1
|
Zhang Y, Gao Y, Wang Y, Jiang Y, Xiang Y, Wang X, Wang Z, Ding Y, Chen H, Rui B, Huai W, Cai B, Ren X, Ma F, Xu S, Zhan Z, Liu X. RBM25 is required to restrain inflammation via ACLY RNA splicing-dependent metabolism rewiring. Cell Mol Immunol 2024; 21:1231-1250. [PMID: 39251781 PMCID: PMC11527992 DOI: 10.1038/s41423-024-01212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 08/21/2024] [Indexed: 09/11/2024] Open
Abstract
Spliceosome dysfunction and aberrant RNA splicing underline unresolved inflammation and immunopathogenesis. Here, we revealed the misregulation of mRNA splicing via the spliceosome in the pathogenesis of rheumatoid arthritis (RA). Among them, decreased expression of RNA binding motif protein 25 (RBM25) was identified as a major pathogenic factor in RA patients and experimental arthritis mice through increased proinflammatory mediator production and increased hyperinflammation in macrophages. Multiomics analyses of macrophages from RBM25-deficient mice revealed that the transcriptional enhancement of proinflammatory genes (including Il1b, Il6, and Cxcl10) was coupled with histone 3 lysine 9 acetylation (H3K9ac) and H3K27ac modifications as well as hypoxia inducible factor-1α (HIF-1α) activity. Furthermore, RBM25 directly bound to and mediated the 14th exon skipping of ATP citrate lyase (Acly) pre-mRNA, resulting in two distinct Acly isoforms, Acly Long (Acly L) and Acly Short (Acly S). In proinflammatory macrophages, Acly L was subjected to protein lactylation on lysine 918/995, whereas Acly S did not, which influenced its affinity for metabolic substrates and subsequent metabolic activity. RBM25 deficiency overwhelmingly increased the expression of the Acly S isoform, enhancing glycolysis and acetyl-CoA production for epigenetic remodeling, macrophage overactivation and tissue inflammatory injury. Finally, macrophage-specific deletion of RBM25 led to inflammaging, including spontaneous arthritis in various joints of mice and inflammation in multiple organs, which could be relieved by pharmacological inhibition of Acly. Overall, targeting the RBM25-Acly splicing axis represents a potential strategy for modulating macrophage responses in autoimmune arthritis and aging-associated inflammation.
Collapse
MESH Headings
- Animals
- Inflammation/pathology
- Inflammation/genetics
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Mice
- RNA Splicing/genetics
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Macrophages/metabolism
- Macrophages/immunology
- Humans
- ATP Citrate (pro-S)-Lyase/metabolism
- ATP Citrate (pro-S)-Lyase/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Spliceosomes/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/metabolism
Collapse
Affiliation(s)
- Yunkai Zhang
- Naval Medical Center, Naval Medical University, Shanghai, 200433, China
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Ying Gao
- Department of Rheumatology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yujia Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuyu Jiang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Yan Xiang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Xiaohui Wang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Zeting Wang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Yingying Ding
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Huiying Chen
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Bing Rui
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Wanwan Huai
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Boyu Cai
- Department of Otolaryngology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Xiaomeng Ren
- Naval Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Feng Ma
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Zhenzhen Zhan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Institute of Transplantation, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Xingguang Liu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China.
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, 200433, China.
| |
Collapse
|
2
|
Evans L, Barral P. CD1 molecules: Beyond antigen presentation. Mol Immunol 2024; 170:1-8. [PMID: 38579449 PMCID: PMC11481681 DOI: 10.1016/j.molimm.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
CD1 molecules are well known for their role in binding and presenting lipid antigens to mediate the activation of CD1-restricted T cells. However, much less appreciated is the fact that CD1 molecules can have additional "unconventional" roles which impact the activation and functions of CD1-expressing cells, ultimately controlling tissue homeostasis as well as the progression of inflammatory and infectious diseases. Some of these roles are mediated by so-called reverse signalling, by which crosslinking of CD1 molecules at the cell surface initiates intracellular signalling. On the other hand, CD1 molecules can also control metabolic and inflammatory pathways in CD1-expressing cells through cell-intrinsic mechanisms independent of CD1 ligation. Here, we review the evidence for "unconventional" functions of CD1 molecules and the outcomes of such roles for health and disease.
