1
|
Chen W, Liu Y, Liu J, Chen Y, Wang X. Acute exercise promotes WAT browning by remodeling mRNA m 6A methylation. Life Sci 2025; 361:123269. [PMID: 39581460 DOI: 10.1016/j.lfs.2024.123269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
AIMS Regular exercise promotes the beiging and metabolic adaptations of white adipose tissue (WAT) through the cumulative transcriptional responses that occur after each exercise session. However, the effects of a single bout of acute exercise and the role of N6-methyladenosine (m6A) in these adaptations remain unclear. We aim to investigate this further. MATERIALS AND METHODS We constructed mouse models for chronic (8 weeks of running) and acute (single 1-hour run) exercise to study the effects on white adipose tissue (WAT) metabolism and beiging through metabolic phenotyping and transcriptome sequencing. Additionally, we explored the impact of acute exercise on WAT m6A modification and target genes, combining m6A regulators with cell models to elucidate the role of m6A in WAT exercise adaptation. KEY FINDINGS Here, we reveal that upregulated m6A modification after acute exercise induces the formation of glycolytic beige fat (g-beige fat) in WAT. Mechanistically, the metabolite β-hydroxybutyrate (BHBA) secreted after acute exercise upregulates m6A modification in WAT. This enhances m6A-dependent translation of the histone acetyltransferase CREBBP, promoting the transcription of key beiging genes by increasing chromatin accessibility. Pharmacologically elevating circulating BHBA mimics the metabolic response induced by acute exercise, upregulating m6A modification and its downstream signals. Additionally, BHBA exhibits long-term effects, improving metabolic homeostasis in obesity by promoting thermogenesis in WAT. SIGNIFICANCE Our results reveal the role of metabolites in WAT metabolic adaptation through m6A-mediated chromatin accessibility after acute exercise, providing a novel therapeutic target for regulating WAT metabolism from a nutritional epigenetics perspective.
Collapse
Affiliation(s)
- Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Youhua Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Jiaqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
2
|
Shimizu K, Inuzuka H, Tokunaga F. The interplay between cell death and senescence in cancer. Semin Cancer Biol 2024; 108:1-16. [PMID: 39557316 DOI: 10.1016/j.semcancer.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Cellular senescence is a state of permanent proliferative arrest that occurs in response to DNA damage-inducing endogenous and exogenous stresses, and is often accompanied by dynamic molecular changes such as a senescence-associated secretory phenotype (SASP). Accumulating evidence indicates that age-associated increases in the upstream and downstream signals of regulated cell death, including apoptosis, necroptosis, pyroptosis, and ferroptosis, are closely related to the induction of cellular senescence and its phenotype. Furthermore, elevated levels of pro-inflammatory SASP factors with aging can be both a cause and consequence of several cell death modes, suggesting the reciprocal effects of cellular senescence and cells undergoing regulated cell death. Here, we review the critical molecular pathways of the regulated cell death forms and describe the crosstalk between aging-related signals and cancer. In addition, we discuss how targeting regulated cell death could be harnessed in therapeutic interventions for cancer. ABBREVIATIONS: Abbreviations that are not standard in this field are defined at their first occurrence in the article and are used consistently throughout the article.
Collapse
Affiliation(s)
- Kouhei Shimizu
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan.
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA02215, USA
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
3
|
Loreti M, Cecchini A, Kaufman CD, Stamenkovic C, Renero A, Nicoletti C, Kervadec A, Guarnaccia G, Mayer D, Colas A, Lorenzo Puri P, Sacco A. Tenascin-C from the tissue microenvironment promotes muscle stem cell self-renewal through Annexin A2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620732. [PMID: 39554125 PMCID: PMC11565721 DOI: 10.1101/2024.10.29.620732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Skeletal muscle tissue self-repair occurs through the finely timed activation of resident muscle stem cells (MuSC). Following perturbation, MuSC exit quiescence, undergo myogenic commitment, and differentiate to regenerate the injured muscle. This process is coordinated by signals present in the tissue microenvironment, however the precise mechanisms by which the microenvironment regulates MuSC activation are still poorly understood. Here, we identified Tenascin-C (TnC), an extracellular matrix (ECM) glycoprotein, as a key player in promoting of MuSC self-renewal and function. We show that fibro-adipogenic progenitors (FAPs) are the primary cellular source of TnC during muscle repair, and that MuSC sense TnC signaling through cell the surface receptor Annexin A2. We provide in vivo evidence that TnC is required for efficient muscle repair, as mice lacking TnC exhibit a regeneration phenotype of premature aging. We propose that the decline of TnC in physiological aging contributes to inefficient muscle regeneration in aged muscle. Taken together, our results highlight the pivotal role of TnC signaling during muscle repair in healthy and aging skeletal muscle.
Collapse
Affiliation(s)
- Mafalda Loreti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Current affiliation: J&J, 3880 Murphy Canyon Rd, San Diego, CA 92123, USA
| | - Alessandra Cecchini
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Collin D Kaufman
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Cedomir Stamenkovic
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Alma Renero
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Current affiliation: University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Chiara Nicoletti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Anais Kervadec
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Current affiliation: Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Gabriele Guarnaccia
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Daphne Mayer
- Rice University, 6100 Main St, Huston, TX 77005, USA
| | - Alexandre Colas
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Qaisar R. The emerging roles of necroptosis in skeletal muscle health and disease. Pflugers Arch 2024; 476:1645-1651. [PMID: 39037477 DOI: 10.1007/s00424-024-02994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Necroptosis is a regulated form of cell death with implications in various physiological and pathological processes in multiple tissues. However, the relevant findings from post-mitotic tissues, such as skeletal muscle, are scarce. This review summarizes the potential contributions of necroptosis to skeletal muscle health and diseases. It first discusses the physiological roles of necroptosis in muscle regeneration and development. It then summarizes the contributions of necroptosis to the pathogenesis of multiple muscle diseases, including muscular dystrophies, inflammatory myopathies, cachexia, and neuromuscular disorders. Lastly, it unravels the gaps in our understanding and therapeutic challenges of inhibiting necroptosis as a potential intervention for muscle diseases. Specifically, the findings from the transgenic animal models and the use of pharmacological inhibitors of necroptosis are discussed with relevance to improving the structure and/or function of skeletal muscle in various diseases. Recent developments from experimental animal models and clinical data are presented to discuss the roles of necroptosis in skeletal muscle health and diseases.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates.
- Space Medicine Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
5
|
Zong T, Mu T, Tan C, Xie T, Zhuang M, Wang Y, Li Z, Yang Q, Wu M, Cai J, Wang X, Yao Y. Tenascin-C induces transdifferentiation of retinal pigment epithelial cells in proliferative vitreoretinopathy. Exp Eye Res 2024; 248:110097. [PMID: 39284505 DOI: 10.1016/j.exer.2024.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Proliferation and transdifferentiation of the retinal pigment epithelium (RPE) are hallmarks of proliferative vitreoretinopathy (PVR); however, the critical regulators of this process remain to be elucidated. Here, we investigated the role of tenascin-C in PVR development. In vitro, exposure of human ARPE-19 (hRPE) cells to TGF-β2 increased tenascin-C expression. Tenascin-C was shown to be involved in TGF-β2-induced transdifferentiation of hRPE cells, which was inhibited by pretreatment with tenascin-C siRNA. In PVR mouse models, a marked increase in the expression of tenascin-C mRNA and protein was observed. Additionally, immunofluorescence analysis demonstrated a dramatic increase in the colocalization of tenascin-C with RPE65 or α-smooth muscle actin(α-SMA) in the epiretinal membranes of patients with PVR. There was also abundant expression of integrin αV and β-catenin in the PVR membranes. ICG-001, a β-catenin inhibitor, efficiently attenuated PVR progression in a PVR animal model. These findings suggest that tenascin-C is secreted by transdifferentiated RPE cells and promotes the development of PVR via the integrin αV and β-catenin pathways. Therefore, tenascin-C could be a potential therapeutic target for the inhibition of epiretinal membrane development associated with PVR.
