sadowsky
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Emel Adaligil
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Pragya Adhikari
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jinhua Chen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Nicholas Corr
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | | | - Aaron Fullerton
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven J Hartman
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Fan Jiang
- Viva Biotech, Structural Biology, 334 Aidisheng Road, Zhangjiang High-Tech Park, Shanghai 201203, China
| | - Susan Kaufman
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tracy Kleinheinz
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R Kozak
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Liling Liu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ying Lu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Melinda M Mulvihill
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeremy M Murray
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Aimee O'Donohue
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca K Rowntree
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - William S Sawyer
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Leanna R Staben
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Wai
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jian Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - BinQing Wei
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wentao Wei
- Viva Biotech, Structural Biology, 334 Aidisheng Road, Zhangjiang High-Tech Park, Shanghai 201203, China
| | - Zijin Xu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hui Yao
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shang-Fan Yu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Donglu Zhang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Hongyan Zhang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shenhua Zhang
- Viva Biotech, Structural Biology, 334 Aidisheng Road, Zhangjiang High-Tech Park, Shanghai 201203, China
| | - Yongxin Zhao
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hao Zhou
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaoyu Zhu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
42
|
Dragovich PS, Pillow TH, Blake RA, Sadowsky JD, Adaligil E, Adhikari P, Bhakta S, Blaquiere N, Chen J, Dela Cruz-Chuh J, Gascoigne KE, Hartman SJ, He M, Kaufman S, Kleinheinz T, Kozak KR, Liu L, Liu L, Liu Q, Lu Y, Meng F, Mulvihill MM, O'Donohue A, Rowntree RK, Staben LR, Staben ST, Wai J, Wang J, Wei B, Wilson C, Xin J, Xu Z, Yao H, Zhang D, Zhang H, Zhou H, Zhu X. Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 1: Exploration of Antibody Linker, Payload Loading, and Payload Molecular Properties. J Med Chem 2021; 64:2534-2575. [PMID: 33596065 DOI: 10.1021/acs.jmedchem.0c01845] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biological and medicinal impacts of proteolysis-targeting chimeras (PROTACs) and related chimeric molecules that effect intracellular degradation of target proteins via ubiquitin ligase-mediated ubiquitination continue to grow. However, these chimeric entities are relatively large compounds that often possess molecular characteristics, which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. We therefore explored the conjugation of such molecules to monoclonal antibodies using technologies originally developed for cytotoxic payloads so as to provide alternate delivery options for these novel agents. In this report, we describe the first phase of our systematic development of antibody-drug conjugates (ADCs) derived from bromodomain-containing protein 4 (BRD4)-targeting chimeric degrader entities. We demonstrate the antigen-dependent delivery of the degrader payloads to PC3-S1 prostate cancer cells along with related impacts on MYC transcription and intracellular BRD4 levels. These experiments culminate with the identification of one degrader conjugate, which exhibits antigen-dependent antiproliferation effects in LNCaP prostate cancer cells.
Collapse
Affiliation(s)
- Peter S Dragovich
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas H Pillow
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert A Blake
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jack D Sadowsky
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Emel Adaligil
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Pragya Adhikari
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sunil Bhakta
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicole Blaquiere
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jinhua Chen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | | | - Karen E Gascoigne
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven J Hartman
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Mingtao He
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, China
| | - Susan Kaufman
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tracy Kleinheinz
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R Kozak
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Liang Liu
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, China
| | - Liling Liu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Qi Liu
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, China
| | - Ying Lu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Fanwei Meng
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, China
| | - Melinda M Mulvihill
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Aimee O'Donohue
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca K Rowntree
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Leanna R Staben
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven T Staben
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Wai
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jian Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - BinQing Wei
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Catherine Wilson
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jianfeng Xin
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, China
| | - Zijin Xu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hui Yao
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Donglu Zhang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Hongyan Zhang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hao Zhou
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaoyu Zhu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
43
|
Casement R, Bond A, Craigon C, Ciulli A. Mechanistic and Structural Features of PROTAC Ternary Complexes. Methods Mol Biol 2021; 2365:79-113. [PMID: 34432240 DOI: 10.1007/978-1-0716-1665-9_5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The rapid and ever-growing advancements from within the field of proteolysis-targeting chimeras (PROTAC)-induced protein degradation have driven considerable development to gain a deeper understanding of their mode of action. The ternary complex formed by PROTACs with their target protein and E3 ubiquitin ligase is the key species in their substoichiometric catalytic mechanism. Here, we describe the theoretical framework that underpins ternary complexes, including a current understanding of the three-component binding model, cooperativity, hook effect and structural considerations. We discuss in detail the biophysical methods used to interrogate ternary complex formation in vitro, including X-ray crystallography, AlphaLISA, FRET, FP, ITC and SPR. Finally, we provide detailed ITC methods and discuss approaches to assess binary and ternary target engagement, target ubiquitination and degradation that can be used to obtain a more holistic understanding of the mode of action within a cellular environment.