Collapse
Affiliation(s)
- Lauren Evans
- The Peter Gorer Department of Immunobiology. King's College London, London, UK; The Francis Crick Institute, London, UK
| | - Patricia Barral
- The Peter Gorer Department of Immunobiology. King's College London, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
3
|
Satoh M, Iwabuchi K. Contribution of NKT cells and CD1d-expressing cells in obesity-associated adipose tissue inflammation. Front Immunol 2024; 15:1365843. [PMID: 38426085 PMCID: PMC10902011 DOI: 10.3389/fimmu.2024.1365843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Natural killer T (NKT) cell are members of the innate-like T lymphocytes and recognizes lipid antigens presented by CD1d-expressing cells. Obesity-associated inflammation in adipose tissue (AT) leads to metabolic dysfunction, including insulin resistance. When cellular communication is properly regulated among AT-residing immune cells and adipocytes during inflammation, a favorable balance of Th1 and Th2 immune responses is achieved. NKT cells play crucial roles in AT inflammation, influencing the development of diet-induced obesity and insulin resistance. NKT cells interact with CD1d-expressing cells in AT, such as adipocytes, macrophages, and dendritic cells, shaping pro-inflammatory or anti-inflammatory microenvironments with distinct characteristics depending on the antigen-presenting cells. Additionally, CD1d may be involved in the inflammatory process independently of NKT cells. In this mini-review, we provide a brief overview of the current understanding of the interaction between immune cells, focusing on NKT cells and CD1d signaling, which control AT inflammation both in the presence and absence of NKT cells. We aim to enhance our understanding of the mechanisms of obesity-associated diseases.
Collapse
Affiliation(s)
- Masashi Satoh
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | | |
Collapse
|
4
|
Lei Z, Yu J, Wu Y, Shen J, Lin S, Xue W, Mao C, Tang R, Sun H, Qi X, Wang X, Xu L, Wei C, Wang X, Chen H, Hao P, Yin W, Zhu J, Li Y, Wu Y, Liu S, Liang H, Chen X, Su C, Zhou S. CD1d protects against hepatocyte apoptosis in non-alcoholic steatohepatitis. J Hepatol 2024; 80:194-208. [PMID: 38438948 DOI: 10.1016/j.jhep.2023.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 03/06/2024]
Abstract
BACKGROUND & AIMS Hepatocyte apoptosis, a well-defined form of cell death in non-alcoholic steatohepatitis (NASH), is considered the primary cause of liver inflammation and fibrosis. However, the mechanisms underlying the regulation of hepatocyte apoptosis in NASH remain largely unclear. We explored the anti-apoptotic effect of hepatocyte CD1d in NASH. METHODS Hepatocyte CD1d expression was analyzed in patients with NASH and mouse models. Hepatocyte-specific gene overexpression or knockdown and anti-CD1d crosslinking were used to investigate the anti-apoptotic effect of hepatocyte CD1d on lipotoxicity-, Fas-, and concanavalin (ConA)-mediated liver injuries. A high-fat diet, a methionine-choline-deficient diet, a Fas agonist, and ConA were used to induce lipotoxic and/or apoptotic liver injuries. Palmitic acid was used to mimic lipotoxicity-induced apoptosis in vitro. RESULTS We identified a dramatic decrease in CD1d expression in hepatocytes of patients with NASH and mouse models. Hepatocyte-specific CD1d overexpression and knockdown experiments collectively demonstrated that hepatocyte CD1d protected against hepatocyte apoptosis and alleviated hepatic inflammation and injuries in NASH mice. Furthermore, decreased JAK2-STAT3 signaling was observed in NASH patient livers. Mechanistically, anti-CD1d crosslinking on hepatocytes induced tyrosine phosphorylation of the CD1d cytoplasmic tail, leading to the recruitment and phosphorylation of JAK2. Phosphorylated JAK2 activated STAT3 and subsequently reduced apoptosis in hepatocytes, which was associated with an increase in anti-apoptotic effectors (Bcl-xL and Mcl-1) and a decrease in pro-apoptotic effectors (cleaved-caspase 3/7). Moreover, anti-CD1d crosslinking effectively protected against Fas- or ConA-mediated hepatocyte apoptosis and liver injury in mice. CONCLUSIONS Our study uncovered a previously unrecognized anti-apoptotic CD1d-JAK2-STAT3 axis in hepatocytes that conferred hepatoprotection and highlighted the potential of hepatocyte CD1d-directed therapy for liver injury and fibrosis in NASH, as well as in other liver diseases associated with hepatocyte apoptosis. IMPACT AND IMPLICATIONS Excessive and/or sustained hepatocyte apoptosis is critical in driving liver inflammation and injury. The mechanisms underlying the regulation of hepatocyte apoptosis in non-alcoholic steatohepatitis (NASH) remain largely unclear. Here, we found that CD1d expression in hepatocytes substantially decreases and negatively correlates with the severity of liver injury in patients with NASH. We further revealed a previously unrecognized anti-apoptotic CD1d-JAK2-STAT3 signaling axis in hepatocytes, which confers significant protection against liver injury in NASH and acute liver diseases. Thus, hepatocyte CD1d-targeted therapy could be a promising strategy to manipulate liver injury in both NASH and other hepatocyte apoptosis-related liver diseases.