Collapse
Affiliation(s)
- Tianyi Zong
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Tong Mu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Chengye Tan
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Tianhua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Miao Zhuang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Yan Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Ziwen Li
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Qian Yang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Meili Wu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Jiping Cai
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Xiaolu Wang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China.
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China.
| |
Collapse
|
6
|
Sun Z, Cheng X, Wang Z, Qiao C, Qian H, Yuan T, Lv Z, Sun W, Zhang H, Liu Y, Lu Z, Lin J, Lai C, Wang Y, Yang X, Wang X, Meng J, Bao N. Single-nucleus transcriptomics reveals subsets of degenerative myonuclei after rotator cuff tear-induced muscle atrophy. Cell Prolif 2024:e13763. [PMID: 39435630 DOI: 10.1111/cpr.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Rotator cuff tear (RCT) is the primary cause of shoulder pain and disability and frequently trigger muscle degeneration characterised by muscle atrophy, fatty infiltration and fibrosis. Single-nucleus RNA sequencing (snRNA-seq) was used to reveal the transcriptional changes in the supraspinatus muscle after RCT. Supraspinatus muscles were obtained from patients with habitual shoulder dislocation (n = 3) and RCT (n = 3). In response to the RCT, trajectory analysis showed progression from normal myonuclei to ANKRD1+ myonuclei, which captured atrophy-and fatty infiltration-related regulons (KLF5, KLF10, FOSL1 and BHLHE40). Transcriptomic alterations in fibro/adipogenic progenitors (FAPs) and muscle satellite cells (MuSCs) have also been studied. By predicting cell-cell interactions, we observed communication alterations between myofibers and muscle-resident cells following RCT. Our findings reveal the plasticity of muscle cells in response to RCT and offer valuable insights into the molecular mechanisms and potential therapeutic targets of RCT.
Collapse
Affiliation(s)
- Ziying Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Xi Cheng
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Zheng Wang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Chenfeng Qiao
- Department of Orthopedics, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Hong Qian
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Tao Yuan
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Zhongyang Lv
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Wenshuang Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Hanwen Zhang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yuan Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Zhihao Lu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Jintao Lin
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Chengteng Lai
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yang Wang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaojiang Yang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jia Meng
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
- Department of Orthopedics, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Nirong Bao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
- Department of Orthopedics, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Cheong S, Peng Y, Lu F, He Y. Structural extracellular matrix-mediated molecular signaling in wound repair and tissue regeneration. Biochimie 2024:S0300-9084(24)00230-X. [PMID: 39369941 DOI: 10.1016/j.biochi.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
The extracellular matrix (ECM) is a complex, non-cellular network of molecules that offers structural support for cells and tissues. The ECM is composed of various structural components, including collagen, fibronectin, laminin, perlecan, nidogen, tenascin, and fibulin, which are capable of binding to each other and to cell-to-adhesion receptors, endowing the ECM with unique physical and biochemical properties that are essential for its function in maintaining health and managing disease. Over the past three decades, extensive research has shown that the core of the ECM can significantly impact cellular events at the molecular level. Structural modifications have also been strongly associated with tissue repair. Through interactions with cells, matrix proteins regulate critical processes such as cell proliferation and differentiation, migration, and apoptosis, essential for maintaining tissue homeostasis, formation, and regeneration. This review emphasizes the interlocking networks of ECM macromolecules and their primary roles in tissue regeneration and wound repair. Through studying ECM dynamics, researchers have discovered molecular signaling pathways that demonstrate how the ECM influences protein patterns and open up more possibilities for developing therapeutics that target the ECM to enhance wound repair and tissue regeneration.
Collapse
Affiliation(s)
- Sousan Cheong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| | - Yujie Peng
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| | - Yunfan He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Lagunas-Rangel FA, Liepinsh E, Fredriksson R, Alsehli AM, Williams MJ, Dambrova M, Jönsson J, Schiöth HB. Off-target effects of statins: molecular mechanisms, side effects and the emerging role of kinases. Br J Pharmacol 2024; 181:3799-3818. [PMID: 39180421 DOI: 10.1111/bph.17309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 08/26/2024] Open
Abstract
Statins are one of the most important classes of drugs. In this analytical review, we elucidate the intricate molecular mechanisms and toxicological rationale regarding both the on- (targeting 3-hydroxy-3-methylglutaryl-coenzyme A reductase [HMGCR]) and off-target effects of statins. Statins interact with a number of membrane kinases, such as epidermal growth factor receptor (EGFR), erb-b2 receptor tyrosine kinase 2 (HER2) and MET proto-oncogene, receptor tyrosine kinase (MET), as well as cytosolic kinases, such as SRC proto-oncogene, non-receptor tyrosine kinase (Src) and show inhibitory activity at nanomolar concentrations. In addition, they interact with calcium ATPases and peroxisome proliferator-activated receptor α (PPARα/NR1C1) at higher concentrations. Statins interact with mitochondrial complexes III and IV, and their inhibition of coenzyme Q10 synthesis also impairs the functioning of complexes I and II. Statins act as inhibitors of kinases, calcium ATPases and mitochondrial complexes, while activating PPARα. These off-target effects likely contribute to the side effects observed in patients undergoing statin therapy, including musculoskeletal symptoms and hepatic effects. Interestingly, some off-target effects of statins could also be the cause of favourable outcomes, relating to repurposing statins in conditions such as inflammatory disorders and cancer.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ahmed M Alsehli
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Michael J Williams
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, Riga, Latvia
| | - Jörgen Jönsson
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Wei L, Li Y, Tan H, Peng Y, Liu Q, Zheng T, Li F, Xu Z. OTUB1 regulates ferroptosis to inhibit myoblast differentiation into myotubes by deubiquitinating P62. Sci Rep 2024; 14:15696. [PMID: 38977909 PMCID: PMC11231240 DOI: 10.1038/s41598-024-66868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024] Open
Abstract
As the largest organ in the human body, skeletal muscle is essential for breathing support, movement initiation, and maintenance homeostasis. It has been shown that programmed cell death (PCD), which includes autophagy, apoptosis, and necrosis, is essential for the development of skeletal muscle. A novel form of PCD called ferroptosis is still poorly understood in relation to skeletal muscle. In this study, we observed that the activation of ferroptosis significantly impeded the differentiation of C2C12 myoblasts into myotubes and concurrently suppressed the expression of OTUB1, a crucial deubiquitinating enzyme. OTUB1-silenced C2C12 mouse myoblasts were used to investigate the function of OTUB1 in ferroptosis. The results show that OTUB1 knockdown in vitro significantly increased C2C12 ferroptosis and inhibited myogenesis. Interestingly, the induction of ferroptosis resulting from OTUB1 knockdown was concomitant with the activation of autophagy. Furthermore, OTUB1 interacted with the P62 protein and stabilized its expression by deubiquitinating it, thereby inhibiting autophagy-dependent ferroptosis and promoting myogenesis. All of these findings demonstrate the critical role that OTUB1 plays in controlling ferroptosis, and we suggest that focusing on the OTUB1-P62 axis may be a useful tactic in the treatment and prevention of disorders involving the skeletal muscle.