Collapse
Affiliation(s)
- Ryan Casement
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Adam Bond
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Conner Craigon
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
44
|
J. Verheul TC, Trinh VT, Vázquez O, Philipsen S. Targeted Protein Degradation as a Promising Tool for Epigenetic Upregulation of Fetal Hemoglobin. ChemMedChem 2020; 15:2436-2443. [PMID: 33002296 PMCID: PMC7756256 DOI: 10.1002/cmdc.202000574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Indexed: 12/17/2022]
Abstract
The level of fetal hemoglobin (HbF) is an important disease modifier for β-thalassemia and sickle cell disease patients. Indeed, genetic tinkering with the HbF repression machinery has demonstrated great potential for disease mitigation. Such genetic treatments are costly and the high incidence of β-hemoglobinopathies in low-income countries, therefore, calls for the development of affordable, off-the-shelf, oral treatments. The use of PROTAC (PRoteolysis TArgeting Chimeras) technology to influence the epigenetic mechanisms involved in HbF suppression may provide a solution. In this minireview, we briefly explain the HbF repression network highlighting the epigenetic factors that could be targeted for degradation by PROTACs. We hope that this review will inspire clinicians, molecular and chemical biologists to collaborate and contribute to this fascinating field, which should ultimately deliver drugs that reactivate HbF expression with high specificity and low toxicity.
Collapse
Affiliation(s)
- Thijs C. J. Verheul
- Department of Cell BiologyErasmus University Medical Center RotterdamWytemaweg 803000 CARotterdamThe Netherlands
| | - Van Tuan Trinh
- Department of ChemistryUniversity of MarburgHans-Meerwein-Straβe 435043MarburgGermany
| | - Olalla Vázquez
- SYNMIKRO Research CenterUniversity of Marburg35043MarburgGermany
- Department of ChemistryUniversity of MarburgHans-Meerwein-Straβe 435043MarburgGermany
| | - Sjaak Philipsen
- Department of Cell BiologyErasmus University Medical Center RotterdamWytemaweg 803000 CARotterdamThe Netherlands
| |
Collapse
|
45
|
Tomaselli D, Mautone N, Mai A, Rotili D. Recent advances in epigenetic proteolysis targeting chimeras (Epi-PROTACs). Eur J Med Chem 2020; 207:112750. [DOI: 10.1016/j.ejmech.2020.112750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 01/03/2023]
|
46
|
Scholz N, Kurian KM, Siebzehnrubl FA, Licchesi JDF. Targeting the Ubiquitin System in Glioblastoma. Front Oncol 2020; 10:574011. [PMID: 33324551 PMCID: PMC7724090 DOI: 10.3389/fonc.2020.574011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary brain tumor in adults with poor overall outcome and 5-year survival of less than 5%. Treatment has not changed much in the last decade or so, with surgical resection and radio/chemotherapy being the main options. Glioblastoma is highly heterogeneous and frequently becomes treatment-resistant due to the ability of glioblastoma cells to adopt stem cell states facilitating tumor recurrence. Therefore, there is an urgent need for novel therapeutic strategies. The ubiquitin system, in particular E3 ubiquitin ligases and deubiquitinating enzymes, have emerged as a promising source of novel drug targets. In addition to conventional small molecule drug discovery approaches aimed at modulating enzyme activity, several new and exciting strategies are also being explored. Among these, PROteolysis TArgeting Chimeras (PROTACs) aim to harness the endogenous protein turnover machinery to direct therapeutically relevant targets, including previously considered "undruggable" ones, for proteasomal degradation. PROTAC and other strategies targeting the ubiquitin proteasome system offer new therapeutic avenues which will expand the drug development toolboxes for glioblastoma. This review will provide a comprehensive overview of E3 ubiquitin ligases and deubiquitinating enzymes in the context of glioblastoma and their involvement in core signaling pathways including EGFR, TGF-β, p53 and stemness-related pathways. Finally, we offer new insights into how these ubiquitin-dependent mechanisms could be exploited therapeutically for glioblastoma.
Collapse
Affiliation(s)
- Nico Scholz
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Kathreena M. Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Florian A. Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom
| | | |
Collapse
|
47
|
Schiemer J, Horst R, Meng Y, Montgomery JI, Xu Y, Feng X, Borzilleri K, Uccello DP, Leverett C, Brown S, Che Y, Brown MF, Hayward MM, Gilbert AM, Noe MC, Calabrese MF. Snapshots and ensembles of BTK and cIAP1 protein degrader ternary complexes. Nat Chem Biol 2020; 17:152-160. [PMID: 33199914 DOI: 10.1038/s41589-020-00686-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/30/2020] [Indexed: 02/05/2023]
Abstract
Heterobifunctional chimeric degraders are a class of ligands that recruit target proteins to E3 ubiquitin ligases to drive compound-dependent protein degradation. Advancing from initial chemical tools, protein degraders represent a mechanism of growing interest in drug discovery. Critical to the mechanism of action is the formation of a ternary complex between the target, degrader and E3 ligase to promote ubiquitination and subsequent degradation. However, limited insights into ternary complex structures exist, including a near absence of studies on one of the most widely co-opted E3s, cellular inhibitor of apoptosis 1 (cIAP1). In this work, we use a combination of biochemical, biophysical and structural studies to characterize degrader-mediated ternary complexes of Bruton's tyrosine kinase and cIAP1. Our results reveal new insights from unique ternary complex structures and show that increased ternary complex stability or rigidity need not always correlate with increased degradation efficiency.