Collapse
Affiliation(s)
- Zhigang Lei
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaojiao Yu
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Wu
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junyao Shen
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shibo Lin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weijie Xue
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenxu Mao
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Tang
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haoran Sun
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Qi
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaohong Wang
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xu
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Wei
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaowei Wang
- Department of Blood Transfusion, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongbing Chen
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Hao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wen Yin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jifeng Zhu
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yalin Li
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shouguo Liu
- Center for Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojun Chen
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Chuan Su
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Sha Zhou
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Dai M, Hua S, Yang J, Geng D, Li W, Hu S, Chen H, Liao X. Incidence and risk factors of asymptomatic bacteriuria in patients with type 2 diabetes mellitus: a meta-analysis. Endocrine 2023; 82:263-281. [PMID: 37599328 PMCID: PMC10543815 DOI: 10.1007/s12020-023-03469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/28/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND The prevalence of type 2 diabetes mellitus (T2DM) is increasing each year and has become one of the most prominent health concerns worldwide. Patients with T2DM are prone to infectious diseases, and urinary tract infections are also widespread. Despite a comprehensive understanding of urinary tract infection (UTI), there is a lack of research regarding primary prevention strategies for asymptomatic bacteriuria (ASB). OBJECTIVE To clarify the incidence and risk factors of asymptomatic urinary tract infection in patients with T2DM by meta-analysis to provide evidence for preventing UTI. Help patients, their families, and caregivers to identify the risk factors of patients in time and intervene to reduce the incidence of ASB in patients with T2DM. Fill in the gaps in existing research. STUDY DESIGN Meta-analyses were conducted in line with PRISMA guidelines. METHODS Eleven databases were systematically searched for articles about ASB in T2DM, and the retrieval time was selected from the establishment of the database to February 5, 2023. Literature screening, quality evaluation, and meta-analysis were independently performed by two researchers according to the inclusion and exclusion criteria, and a meta-analysis was performed using Stata 17.0. RESULTS Fourteen articles were included, including cohort and case-control studies. A meta-analysis of 4044 patients with T2DM was included. The incidence of ASB in patients with T2DM was 23.7%(95% CI (0.183, 0.291); P < 0.001). After controlling for confounding variables, the following risk factors were associated with ASB in patients with T2DM: age (WMD = 3.18, 95% CI (1.91, 4.45), I2 = 75.5%, P < 0.001), female sex (OR = 1.07, 95% CI(1.02, 1.12), I2 = 79.3%, P = 0.002), duration of type 2 diabetes (WMD = 2.54, 95% CI (1.53, 5.43), I2 = 80.7%, P < 0.001), HbA1c (WMD = 0.63, 95% CI (0.43, 0.84), I2 = 62.6,%. P < 0.001), hypertension (OR = 1.59, 95% CI (1.24, 2.04), I2 = 0%, <0.001), hyperlipidemia (OR = 1.66, 95% CI (1.27, 2.18), I2 = 0%, P < 0.001), Neuropathy (OR = 1.81, 95% CI (1.38, 2.37), I2 = 0%, P < 0.001), proteinuria (OR = 3.00, 95% CI (1.82, 4.95), I2 = 62.7%, P < 0.001). CONCLUSION The overall prevalence of ASB in T2DM is 23.7%. Age, female sex, course of T2DM, HbA1C, hypertension, hyperlipidemia, neuropathy, and proteinuria were identified as related risk factors for ASB in T2DM. These findings can provide a robust theoretical basis for preventing and managing ASB in T2DM.