Collapse
Affiliation(s)
- Limin Wei
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Yanhong Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 550004, China
| | - Helin Tan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
| | - Yue Peng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
| | - Qian Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
| | - Tingting Zheng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
| | - Feng Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China.
| | - Zhongxian Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
10
|
Feng L, Chen Z, Bian H. Skeletal muscle: molecular structure, myogenesis, biological functions, and diseases. MedComm (Beijing) 2024; 5:e649. [PMID: 38988494 PMCID: PMC11234433 DOI: 10.1002/mco2.649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Skeletal muscle is an important motor organ with multinucleated myofibers as its smallest cellular units. Myofibers are formed after undergoing cell differentiation, cell-cell fusion, myonuclei migration, and myofibril crosslinking among other processes and undergo morphological and functional changes or lesions after being stimulated by internal or external factors. The above processes are collectively referred to as myogenesis. After myofibers mature, the function and behavior of skeletal muscle are closely related to the voluntary movement of the body. In this review, we systematically and comprehensively discuss the physiological and pathological processes associated with skeletal muscles from five perspectives: molecule basis, myogenesis, biological function, adaptive changes, and myopathy. In the molecular structure and myogenesis sections, we gave a brief overview, focusing on skeletal muscle-specific fusogens and nuclei-related behaviors including cell-cell fusion and myonuclei localization. Subsequently, we discussed the three biological functions of skeletal muscle (muscle contraction, thermogenesis, and myokines secretion) and its response to stimulation (atrophy, hypertrophy, and regeneration), and finally settled on myopathy. In general, the integration of these contents provides a holistic perspective, which helps to further elucidate the structure, characteristics, and functions of skeletal muscle.
Collapse
Affiliation(s)
- Lan‐Ting Feng
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Huijie Bian
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
11
|
Yao J, Luo Z, Lin J, Meng N, Guo J, Xu H, Shi R, Zhao L, Zhou J, Yan F, Wang B, Mao H. Antimicrobial and Antiviral Nanofibers Halt Co-Infection Spread via Nuclease-Mimicry and Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309590. [PMID: 38647392 PMCID: PMC11200001 DOI: 10.1002/advs.202309590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/17/2024] [Indexed: 04/25/2024]
Abstract
The escalating spread of drug-resistant bacteria and viruses is a grave concern for global health. Nucleic acids dominate the drug-resistance and transmission of pathogenic microbes. Here, imidazolium-type poly(ionic liquid)/porphyrin (PIL-P) based electrospun nanofibrous membrane and its cerium (IV) ion complex (PIL-P-Ce) are developed. The obtained PIL-P-Ce membrane exhibits high and stable efficiency in eradicating various microorganisms (bacteria, fungi, and viruses) and decomposing microbial antibiotic resistance genes and viral nucleic acids under light. The nuclease-mimetic and photocatalytic mechanisms of the PIL-P-Ce are elucidated. Co-infection wound models in mice with methicillin-resistant S. aureus and hepatitis B virus demonstrate that PIL-P-Ce integrate the triple effects of cationic polymer, photocatalysis, and nuclease-mimetic activities. As revealed by proteomic analysis, PIL-P-Ce shows minimal phototoxicity to normal tissues. Hence, PIL-P-Ce has potential as a "green" wound dressing to curb the spread of drug-resistant bacteria and viruses in clinical settings.
Collapse
Affiliation(s)
- Jieran Yao
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| | - Zhenhong Luo
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Jiaying Lin
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| | - Na Meng
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| | - Jiangna Guo
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Hui Xu
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Rongwei Shi
- School of Material and Chemical EngineeringTongren UniversityTongren554300China
| | - Linhui Zhao
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| | - Jiateng Zhou
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Feng Yan
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Bin Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Hailei Mao
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
12
|
Kritikaki E, Terzis G, Soundararajan M, Vogiatzis I, Simoes DC. Expression of intramuscular extracellular matrix proteins in vastus lateralis muscle fibres between atrophic and non-atrophic COPD. ERJ Open Res 2024; 10:00857-2023. [PMID: 38803416 PMCID: PMC11129643 DOI: 10.1183/23120541.00857-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/02/2024] [Indexed: 05/29/2024] Open
Abstract
Background Extracellular matrix (ECM) proteins are the major constituents of the muscle cell micro-environment, imparting instructive signalling, steering cell behaviour and controlling muscle regeneration. ECM remodelling is among the most affected signalling pathways in COPD and aged muscle. As a fraction of COPD patients present muscle atrophy, we questioned whether ECM composition would be altered in patients with peripheral muscle wasting (atrophic COPD) compared to those without muscle wasting (non-atrophic COPD). Methods A set of ECM molecules with known impact on myogenesis were quantified in vastus lateralis muscle biopsies from 29 COPD patients (forced expiratory volume in 1 s 55±12% predicted) using ELISA and real-time PCR. COPD patients were grouped to atrophic or non-atrophic based on fat-free mass index (<17 or ≥17 kg·m-2). Results Atrophic COPD patients presented a lower average vastus lateralis muscle fibre cross-sectional area (3872±258 μm2) compared to non-atrophic COPD (4509±198 μm2). Gene expression of ECM molecules was found significantly lower in atrophic COPD compared to non-atrophic COPD for collagen type I alpha 1 chain (COL1A1), fibronectin (FN1), tenascin C (TNC) and biglycan (BGN). In terms of protein levels, there were no significant differences between the two COPD cohorts for any of the ECM molecules tested. Conclusions Although atrophic COPD presented decreased contractile muscle tissue, the differences in ECM mRNA expression between atrophic and non-atrophic COPD were not translated at the protein level, potentially indicating an accumulation of long-lived ECM proteins and dysregulated proteostasis, as is typically observed during deconditioning and ageing.
Collapse
Affiliation(s)
- Efpraxia Kritikaki
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Gerasimos Terzis
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Meera Soundararajan
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Ioannis Vogiatzis
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Davina C.M. Simoes
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
Lessard L, Saugues A, Gondin J, Mounier R, Kneppers A. Measurement of Myonuclear Accretion In Vitro and In Vivo. Methods Mol Biol 2024. [PMID: 38647863 DOI: 10.1007/7651_2024_540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Adult skeletal muscle stem cells (MuSC) are the regenerative precursors of myofibers and also have an important role in myofiber growth, adaptation, and maintenance by fusing to the myofibers-a process referred to as "myonuclear accretion." Due to a focus on MuSC function during regeneration, myofibers remain a largely overlooked component of the MuSC niche influencing MuSC fate. Here, we describe a method to directly measure the rate of myonuclear accretion in vitro and in vivo using ethynyl-2'-deoxyuridine (EdU)-based tracing of MuSC progeny. This method supports the dissection of MuSC intrinsic and myofiber-derived factors influencing myonuclear accretion as an alternative fate of MuSCs supporting myofiber homeostasis and plasticity.
Collapse
Affiliation(s)
- Lola Lessard
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Audrey Saugues
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Rémi Mounier
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Anita Kneppers
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France.
| |
Collapse
|
14
|
Hu P. Effects of the immune system on muscle regeneration. Curr Top Dev Biol 2024; 158:239-251. [PMID: 38670708 DOI: 10.1016/bs.ctdb.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Muscle regeneration is a complex process orchestrated by multiple steps. Recent findings indicate that inflammatory responses could play central roles in bridging initial muscle injury responses and timely muscle injury reparation. The various types of immune cells and cytokines have crucial roles in muscle regeneration process. In this review, we provide an overview of the functions of acute inflammation in muscle regeneration.