Collapse
Affiliation(s)
- James Schiemer
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Reto Horst
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Yilin Meng
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Justin I Montgomery
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Yingrong Xu
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Xidong Feng
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Kris Borzilleri
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Daniel P Uccello
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Carolyn Leverett
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Stephen Brown
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Ye Che
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Matthew F Brown
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Matthew M Hayward
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Adam M Gilbert
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Mark C Noe
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Matthew F Calabrese
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA.
| |
Collapse
|
48
|
Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: Recent progress and future challenges. Eur J Med Chem 2020; 210:112981. [PMID: 33160761 DOI: 10.1016/j.ejmech.2020.112981] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/23/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Proteolysis targeting chimera (PROTAC), hijacking protein of interest (POI) and recruiting E3 ligase for target degradation via the ubiquitin-proteasome pathway, is a novel drug discovery paradigm which has been widely used as biological tools and medicinal molecules with the potential of clinical application value. Currently, ARV-110, an orally small molecule PROTAC was designed to specifically target Androgen receptor (AR), firstly enters clinical phase I trials for the treatment of metastatic castration-resistant prostate cancer, which turns a new avenue for the development of PROTAC. We herein provide a detail summary on the latest one year progress of PROTAC target various proteins and elucidate the advantages of PROTAC technology. Finally, the potential challenges of this vibrant field are also discussed.
Collapse
|
49
|
Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell 2020; 181:151-167. [PMID: 32243788 DOI: 10.1016/j.cell.2020.02.001] [Citation(s) in RCA: 459] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/19/2022]
Abstract
Off-target effects of systemically administered drugs have been a major hurdle in designing therapies with desired efficacy and acceptable toxicity. Developing targeting strategies to enable site-specific drug delivery holds promise in reducing off-target effects, decreasing unwanted toxicities, and thereby enhancing a drug's therapeutic efficacy. Over the past three decades, a large body of literature has focused on understanding the biological barriers that hinder tissue-specific drug delivery and strategies to overcome them. These efforts have led to several targeting strategies that modulate drug delivery in both the preclinical and clinical settings, including small molecule-, nucleic acid-, peptide-, antibody-, and cell-based strategies. Here, we discuss key advances and emerging concepts for tissue-specific drug delivery approaches and their clinical translation.
Collapse
Affiliation(s)
- Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Anvay Ukidve
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Jayoung Kim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Drummond ML, Henry A, Li H, Williams CI. Improved Accuracy for Modeling PROTAC-Mediated Ternary Complex Formation and Targeted Protein Degradation via New In Silico Methodologies. J Chem Inf Model 2020; 60:5234-5254. [PMID: 32969649 DOI: 10.1021/acs.jcim.0c00897] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extending upon our previous publication [Drummond, M.; J. Chem. Inf. Model. 2019, 59, 1634-1644], two additional computational methods are presented to model PROTAC-mediated ternary complex structures, which are then used to predict the efficacy of any accompanying protein degradation. Method 4B, an extension to one of our previous approaches, incorporates a clustering procedure uniquely suited for considering ternary complexes. Method 4B yields the highest proportion to date of crystal-like poses in modeled ternary complex ensembles, nearing 100% in two cases and always giving a hit rate of at least 10%. Techniques to further improve this performance for particularly troublesome cases are suggested and validated. This demonstrated ability to reliably reproduce known crystallographic ternary complex structures is further established through modeling of a newly released crystal structure. Moreover, for the far more common scenario where the structure of the ternary complex intermediate is unknown, the methods detailed in this work nonetheless consistently yield results that reliably follow experimental protein degradation trends, as established through seven retrospective case studies. These various case studies cover challenging yet common modeling situations, such as when the precise orientation of the PROTAC binding moiety in one (or both) of the protein pockets has not been experimentally established. Successful results are presented for one PROTAC targeting many proteins, for different PROTACs targeting the same protein, and even for degradation effected by an E3 ligase that has not been structurally characterized in a ternary complex. Overall, the computational modeling approaches detailed in this work should greatly facilitate PROTAC screening and design efforts, so that the many advantages of a PROTAC-based degradation approach can be effectively utilized both rapidly and at reduced cost.
Collapse
Affiliation(s)
| | - Andrew Henry
- Chemical Computing Group, Cambridge, CB4 0WS, United Kingdom
| | - Huifang Li
- Chemical Computing Group, Montreal, Quebec H3A 2R7, Canada
| | | |
Collapse
|