Collapse
Affiliation(s)
- Mengqiao Dai
- Shanghai University of Traditional Chinese Medicine, School of Nursing, Shanghai, 201203, China
| | - Shan Hua
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiechao Yang
- Shanghai University of Traditional Chinese Medicine, School of Nursing, Shanghai, 201203, China
| | - Dandan Geng
- Shanghai University of Traditional Chinese Medicine, School of Nursing, Shanghai, 201203, China
| | - Weina Li
- Shanghai University of Traditional Chinese Medicine, School of Nursing, Shanghai, 201203, China
| | - Shuqin Hu
- Shanghai University of Traditional Chinese Medicine, School of Nursing, Shanghai, 201203, China
| | - Hu Chen
- Shanghai University of Traditional Chinese Medicine, School of Nursing, Shanghai, 201203, China
| | - Xiaoqin Liao
- Shanghai University of Traditional Chinese Medicine, School of Nursing, Shanghai, 201203, China.
| |
Collapse
|
6
|
Luo J, Chen Z, Castellano D, Bao B, Han W, Li J, Kim G, An D, Lu W, Wu C. Lipids regulate peripheral serotonin release via gut CD1d. Immunity 2023; 56:1533-1547.e7. [PMID: 37354904 PMCID: PMC10527042 DOI: 10.1016/j.immuni.2023.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/04/2023] [Accepted: 06/01/2023] [Indexed: 06/26/2023]
Abstract
The crosstalk between the immune and neuroendocrine systems is critical for intestinal homeostasis and gut-brain communications. However, it remains unclear how immune cells participate in gut sensation of hormones and neurotransmitters release in response to environmental cues, such as self-lipids and microbial lipids. We show here that lipid-mediated engagement of invariant natural killer T (iNKT) cells with enterochromaffin (EC) cells, a subset of intestinal epithelial cells, promoted peripheral serotonin (5-HT) release via a CD1d-dependent manner, regulating gut motility and hemostasis. We also demonstrated that inhibitory sphingolipids from symbiotic microbe Bacteroides fragilis represses 5-HT release. Mechanistically, CD1d ligation on EC cells transduced a signal and restrained potassium conductance through activation of protein tyrosine kinase Pyk2, leading to calcium influx and 5-HT secretion. Together, our data reveal that by engaging with iNKT cells, gut chemosensory cells selectively perceive lipid antigens via CD1d to control 5-HT release, modulating intestinal and systemic homeostasis.
Collapse
Affiliation(s)
- Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Bin Bao
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Girak Kim
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Dingding An
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
7
|
Jin X, Yang GY. Pathophysiological roles and applications of glycosphingolipids in the diagnosis and treatment of cancer diseases. Prog Lipid Res 2023; 91:101241. [PMID: 37524133 DOI: 10.1016/j.plipres.2023.101241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Glycosphingolipids (GSLs) are major amphiphilic glycolipids present on the surface of living cell membranes. They have important biological functions, including maintaining plasma membrane stability, regulating signal transduction, and mediating cell recognition and adhesion. Specific GSLs and related enzymes are abnormally expressed in many cancer diseases and affect the malignant characteristics of tumors. The regulatory roles of GSLs in signaling pathways suggest that they are involved in tumor pathogenesis. GSLs have therefore been widely studied as diagnostic markers of cancer diseases and important targets of immunotherapy. This review describes the tumor-related biological functions of GSLs and systematically introduces recent progress in using diverse GSLs and related enzymes to diagnose and treat tumor diseases. Development of drugs and biomarkers for personalized cancer therapy based on GSL structure is also discussed. These advances, combined with recent progress in the preparation of GSLs derivatives through synthetic biology technologies, suggest a strong future for the use of customized GSL libraries in treating human diseases.
Collapse
Affiliation(s)
- Xuefeng Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Clinical Pharmaceutics, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Zhang Y, Gao Y, Ding Y, Jiang Y, Chen H, Zhan Z, Liu X. Targeting KAT2A inhibits inflammatory macrophage activation and rheumatoid arthritis through epigenetic and metabolic reprogramming. MedComm (Beijing) 2023; 4:e306. [PMID: 37313329 PMCID: PMC10258526 DOI: 10.1002/mco2.306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/15/2023] Open
Abstract
Epigenetic regulation of inflammatory macrophages governs inflammation initiation and resolution in the pathogenesis of rheumatoid arthritis (RA). Nevertheless, the mechanisms underlying macrophage-mediated arthritis injuries remain largely obscure. Here, we found that increased expression of lysine acetyltransferase 2A (KAT2A) in synovial tissues was closely correlated with inflammatory joint immunopathology in both RA patients and experimental arthritis mice. Administration of MB-3, the KAT2A-specific chemical inhibitor, significantly ameliorated the synovitis and bone destruction in collagen-induced arthritis model. Both pharmacological inhibition and siRNA silencing of KAT2A, not only suppressed innate stimuli-triggered proinflammatory gene (such as Il1b and Nlrp3) transcription but also impaired NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in vivo and in vitro. Mechanistically, KAT2A facilitated macrophage glycolysis reprogramming through suppressing nuclear factor-erythroid 2-related factor 2 (NRF2) activity as well as downstream antioxidant molecules, which supported histone 3 lysine 9 acetylation (H3K9ac) and limited NRF2-mediated transcriptional repression of proinflammatory genes. Our study proves that acetyltransferase KAT2A licenses metabolic and epigenetic reprogramming for NLRP3 inflammasome activation in inflammatory macrophages, thereby targeting KAT2A represents a potential therapeutic approach for patients suffering from RA and relevant inflammatory diseases.