Collapse
Affiliation(s)
- Ping Hu
- The 10th People's Hospital affiliated to Tongji University, Shanghai, P. R. China.
| |
Collapse
|
15
|
Liu Y, Yang LY, Chen DX, Chang C, Yuan Q, Zhang Y, Cai Y, Wei WQ, Hao JJ, Wang MR. Tenascin-C as a potential biomarker and therapeutic target for esophageal squamous cell carcinoma. Transl Oncol 2024; 42:101888. [PMID: 38354632 PMCID: PMC10877408 DOI: 10.1016/j.tranon.2024.101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/01/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
PURPOSE To establish a prognostic model of esophageal squamous cell carcinoma (ESCC) patients based on tenascin-C (TNC) expression level and clinicopathological characteristics, and to explore the therapeutic potential of TNC inhibition. METHODS The expression of TNC was detected using immunohistochemistry (IHC) in 326 ESCC specimens and 50 normal esophageal tissues. Prognostic factors were determined by Cox regression analyses and were incorporated to establish the nomogram. The effects of TNC knockdown on ESCC cells were assessed in vitro and in vivo. Transcriptome sequencing (RNA-seq) and gene set enrichment analysis (GSEA) were performed to reveal signaling pathways regulated by TNC knockdown. The therapeutic significance of TNC knockdown combined with small-molecule inhibitors on cell proliferation was examined. RESULTS TNC protein was highly expressed in 48.77 % of ESCC tissues compared to only 2 % in normal esophageal epithelia (p < 0.001). The established nomogram model, based on TNC expression, pT stage, and lymph node metastasis, showed good performance on prognosis evaluation. More importantly, the reduction of TNC expression inhibited tumor cell proliferation and xenograft growth, and mainly down-regulated signaling pathways involved in tumor growth, hypoxia signaling transduction, metabolism, infection, etc. Knockdown of TNC enhanced the inhibitory effect of inhibitors targeting ErbB, PI3K-Akt, Ras and MAPK signaling pathways. CONCLUSION The established nomogram may be a promising model for survival prediction in ESCC. Reducing TNC expression enhanced the sensitivity of ESCC cells to inhibitors of Epidermal Growth Factor Receptor (EGFR) and downstream signaling pathways, providing a novel combination therapy strategy.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Li-Yan Yang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ding-Xiong Chen
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chen Chang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qing Yuan
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen-Qiang Wei
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
16
|
Helzer D, Kannan P, Reynolds JC, Gibbs DE, Crosbie RH. Role of microenvironment on muscle stem cell function in health, adaptation, and disease. Curr Top Dev Biol 2024; 158:179-201. [PMID: 38670705 DOI: 10.1016/bs.ctdb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The role of the cellular microenvironment has recently gained attention in the context of muscle health, adaption, and disease. Emerging evidence supports major roles for the extracellular matrix (ECM) in regeneration and the dynamic regulation of the satellite cell niche. Satellite cells normally reside in a quiescent state in healthy muscle, but upon muscle injury, they activate, proliferate, and fuse to the damaged fibers to restore muscle function and architecture. This chapter reviews the composition and mechanical properties of skeletal muscle ECM and the role of these factors in contributing to the satellite cell niche that impact muscle regeneration. In addition, the chapter details the effects of satellite cell-matrix interactions and provides evidence that there is bidirectional regulation affecting both the cellular and extracellular microenvironment within skeletal muscle. Lastly, emerging methods to investigate satellite cell-matrix interactions will be presented.
Collapse
Affiliation(s)
- Daniel Helzer
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pranav Kannan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joseph C Reynolds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Devin E Gibbs
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
17
|
Bencze M, Periou B, Punzón I, Barthélémy I, Taglietti V, Hou C, Zaidan L, Kefi K, Blot S, Agbulut O, Gervais M, Derumeaux G, Authier F, Tiret L, Relaix F. Receptor interacting protein kinase-3 mediates both myopathy and cardiomyopathy in preclinical animal models of Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2023; 14:2520-2531. [PMID: 37909859 PMCID: PMC10751447 DOI: 10.1002/jcsm.13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a progressive muscle degenerative disorder, culminating in a complete loss of ambulation, hypertrophic cardiomyopathy and a fatal cardiorespiratory failure. Necroptosis is the form of necrosis that is dependent upon the receptor-interacting protein kinase (RIPK) 3; it is involved in several inflammatory and neurodegenerative conditions. We previously identified RIPK3 as a key player in the acute myonecrosis affecting the hindlimb muscles of the mdx dystrophic mouse model. Whether necroptosis also mediates respiratory and heart disorders in DMD is currently unknown. METHODS Evidence of activation of the necroptotic axis was examined in dystrophic tissues from Golden retriever muscular dystrophy (GRMD) dogs and R-DMDdel52 rats. A functional assessment of the involvement of necroptosis in dystrophic animals was performed on mdx mice that were genetically depleted for RIPK3. Dystrophic mice aged from 12 to 18 months were analysed by histology and molecular biology to compare the phenotype of muscles from mdxRipk3+/+ and mdxRipk3-/- mice. Heart function was also examined by echocardiography in 40-week-old mice. RESULTS RIPK3 expression in sartorius and biceps femoris muscles from GRMD dogs positively correlated to myonecrosis levels (r = 0.81; P = 0.0076). RIPK3 was also found elevated in the diaphragm (P ≤ 0.05). In the slow-progressing heart phenotype of GRMD dogs, the phosphorylated form of RIPK1 at the Serine 161 site was dramatically increased in cardiomyocytes. A similar p-RIPK1 upregulation characterized the cardiomyocytes of the severe DMDdel52 rat model, associated with a marked overexpression of Ripk1 (P = 0.007) and Ripk3 (P = 0.008), indicating primed activation of the necroptotic pathway in the dystrophic heart. MdxRipk3-/- mice displayed decreased compensatory hypertrophy of the heart (P = 0.014), and echocardiography showed a 19% increase in the relative wall thickness (P < 0.05) and 29% reduction in the left ventricle mass (P = 0.0144). Besides, mdxRipk3-/- mice presented no evidence of a regenerative default or sarcopenia in skeletal muscles, moreover around 50% less affected by fibrosis (P < 0.05). CONCLUSIONS Our data highlight molecular and histological evidence that the necroptotic pathway is activated in degenerative tissues from dystrophic animal models, including the diaphragm and the heart. We also provide the genetic proof of concept that selective inhibition of necroptosis in dystrophic condition improves both histological features of muscles and cardiac function, suggesting that prevention of necroptosis is susceptible to providing multiorgan beneficial effects for DMD.
Collapse
Affiliation(s)
- Maximilien Bencze
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Baptiste Periou
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Isabel Punzón
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Inès Barthélémy
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Valentina Taglietti
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Cyrielle Hou
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Louai Zaidan
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Kaouthar Kefi
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Stéphane Blot
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Onnik Agbulut
- Institut de Biologie Paris‐Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and AgeingSorbonne UniversitéParisFrance
| | - Marianne Gervais
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Geneviève Derumeaux
- Team Derumeaux, Department of Physiology, Henri Mondor Hospital, FHU‐SENEC, AP‐HPU955‐IMRB, Université Paris‐Est Créteil (UPEC)CréteilFrance
| | - François‐Jérôme Authier
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Laurent Tiret
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Fréderic Relaix
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| |
Collapse
|
18
|
Zhang H, Zhou L, Wang H, Gu W, Li Z, Sun J, Wei X, Zheng Y. Tenascin-C-EGFR activation induces functional human satellite cell proliferation and promotes wound-healing of skeletal muscles via oleanic acid. Dev Biol 2023; 504:86-97. [PMID: 37758009 DOI: 10.1016/j.ydbio.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/26/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
Human satellite cells (HuSCs) have been deemed to be the potential cure to treat muscular atrophy diseases such as Duchenne muscular dystrophy. However, the clinical trials of HuSCs were restricted to the inadequacy of donors because of that freshly isolated HuSCs quickly lost the Pax7 expression and myogenesis capacity in vivo after a few days of culture. Here we found that oleanic acid, a kind of triterpenoid endowed with diverse biological functions with treatment potential, could efficiently promote HuSCs proliferation. The HuSCs cultured in the medium supplement with oleanic acid could maintain a high expression level of Pax7 and retain the ability to differentiate into myotubes as well as facilitate muscle regeneration in injured muscles of recipient mice. We further revealed that Tenascin-C acts as the core mechanism to activate the EGFR signaling pathway followed by HuSCs proliferation. Taken together, our data provide an efficient method to expand functional HuSCs and a novel mechanism that controls HuSCs proliferation, which sheds light on the HuSCs-based therapy to treat muscle diseases.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Lin Zhou
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Huihao Wang
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Wei Gu
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Zhiqiang Li
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Jun Sun
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Xiaoen Wei
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China.