Collapse
Affiliation(s)
- Yunkai Zhang
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina
- National Key Laboratory of Immunity & InflammationNaval Medical UniversityShanghaiChina
| | - Ying Gao
- Department of RheumatologyChanghai Hospital, Naval Medical UniversityShanghaiChina
- Key Laboratory of Arrhythmias of the Ministry of Education of ChinaShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Yingying Ding
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina
| | - Yuyu Jiang
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina
| | - Huiying Chen
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina
| | - Zhenzhen Zhan
- Key Laboratory of Arrhythmias of the Ministry of Education of ChinaShanghai East Hospital, Tongji University School of MedicineShanghaiChina
- Department of Liver Surgery, Shanghai Institute of TransplantationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xingguang Liu
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina
- National Key Laboratory of Immunity & InflammationNaval Medical UniversityShanghaiChina
| |
Collapse
|
9
|
Zhang Y, Gao Y, Jiang Y, Ding Y, Chen H, Xiang Y, Zhan Z, Liu X. Histone demethylase KDM5B licenses macrophage-mediated inflammatory responses by repressing Nfkbia transcription. Cell Death Differ 2023; 30:1279-1292. [PMID: 36914768 PMCID: PMC10154333 DOI: 10.1038/s41418-023-01136-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023] Open
Abstract
Macrophages play a critical role in the immune homeostasis and host defense against invading pathogens. However, uncontrolled activation of inflammatory macrophages leads to tissue injury and even fuels autoimmunity. Hence the molecular mechanisms underlying macrophage activation need to be further elucidated. The effects of epigenetic modifications on the function of immune cells draw increasing attention. Here, we demonstrated that lysine-specific demethylase 5B (KDM5B), a classical transcriptional repressor in stem cell development and cancer, was required for the full activation of NF-κB signaling cascade and pro-inflammatory cytokine production in macrophages. KDM5B deficiency or inhibitor treatment protected mice from immunologic injury in both collagen-induced arthritis (CIA) model and endotoxin shock model. Genome-wide analysis of KDM5B-binding peaks identified that KDM5B was selectively recruited to the promoter of Nfkbia, the gene encoding IκBα, in activated macrophages. KDM5B mediated the H3K4me3 modification erasing and decreased chromatin accessibility of Nfkbia gene locus, coordinating the elaborate suppression of IκBα expression and the enhanced NF-κB-mediated macrophage activation. Our finding identifies the indispensable role of KDM5B in macrophage-mediated inflammatory responses and provides a candidate therapeutic target for autoimmune and inflammatory disorders.
Collapse
Affiliation(s)
- Yunkai Zhang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
- National Key Laboratory of Medical Immunology, Naval Medical University, Shanghai, 200433, China
| | - Ying Gao
- Department of Rheumatology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuyu Jiang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Yingying Ding
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Huiying Chen
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Yan Xiang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Zhenzhen Zhan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Liver Surgery, Shanghai Institute of Transplantation, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Xingguang Liu
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China.
- National Key Laboratory of Medical Immunology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
10
|
Brailey PM, Evans L, López-Rodríguez JC, Sinadinos A, Tyrrel V, Kelly G, O'Donnell V, Ghazal P, John S, Barral P. CD1d-dependent rewiring of lipid metabolism in macrophages regulates innate immune responses. Nat Commun 2022; 13:6723. [PMID: 36344546 PMCID: PMC9640663 DOI: 10.1038/s41467-022-34532-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Alterations in cellular metabolism underpin macrophage activation, yet little is known regarding how key immunological molecules regulate metabolic programs in macrophages. Here we uncover a function for the antigen presenting molecule CD1d in the control of lipid metabolism. We show that CD1d-deficient macrophages exhibit a metabolic reprogramming, with a downregulation of lipid metabolic pathways and an increase in exogenous lipid import. This metabolic rewiring primes macrophages for enhanced responses to innate signals, as CD1d-KO cells show higher signalling and cytokine secretion upon Toll-like receptor stimulation. Mechanistically, CD1d modulates lipid import by controlling the internalization of the lipid transporter CD36, while blocking lipid uptake through CD36 restores metabolic and immune responses in macrophages. Thus, our data reveal CD1d as a key regulator of an inflammatory-metabolic circuit in macrophages, independent of its function in the control of T cell responses.
Collapse
Affiliation(s)
- Phillip M Brailey
- The Peter Gorer Department of Immunobiology, King's College London, London, UK
- The Francis Crick Institute, London, UK
| | - Lauren Evans
- The Peter Gorer Department of Immunobiology, King's College London, London, UK
- The Francis Crick Institute, London, UK
| | - Juan Carlos López-Rodríguez
- The Peter Gorer Department of Immunobiology, King's College London, London, UK
- The Francis Crick Institute, London, UK
| | - Anthony Sinadinos
- The Peter Gorer Department of Immunobiology, King's College London, London, UK
- The Francis Crick Institute, London, UK
| | | | | | | | - Peter Ghazal
- School of Medicine, Cardiff University, Cardiff, UK
| | - Susan John
- The Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - Patricia Barral
- The Peter Gorer Department of Immunobiology, King's College London, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
11
|
Satoh M, Iizuka M, Majima M, Ohwa C, Hattori A, Van Kaer L, Iwabuchi K. Adipose invariant NKT cells interact with CD1d-expressing macrophages to regulate obesity-related inflammation. Immunology 2022; 165:414-427. [PMID: 35137411 DOI: 10.1111/imm.13447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 11/28/2022] Open
Abstract
Obesity is accompanied by and accelerated with chronic inflammation in adipose tissue, especially visceral adipose tissue (VAT). This low-level inflammation predisposes the host to the development of metabolic disease, most notably type 2 diabetes. We have focused on the capacity of glycolipid-reactive, CD1d-restricted natural killer T (NKT) cells to modulate obesity and its associated metabolic sequelae. We previously reported that CD1d knockout (KO) mice are partially protected against the development of obesity-associated insulin-resistance, and these findings were recapitulated in mice with an adipocyte-specific CD1d deficiency, suggesting that NKT cell-adipocyte interactions play a critical role in exacerbating disease. However, many other CD1d-expressing cells contribute to the in vivo responses of NKT cells to lipid antigens. In the present study, we examined the role of CD1d expression by macrophages (Mϕ) to the development of obesity-associated metabolic inflammation using LysMcre-cd1d1f/f mice where the CD1d1 gene is disrupted in a Mϕ-specific manner. Unexpectedly, these animals contained a higher frequency of T-bet+ CD4+ T cells in VAT with increased production of Th1-cytokines that aggravated VAT inflammation. Mϕ from mutant mice displayed increased production of IL-12p40, suggesting M1 polarization. These findings indicate that interactions of CD1d on Mϕ with NKT cells play a beneficial role in obesity-associated VAT inflammation and insulin resistance with a sharp contrast to an aggravating role of CD1d on another type of antigen presenting cell, dendritic cells.
Collapse
Affiliation(s)
- Masashi Satoh
- Department of Immunology, Kitasato University School of Medicine.,Program in Cellular Immunology, Graduate School of Medical Sciences, Kitasato University
| | - Misao Iizuka
- Department of Immunology, Kitasato University School of Medicine
| | - Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine.,Program in Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,School of Health and Medical Sciences, Kanagawa Institute of Technology (KAIT), Atsugi, Japan
| | - Chizuru Ohwa
- Program in Cellular Immunology, Graduate School of Medical Sciences, Kitasato University
| | - Akito Hattori
- Program in Cellular Immunology, Graduate School of Medical Sciences, Kitasato University
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of Medicine.,Program in Cellular Immunology, Graduate School of Medical Sciences, Kitasato University
| |
Collapse
|
12
|
Olona A, Hateley C, Muralidharan S, Wenk MR, Torta F, Behmoaras J. Sphingolipid metabolism during Toll-like receptor 4 (TLR4)-mediated macrophage activation. Br J Pharmacol 2021; 178:4575-4587. [PMID: 34363204 DOI: 10.1111/bph.15642] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Macrophage activation in response to stimulation of Toll-like receptor 4 (TLR4) provides a paradigm for investigating energy metabolism that regulates the inflammatory response. TLR4-mediated pro-inflammatory macrophage activation is characterized by increased glycolysis and altered mitochondrial metabolism, supported by selective amino acid uptake and/or usage. Fatty acid metabolism remains as a highly complex rewiring that accompanies classical macrophage activation. TLR4 activation leads to de novo synthesis of fatty acids, which flux into sphingolipids, complex lipids that form the building blocks of eukaryotic cell membranes and regulate cell function. Here, we review the importance of TLR4-mediated de novo synthesis of membrane sphingolipids in macrophages. We first highlight fatty acid metabolism during TLR4-driven macrophage immunometabolism. We then focus on the temporal dynamics of sphingolipid biosynthesis and emphasize the modulatory role of some sphingolipid species (i.e. sphingomyelins, ceramides and glycosphingolipids) on the pro-inflammatory and pro-resolution phases of LPS/TLR4 activation in macrophages.