| | - Yuxin Zheng
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China.
| |
Collapse
|
19
|
Wang K, Li F, Zhou L, Zhao X, Gao X, Liu C, Li X, Chen X, Zhao Y, Cheng X, Wang R, Li R, Zhang Y, Gao F, Tian J, Wang K. HNEAP Regulates Necroptosis of Cardiomyocytes by Suppressing the m 5 C Methylation of Atf7 mRNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304329. [PMID: 37870216 PMCID: PMC10700171 DOI: 10.1002/advs.202304329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/18/2023] [Indexed: 10/24/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are highly expressed in various cardiovascular diseases. However, their role in cardiomyocyte death caused by ischemia/reperfusion (I/R) injury, especially necroptosis, remains elusive. In this study, a heart necroptosis-associated piRNA (HNEAP) is found that regulates cardiomyocyte necroptosis by targeting DNA methyltransferase 1 (DNMT1)-mediated 5-methylcytosine (m5 C) methylation of the activating transcription factor 7 (Atf7) mRNA transcript. HNEAP expression level is significantly elevated in hypoxia/reoxygenation (H/R)-exposed cardiomyocytes and I/R-injured mouse hearts. Loss of HNEAP inhibited cardiomyocyte necroptosis and ameliorated cardiac function in mice. Mechanistically, HNEAP directly interacts with DNMT1 and attenuates m5 C methylation of the Atf7 mRNA transcript, which increases Atf7 expression level. ATF7 can further downregulate the transcription of Chmp2a, an inhibitor of necroptosis, resulting in the reduction of Chmp2a level and the progression of cardiomyocyte necroptosis. The findings reveal that piRNA-mediated m5 C methylation is involved in the regulation of cardiomyocyte necroptosis. Thus, the HNEAP-DNMT1-ATF7-CHMP2A axis may be a potential target for attenuating cardiac injury caused by necroptosis in ischemic heart disease.
Collapse
Affiliation(s)
- Kai Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Fu‐Hai Li
- Department of CardiologyThe Affiliated Hospital of Qingdao UniversityQingdao266021China
| | - Lu‐Yu Zhou
- Department of PharmacyCollege of BiologyHunan UniversityChangshaHunan410082China
| | - Xue‐Mei Zhao
- State Key Laboratory of Cardiovascular DiseaseHeart Failure CenterFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijing100037China
| | - Xiang‐Qian Gao
- Department of PathologyBinzhou Medical University HospitalBinzhou256603China
| | - Cui‐Yun Liu
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Xin‐Min Li
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Xin‐Zhe Chen
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Yan Zhao
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Xue‐Li Cheng
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Rui‐Quan Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Rui‐Feng Li
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Yu‐Hui Zhang
- State Key Laboratory of Cardiovascular DiseaseHeart Failure CenterFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijing100037China
| | - Fei Gao
- Department of CardiologyBeijing Anzhen HospitalCapital Medical UniversityBeijing100029China
| | - Jin‐Wei Tian
- Department of CardiologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Kun Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| |
Collapse
|
20
|
Ohashi A, Terai S, Furukawa S, Yamamoto S, Kashimoto R, Satoh A. Tenascin-C-enriched regeneration-specific extracellular matrix guarantees superior muscle regeneration in Ambystoma mexicanum. Dev Biol 2023; 504:98-112. [PMID: 37778717 DOI: 10.1016/j.ydbio.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Severe muscle injury causes distress and difficulty in humans. Studying the high regenerative ability of the axolotls may provide hints for the development of an effective treatment for severe injuries to muscle tissue. Here, we examined the regenerative process in response to a muscle injury in axolotls. We found that axolotls are capable of complete regeneration in response to a partial muscle resection called volumetric muscle loss (VML), which mammals cannot perfectly regenerate. We investigated the mechanisms underlying this high regenerative capacity in response to VML, focusing on the migration of muscle satellite cells and the extracellular matrix (ECM) formed during VML injury. Axolotls form tenascin-C (TN-C)-enriched ECM after VML injury. This TN-C-enriched ECM promotes the satellite cell migration. We confirmed the importance of TN-C in successful axolotl muscle regeneration by creating TN-C mutant animals. Our results suggest that the maintenance of a TN-C-enriched ECM environment after muscle injury promotes the release of muscle satellite cells and supports eventually high muscle regenerative capacity. In the future, better muscle regeneration may be achieved in mammals through the maintenance of TN-C expression.
Collapse
Affiliation(s)
- Ayaka Ohashi
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan
| | - Suzuno Terai
- Okayama University, Faculty of Science, Department of Biological Sciences, Okayama, Japan
| | - Saya Furukawa
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan
| | - Sakiya Yamamoto
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan
| | - Rena Kashimoto
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan
| | - Akira Satoh
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan; Research Core for Interdisciplinary Sciences (RCIS), Okayama University, Okayama, Japan.
| |
Collapse
|
21
|
Chen S, Gong Y, Li S, Yang D, Zhang Y, Liu Q. Hydra gasdermin-gated pyroptosis signalling regulates tissue regeneration. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:104904. [PMID: 37543221 DOI: 10.1016/j.dci.2023.104904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Pyroptosis, an inflammatory form of programmed cell death, is directly executed by gasdermin (GSDM) depending on its N-terminal pore-forming fragment-mediated membrane-disrupting, triggering intracellular contents release, which plays important roles in mammalian anti-infection and anti-tumor immune responses. However, whether pyroptosis engages in the regulation of tissue regeneration remains largely unknown. Here, utilizing Hydra vulgaris as the research model, we found that an HyCARD2-HyGSDME-mediated pyroptosis signalling is activated in both head and foot regenerated tips after amputation. Impeding pyroptosis by knocking down the expression of either HyGSDME or HyCARD2 significantly hampered both head and foot regeneration in Hydra. Mechanistically, the activation of HyCARD2-HyGSDME axis at wound sites is dependent of intracellular mitochondrial reactive oxygen species (mtROS), the removing of which hindered Hydra head regeneration. Moreover, the HyCARD2-HyGSDME axis-gated pyroptosis was found to enhance the initial secretion and upregulated expression of Wnt3. Collectively, these findings indicate that gasdermin-gated pyroptosis is critical for the evoking of Wnt signalling to facilitate Hydra tissue regeneration, which provides insights into functional diversification within the gasdermin family in the animal kingdom.
Collapse
Affiliation(s)
- Shouwen Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuxin Gong
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuxin Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
22
|
Sun Z, Cernilogar FM, Horvatic H, Yeroslaviz A, Abdullah Z, Schotta G, Hornung V. β1 integrin signaling governs necroptosis via the chromatin-remodeling factor CHD4. Cell Rep 2023; 42:113322. [PMID: 37883227 DOI: 10.1016/j.celrep.2023.113322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Fibrosis, characterized by sustained activation of myofibroblasts and excessive extracellular matrix (ECM) deposition, is known to be associated with chronic inflammation. Receptor-interacting protein kinase 3 (RIPK3), the central kinase of necroptosis signaling, is upregulated in fibrosis and contributes to tumor necrosis factor (TNF)-mediated inflammation. In bile-duct-ligation-induced liver fibrosis, we found that myofibroblasts are the major cell type expressing RIPK3. Genetic ablation of β1 integrin, the major profibrotic ECM receptor in fibroblasts, not only abolished ECM fibrillogenesis but also blunted RIPK3 expression via a mechanism mediated by the chromatin-remodeling factor chromodomain helicase DNA-binding protein 4 (CHD4). While the function of CHD4 has been conventionally linked to the nucleosome-remodeling deacetylase (NuRD) and CHD4-ADNP-HP1(ChAHP) complexes, we found that CHD4 potently repressed a set of genes, including Ripk3, with high locus specificity but independent of either the NuRD or the ChAHP complex. Thus, our data uncover that β1 integrin intrinsically links fibrotic signaling to RIPK3-driven inflammation via a novel mode of action of CHD4.