Collapse
Affiliation(s)
- Antoni Olona
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Charlotte Hateley
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | | | - Markus R Wenk
- SLING, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Federico Torta
- SLING, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jacques Behmoaras
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.,Programme in Cardiovascular and Metabolic Disorders and Centre for Computational Biology, Duke-NUS Medical School Singapore, Republic of Singapore
| |
Collapse
|
13
|
Admission lysophosphatidylethanolamine acyltransferase level predicts the severity and prognosis of community-acquired pneumonia. Infection 2021; 49:877-888. [PMID: 33694084 DOI: 10.1007/s15010-021-01585-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/06/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Early diagnosis and prognosis of patients with community-acquired pneumonia (CAP) are still difficult clinical challenges. This study aimed to investigate the role of lysophosphatidylethanolamine acyltransferase (LPEAT) in CAP and to evaluate the effectiveness of this enzyme as an indicator of disease severity and risk of death in CAP. METHODS This retrospective, multi-center study was conducted in 2017. A total of 267 patients with CAP were included. Of these 267 patients, 175 patients had non-severe CAP (non-SCAP) and 92 patients had severe CAP (SCAP). In addition, we recruited 15 healthy volunteers and 42 hospitalized disease controls in our study. The demographic and clinical characteristics were recorded for all participants. Admission levels of LPEAT were determined by quantitative enzyme-linked immunosorbent assay. RESULTS Admission levels of LPEAT in patients with SCAP were significantly higher, particularly in non-survivors and were not affected by the causative etiology. Furthermore, when the patients were stratified according to PSI and CURB-65 scores, the patients with high severity scores had higher LPEAT levels upon admission than patients with low severity scores. LPEAT also performed well in predicting SCAP in patients with CAP. Moreover, LPEAT could predict the 30-day mortality rate of patients with CAP, and combining LPEAT with the clinical severity score further improved the accuracy of mortality prediction. CONCLUSION Elevated LPEAT levels can reliably predict the severity of illness in patients with CAP at the time of admission. Adding LPEAT to clinical scoring methods could improve prognostic accuracy. Trial registration ClinicalTrials.gov, NCT03093220. Registered on March 28th, 2017.
Collapse
|
14
|
Cui S, Wang C, Bai W, Li J, Pan Y, Huang X, Yang H, Feng Z, Xiang Q, Fei L, Zheng L, Huang J, Zhang Q, Wu Y, Chen Y. CD1d1 intrinsic signaling in macrophages controls NLRP3 inflammasome expression during inflammation. SCIENCE ADVANCES 2020; 6:6/43/eaaz7290. [PMID: 33087357 PMCID: PMC7577718 DOI: 10.1126/sciadv.aaz7290] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Dysregulation of immune responses in the gut often associates with inflammatory bowel diseases (IBD). Mouse CD1d1, an ortholog of human CD1d mainly participating in lipid-antigen presentation to NKT cells, is able to generate intrinsic signals upon stimulation. Mice with macrophage-specific CD1d1 deficiency (LymCD1d1-/- ) acquire resistance to dextran sodium sulfate (DSS)-induced colitis, attributing to the transcriptional inhibition of NLRP3 inflammasome components. The hyperactivation of NLRP3 inflammasome accounts for gut epithelial proliferation and intestine-blood barrier integrity. Mechanistically, occupancy by the natural ligand glycosphingolipid iGb3, CD1d1 responds with intracellular Ser330 dephosphorylation thus to reduce the Peroxiredoxin 1 (PRDX1)-associated AKT-STAT1 phosphorylation and subsequent NF-κB activation, eventually causing transcriptional down-regulation of Nlrp3 and its immediate substrates Il1b and Il18 in macrophages. Therefore, the counterbalancing role of CD1d1 in macrophages appears to determine severity of DSS-mediated colitis in mice. These findings propose new intervention strategies for treating IBD and other inflammatory disorders.
Collapse
Affiliation(s)
- Shan Cui
- Yanbian University Hospital, Yanbian University, Jilin Province 133000, People's Republic of China
| | - Chenhui Wang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Weizhi Bai
- Department of Emergency, Chongqing University Center Hospital, Chongqing Emergency Medical Center, Chongqing 400038, People's Republic of China
| | - Jiao Li
- School of Medicine, Yanbian University, Jilin Province 133000, People's Republic of China
| | - Yue Pan
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Xiaoyong Huang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Han Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Zeqing Feng
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Qun Xiang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Lei Fei
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Lixin Zheng
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Jian Huang
- Department of Emergency, Chongqing University Center Hospital, Chongqing Emergency Medical Center, Chongqing 400038, People's Republic of China.
| | - Qinggao Zhang
- School of Medicine, Yanbian University, Jilin Province 133000, People's Republic of China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China.
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China.
| |
Collapse
|
15
|
Yang F, Chen F, Li L, Yan L, Badri T, Lv C, Yu D, Zhang M, Jang X, Li J, Yuan L, Wang G, Li H, Li J, Cai Y. Three Novel Players: PTK2B, SYK, and TNFRSF21 Were Identified to Be Involved in the Regulation of Bovine Mastitis Susceptibility via GWAS and Post-transcriptional Analysis. Front Immunol 2019; 10:1579. [PMID: 31447828 PMCID: PMC6691815 DOI: 10.3389/fimmu.2019.01579] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022] Open
Abstract
Bovine mastitis is a common inflammatory disease caused by multiple factors in early lactation or dry period. Genome wide association studies (GWAS) can provide a convenient and effective strategy for understanding the biological basis of mastitis and better prevention. 2b-RADseq is a high-throughput sequencing technique that offers a powerful method for genome-wide genetic marker development and genotyping. In this study, single nucleotide polymorphisms (SNPs) of the immune-regulated gene correlative with mastitis were screened and identified by two stage association analysis via GWAS-2b-RADseq in Chinese Holstein cows. We have screened 10,058 high quality SNPs from 7,957,920 tags and calculated their allele frequencies. Twenty-seven significant SNPs were co-labeled in two GWAS analysis models [Bayesian (P < 0.001) and Logistic regression (P < 0.01)], and only three SNPs (rs75762330, C > T, PIC = 0.2999; rs88640083, A > G, PIC = 0.1676; rs20438858, G > A, PIC = 0.3366) were annotated to immune-regulated genes (PTK2B, SYK, and TNFRSF21). Identified three SNPs are located in non-coding regions with low or moderate genetic polymorphisms. However, independent sample population validation (Case-control study) data showed that three important SNPs (rs75762330, P < 0.025, OR > 1; rs88640083, P < 0.005, OR > 1; rs20438858, P < 0.001, OR < 1) were significantly associated with clinical mastitis trait. Importantly, PTK2B and SYK expression was down-regulated in both peripheral blood leukocytes (PBLs) of clinical mastitis cows and in vitro LPS (E. coli)-stimulated bovine mammary epithelial cells, while TNFRSF21 was up-regulated. Under the same conditions, expression of Toll-like receptor 4 (TLR4), AKT1, and pro-inflammatory factors (IL-1β and IL-8) were also up-regulated. Interestingly, network analysis indicated that PTK2B and SYK are co-expressed in innate immune signaling pathway of Chinese Holstein. Taken together, these results provided strong evidence for the study of SNPs in bovine mastitis, and revealed the role of SYK, PTK2B, and TNFRSF21 in bovine mastitis susceptibility/tolerance.
Collapse
Affiliation(s)
- Fan Yang
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fanghui Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lili Li
- National Animal Husbandry Station, Beijing, China
| | - Li Yan
- Department of Radiation Oncology, Linyi People Hospital, Linyi, China
| | - Tarig Badri
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chenglong Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Daolun Yu
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Manling Zhang
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xiaojun Jang
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jie Li
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Lu Yuan
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Genlin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jun Li
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|