Collapse
Affiliation(s)
- Zhiqi Sun
- Gene Center and Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany; Research Group Molecular Mechanisms of Inflammation, Max-Planck Institute of Biochemistry, Martinsried, Germany.
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Helena Horvatic
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Assa Yeroslaviz
- Computational Biology Group, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany; Research Group Molecular Mechanisms of Inflammation, Max-Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
23
|
Zhou C, Ma H, Liu C, Yang L. Exploring traditional Chinese medicine as a potential treatment for sarcopenia: A network pharmacology and data mining analysis of drug selection and efficacy. Medicine (Baltimore) 2023; 102:e35404. [PMID: 37832096 PMCID: PMC10578686 DOI: 10.1097/md.0000000000035404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/05/2023] [Indexed: 10/15/2023] Open
Abstract
Sarcopenia, as an increasingly pressing clinical issue, can be ameliorated through employment of traditional Chinese medicines. However, the current lack of specific pharmacological interventions for Sarcopenia necessitates further exploration of novel possibilities in traditional Chinese medicine for the treatment of this condition, utilizing advanced methodologies such as web pharmacology and data mining. Screening the essential targets of Sarcopenia, conducting matching between target and active molecules, as well as active molecules and herbs. Employing data mining techniques to analyze the screening outcomes, and molecular docking to compare the binding activities of active molecules with target proteins. The approach of using herbs for the treatment of Sarcopenia involves 13 targets, with 414 active compounds and 367 types of herbs. Data mining reveals that the herbs used in treating Sarcopenia are primarily characterized by their bitter taste, exerting their effects through dispelling dampness and promoting blood circulation. Moreover, 2 new formulas are postulated. Furthermore, molecular docking analysis indicates that the main active components of the herbs can be observed to tightly bind with the targets. Through network pharmacology and molecular docking, our findings reveal that herbs contain 15 key active components and 5 key targets, which correspond to 7 major herbs and 2 new formulas. Academically, these findings hold significant reference value for the development of novel drugs targeting Sarcopenia.
Collapse
Affiliation(s)
- Changwen Zhou
- The First Clinical Medical Research Institute, Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Hongzhong Ma
- The First Clinical Medical Research Institute, Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Ce Liu
- The First Clinical Medical Research Institute, Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Lixue Yang
- The First Clinical Medical Research Institute, Shaanxi University of Chinese Medicine, Shaanxi, China
- Affiliated Hospital of Chinese Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China
| |
Collapse
|
24
|
Guan L, Cao Z, Pan Z, Zhao C, Xue M, Yang F, Chen J. Butyrate promotes C2C12 myoblast proliferation by activating ERK/MAPK pathway. Mol Omics 2023; 19:552-559. [PMID: 37204279 DOI: 10.1039/d2mo00256f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sarcopenia has garnered considerable interest in recent years as ageing-associated diseases constitute a significant worldwide public health burden. Nutritional supplements have received much attention as potential tools for managing sarcopenia. However, the specific nutrients responsible are still under-investigated. In the current study, we first determined the levels of short chain fatty acids (SCFAs) and intestinal flora in the feces of elderly sarcopenia subjects and elderly healthy individuals by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Then cell viability detection, flow cytometry and transcriptome analysis were adopted to experimentally evaluate the effect and the underlying mechanism of SCFA on C2C12 cells proliferation in vitro. The results suggested that patients with sarcopenia exhibited decreased levels of butyrate. And butyrate may stimulate C2C12 myocyte proliferation via promoting G1/S cell cycle transition. Transcriptomic analyses pointed to upregulation of the Mitogen-activated protein kinase (MAPK) signaling pathway in butyrate-treated cells. In addition, the above proliferative phenotypes could be suppressed by the combination of ERK/MAPK inhibitor. A combined transcriptomic and metabolomic approach was applied in our study to investigate the potential effect of microbiota-derived butyrate yield on muscular proliferation which may indicate a protective effect of nutritional supplements.
Collapse
Affiliation(s)
- Li Guan
- Department of Gastroenterology, Huadong Hospital affiliated to Fudan University, Shanghai, China.
| | - Ziyi Cao
- Department of Gastroenterology, Huadong Hospital affiliated to Fudan University, Shanghai, China.
| | - Ziyue Pan
- Department of Gastroenterology, Minhang Hospital affiliated to Fudan University, Shanghai, China
| | - Chao Zhao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical sciences, Shanghai Medical College, Fudan university, Shanghai, China
| | - Mengjuan Xue
- Department of Endocrine, Huadong Hospital affiliated to Fudan University, Shanghai, China
| | - Fan Yang
- Shanghai Key laboratory of Clinical Geriatric Medicine, Shanghai, China.
| | - Jie Chen
- Department of Gastroenterology, Huadong Hospital affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Nishiwaki A, Komai T, Nagafuchi Y, Tsuchida Y, Shoda H, Fujio K. Elevation of serum tenascin-C levels in dermatomyositis patients. Int J Rheum Dis 2023; 26:1635-1639. [PMID: 36918366 DOI: 10.1111/1756-185x.14659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023]
Affiliation(s)
- Aya Nishiwaki
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihiko Komai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yumi Tsuchida
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Kamiya M, Kimura N, Umezawa N, Hasegawa H, Yasuda S. Muscle fiber necroptosis in pathophysiology of idiopathic inflammatory myopathies and its potential as target of novel treatment strategy. Front Immunol 2023; 14:1191815. [PMID: 37483632 PMCID: PMC10361824 DOI: 10.3389/fimmu.2023.1191815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs), which are a group of chronic and diverse inflammatory diseases, are primarily characterized by weakness in the proximal muscles that progressively leads to persistent disability. Current treatments of IIMs depend on nonspecific immunosuppressive agents (including glucocorticoids and immunosuppressants). However, these therapies sometimes fail to regulate muscle inflammation, and some patients suffer from infectious diseases and other adverse effects related to the treatment. Furthermore, even after inflammation has subsided, muscle weakness persists in a significant proportion of the patients. Therefore, the elucidation of pathophysiology of IIMs and development of a better therapeutic strategy that not only alleviates muscle inflammation but also improves muscle weakness without increment of opportunistic infection is awaited. Muscle fiber death, which has been formerly postulated as "necrosis", is a key histological feature of all subtypes of IIMs, however, its detailed mechanisms and contribution to the pathophysiology remained to be elucidated. Recent studies have revealed that muscle fibers of IIMs undergo necroptosis, a newly recognized form of regulated cell death, and promote muscle inflammation and dysfunction through releasing inflammatory mediators such as damage-associated molecular patterns (DAMPs). The research on murine model of polymyositis, a subtype of IIM, revealed that the inhibition of necroptosis or HMGB1, one of major DAMPs released from muscle fibers undergoing necroptosis, ameliorated muscle inflammation and recovered muscle weakness. Furthermore, not only the necroptosis-associated molecules but also PGAM5, a mitochondrial protein, and reactive oxygen species have been shown to be involved in muscle fiber necroptosis, indicating the multiple target candidates for the treatment of IIMs acting through necroptosis regulation. This article overviews the research on muscle injury mechanisms in IIMs focusing on the contribution of necroptosis in their pathophysiology and discusses the potential treatment strategy targeting muscle fiber necroptosis.
Collapse
|
27
|
Ichiseki T, Shimasaki M, Ueda S, Hirata H, Souma D, Kawahara N, Ueda Y. Efficacy of Rectal Systemic Administration of Mesenchymal Stem Cells to Injury Sites via the CXCL12/CXCR4 Axis to Promote Regeneration in a Rabbit Skeletal Muscle Injury Model. Cells 2023; 12:1729. [PMID: 37443763 PMCID: PMC10340610 DOI: 10.3390/cells12131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been transplanted directly into lesions or injected intravenously. The administration of MSCs using these delivery methods requires specialized knowledge, techniques, and facilities. Here, we describe intrarectal systemic administration of MSCs, a simple, non-invasive route for homing to the injury sites to promote the regeneration of skeletal muscle injuries. Using a cardiotoxin (CTX)-induced rabbit skeletal muscle injury model, homing to the site of muscle injury was confirmed by intrarectal administration of MSCs; the time required for homing after intrarectal administration was approximately 5 days. In addition, the C-X-C chemokine ligand 12 (CXCL12)/C-X-C chemokine receptor-4 (CXCR4) axis was found to be involved in the homing process. Histopathological examinations showed that skeletal muscle regeneration was promoted in the MSCs-administered group compared to the CTX-only group. Myosin heavy polypeptide 3 (Myh3) expression, an indicator of early muscle regeneration, was detected earlier in the intrarectal MSCs group compared to the CTX-only group. These findings indicate that intrarectal administration of MSCs is effective in homing to the injured area, where they promote injury repair. Since intrarectal administration is a simple and non-invasive delivery route, these findings may be valuable in future research on stem cell therapy.
Collapse
Affiliation(s)
- Toru Ichiseki
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku 920-0293, Japan; (S.U.)
| | - Miyako Shimasaki
- Department of Pathology 2, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku 920-0293, Japan;
| | - Shusuke Ueda
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku 920-0293, Japan; (S.U.)
| | - Hiroaki Hirata
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku 920-0293, Japan; (S.U.)
| | - Daisuke Souma
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku 920-0293, Japan; (S.U.)
| | - Norio Kawahara
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku 920-0293, Japan; (S.U.)
| | - Yoshimichi Ueda
- Department of Pathology, Keiju Medical Center, 94, Tomioka-machi, Nanao 926-0816, Japan
| |
Collapse
|
28
|
Ye K, Chen Z, Xu Y. The double-edged functions of necroptosis. Cell Death Dis 2023; 14:163. [PMID: 36849530 PMCID: PMC9969390 DOI: 10.1038/s41419-023-05691-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Necroptosis refers to a regulated form of cell death induced by a variety of stimuli. Although it has been implicated in the pathogenesis of many diseases, there is evidence to support that necroptosis is not purely a detrimental process. We propose that necroptosis is a "double-edged sword" in terms of physiology and pathology. On the one hand, necroptosis can trigger an uncontrolled inflammatory cascade response, resulting in severe tissue injury, disease chronicity, and even tumor progression. On the other hand, necroptosis functions as a host defense mechanism, exerting antipathogenic and antitumor effects through its powerful pro-inflammatory properties. Moreover, necroptosis plays an important role during both development and regeneration. Misestimation of the multifaceted features of necroptosis may influence the development of therapeutic approaches targeting necroptosis. In this review, we summarize current knowledge of the pathways involved in necroptosis as well as five important steps that determine its occurrence. The dual role of necroptosis in a variety of physiological and pathological conditions is also highlighted. Future studies and the development of therapeutic strategies targeting necroptosis should fully consider the complicated properties of this type of regulated cell death.
Collapse
Affiliation(s)
- Keng Ye
- grid.256112.30000 0004 1797 9307Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China
| | - Zhimin Chen
- grid.256112.30000 0004 1797 9307Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
29
|
Tovey Crutchfield EC, Garnish SE, Day J, Anderton H, Chiou S, Hempel A, Hall C, Patel KM, Gangatirkar P, Martin KR, Li Wai Suen CSN, Garnham AL, Kueh AJ, Wicks IP, Silke J, Nachbur U, Samson AL, Murphy JM, Hildebrand JM. MLKL deficiency protects against low-grade, sterile inflammation in aged mice. Cell Death Differ 2023; 30:1059-1071. [PMID: 36755069 PMCID: PMC10070424 DOI: 10.1038/s41418-023-01121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
MLKL and RIPK3 are the core signaling proteins of the inflammatory cell death pathway, necroptosis, which is a known mediator and modifier of human disease. Necroptosis has been implicated in the progression of disease in almost every physiological system and recent reports suggest a role for necroptosis in aging. Here, we present the first comprehensive analysis of age-related histopathological and immunological phenotypes in a cohort of Mlkl-/- and Ripk3-/- mice on a congenic C57BL/6 J genetic background. We show that genetic deletion of Mlkl in female mice interrupts immune system aging, specifically delaying the age-related reduction of circulating lymphocytes. -Seventeen-month-old Mlkl-/- female mice were also protected against age-related chronic sterile inflammation in connective tissue and skeletal muscle relative to wild-type littermate controls, exhibiting a reduced number of immune cell infiltrates in these sites and fewer regenerating myocytes. These observations implicate MLKL in age-related sterile inflammation, suggesting a possible application for long-term anti-necroptotic therapy in humans.
Collapse
Affiliation(s)
- Emma C Tovey Crutchfield
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia.,The University of Melbourne, Faculty of Medicine, Dentistry and Health Sciences, Parkville, VIC, Australia
| | - Sarah E Garnish
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Jessica Day
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia.,Royal Melbourne Hospital, Rheumatology Unit, Parkville, VIC, Australia
| | - Holly Anderton
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Shene Chiou
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Anne Hempel
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Cathrine Hall
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Komal M Patel
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | | | - Katherine R Martin
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | | | | | - Andrew J Kueh
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Ian P Wicks
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia.,Royal Melbourne Hospital, Rheumatology Unit, Parkville, VIC, Australia
| | - John Silke
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Ueli Nachbur
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Andre L Samson
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia. .,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia.
| | - Joanne M Hildebrand
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia. .,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia.
| |
Collapse
|
30
|
Zhang M, Lin Y, Chen R, Yu H, Li Y, Chen M, Dou C, Yin P, Zhang L, Tang P. Ghost messages: cell death signals spread. Cell Commun Signal 2023; 21:6. [PMID: 36624476 PMCID: PMC9830882 DOI: 10.1186/s12964-022-01004-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023] Open
Abstract
Cell death is a mystery in various forms. Whichever type of cell death, this is always accompanied by active or passive molecules release. The recent years marked the renaissance of the study of these molecules showing they can signal to and communicate with recipient cells and regulate physio- or pathological events. This review summarizes the defined forms of messages cells could spread while dying, the effects of these signals on the target tissue/cells, and how these types of communications regulate physio- or pathological processes. By doing so, this review hopes to identify major unresolved questions in the field, formulate new hypothesis worthy of further investigation, and when possible, provide references for the search of novel diagnostic/therapeutics agents. Video abstract.
Collapse
Affiliation(s)
- Mingming Zhang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Yuan Lin
- grid.412463.60000 0004 1762 6325Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang People’s Republic of China
| | - Ruijing Chen
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Haikuan Yu
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Yi Li
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Ming Chen
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Ce Dou
- grid.410570.70000 0004 1760 6682Department of Orthopedics, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Pengbin Yin
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Licheng Zhang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Peifu Tang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| |
Collapse
|
31
|
Sakamoto T, Saito Y, Takekuma Y, Kikuchi E, Sugawara M. Gefitinib-induced Myositis: A Novel Case Report. YAKUGAKU ZASSHI 2023; 143:617-620. [PMID: 37394456 DOI: 10.1248/yakushi.23-00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Chemotherapy-induced myositis is a severe adverse event caused by chemotherapeutic agents such as immune checkpoint inhibitors (ICIs) or cytotoxic agents. We experienced a patient with gefitinib-induced myositis with symptoms of muscle cramps and stiffness in the limbs, and reported the treatment process. A 70-year-old woman received four courses of carboplatin (CBDCA)+pemetrexed (PEM)+gefitinib (intravenous CBDCA area under the curve (AUC) 5 and PEM 500 mg/m2, every 3 weeks, and oral gefitinib 250 mg daily), for epidermal growth factor receptor (EGFR) mutation-positive stage IV lung cancer treatment; followed by seven courses of PEM+gefitinib, and continued gefitinib monotherapy thereafter. Myositis occurred 5 months after the initiation of gefitinib monotherapy. She developed strong limb cramps despite regular oral administration of 400 mg acetaminophen three times a day and complained of pain on a numeric rating scale of 10/10. Her creatine kinase (CK) was elevated from the second course of CBDCA+PEM+gefitinib but was stable at grade 1-2 thereafter. However, the muscle symptoms disappeared with CK normalization within a few days of gefitinib discontinuation due to disease progression. The Naranjo Adverse Drug Reaction Scale score was 6, suggesting a probable association. Osimertinib (an EGFR tyrosine kinase inhibitor)-induced myositis has been reported, but similar events were first observed with gefitinib in this case. Consequently, when treating with gefitinib, myositis, including the CK variation, should be monitored and appropriately managed with multidirectional treatment.
Collapse
Affiliation(s)
| | | | - Yoh Takekuma
- Department of Pharmacy, Hokkaido University Hospital
| | - Eiki Kikuchi
- Department of Respiratory Medicine, Hokkaido University Hospital
| | - Mitsuru Sugawara
- Department of Pharmacy, Hokkaido University Hospital
- Laboratory of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
32
|
Onal T, Ozgul-Onal M, Chefetz I. Mixed lineage kinase domain-like pseudokinase: Conventional (necroptosis) and unconventional (necroptosis-independent) functions and features. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:225-243. [PMID: 36858737 DOI: 10.1016/bs.apcsb.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mixed lineage kinase domain-like pseudokinase (MLKL) is the terminal and indispensable mediator of necroptosis. Necroptosis, also known as programmed cell necrosis, is a caspase-independent cell death mechanism involved in various pathologic and inflammatory processes. Triggering necroptosis could be an alternative approach in treating apoptosis-resistant cancer cells to prevent recurrent disease. In addition to its function in necroptosis, MLKL plays a role as a regulator in many cellular processes independent of necroptosis. A better understanding of the intracellular function of MLKL and its role in various diseases and pathologic conditions is needed to enable discovery of new targeted therapies. Various necroptosis-dependent and independent functions of MLKL are reviewed in this chapter, with a focus on functions of MLKL in necroptosis, autophagy, inflammation, tissue regeneration, and endosomal trafficking.
Collapse
Affiliation(s)
- Tuna Onal
- Faculty of Medicine, Department of Histology and Embryology, Bandirma Onyedi Eylul University, Balikesir, Turkey; The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Melike Ozgul-Onal
- The Hormel Institute, University of Minnesota, Austin, MN, United States; Faculty of Medicine, Department of Histology and Embryology, Mugla Sitki Kocman University, Mugla, Turkey
| | - Ilana Chefetz
- The Hormel Institute, University of Minnesota, Austin, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
33
|
Bencze M. Mechanisms of Myofibre Death in Muscular Dystrophies: The Emergence of the Regulated Forms of Necrosis in Myology. Int J Mol Sci 2022; 24:ijms24010362. [PMID: 36613804 PMCID: PMC9820579 DOI: 10.3390/ijms24010362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
Myofibre necrosis is a central pathogenic process in muscular dystrophies (MD). As post-lesional regeneration cannot fully compensate for chronic myofibre loss, interstitial tissue accumulates and impairs muscle function. Muscle regeneration has been extensively studied over the last decades, however, the pathway(s) controlling muscle necrosis remains largely unknown. The recent discovery of several regulated cell death (RCD) pathways with necrotic morphology challenged the dogma of necrosis as an uncontrolled process, opening interesting perspectives for many degenerative disorders. In this review, we focus on how cell death affects myofibres in MDs, integrating the latest research in the cell death field, with specific emphasis on Duchenne muscular dystrophy, the best-known and most common hereditary MD. The role of regulated forms of necrosis in myology is still in its infancy but there is increasing evidence that necroptosis, a genetically programmed form of necrosis, is involved in muscle degenerating disorders. The existence of apoptosis in myofibre demise will be questioned, while other forms of non-apoptotic RCDs may also have a role in myonecrosis, illustrating the complexity and possibly the heterogeneity of the cell death pathways in muscle degenerating conditions.
Collapse
Affiliation(s)
- Maximilien Bencze
- “Biology of the Neuromuscular System” Team, Institut Mondor de Recherche Biomédicale (IMRB), University Paris-Est Créteil, INSERM, U955 IMRB, 94010 Créteil, France;
- École Nationale Vétérinaire d’Alfort, IMRB, 94700 Maisons-Alfort, France
| |
Collapse
|
34
|
Fu X, Zhuang CL, Hu P. Regulation of muscle stem cell fate. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:40. [PMID: 36456659 PMCID: PMC9715903 DOI: 10.1186/s13619-022-00142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022]
Abstract
Skeletal muscle plays a critical role in human health. Muscle stem cells (MuSCs) serve as the major cell type contributing to muscle regeneration by directly differentiating to mature muscle cells. MuSCs usually remain quiescent with occasionally self-renewal and are activated to enter cell cycle for proliferation followed by differentiation upon muscle injury or under pathological conditions. The quiescence maintenance, activation, proliferation, and differentiation of MuSCs are tightly regulated. The MuSC cell-intrinsic regulatory network and the microenvironments work coordinately to orchestrate the fate transition of MuSCs. The heterogeneity of MuSCs further complicates the regulation of MuSCs. This review briefly summarizes the current progress on the heterogeneity of MuSCs and the microenvironments, epigenetic, and transcription regulations of MuSCs.
Collapse
Affiliation(s)
- Xin Fu
- grid.412987.10000 0004 0630 1330Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Cheng-le Zhuang
- grid.412538.90000 0004 0527 0050Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, 200072 China
| | - Ping Hu
- grid.412987.10000 0004 0630 1330Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China ,grid.412538.90000 0004 0527 0050Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, 200072 China ,Guangzhou Laboratory, Guanghzou International Bio Lsland, No. 9 XingDaoHuan Road, Guangzhou, 510005 China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
35
|
Chen Z, Lan H, Liao Z, Huang J, Jian X, Hu J, Liao H. Regulatory T cells-centered regulatory networks of skeletal muscle inflammation and regeneration. Cell Biosci 2022; 12:112. [PMID: 35869487 PMCID: PMC9308315 DOI: 10.1186/s13578-022-00847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
As the understanding of skeletal muscle inflammation is increasingly clarified, the role of Treg cells in the treatment of skeletal muscle diseases has attracted more attention in recent years. A consensus has been reached that the regulation of Treg cells is the key to completing the switch of inflammation and repair of skeletal muscle, whose presence directly determine the repairing quality of the injured skeletal muscle. However, the functioning process of Treg cells remains unreported, thereby making it necessary to summarize the current role of Treg cells in skeletal muscle. In this review, the characteristics, origins, and cellular kinetics of these Treg cells are firstly described; Then, the relationship between Treg cells and muscle satellite cells (MuSCs), conventional T cells (Tconv) is discussed (the former is involved in the entire repair and regeneration process, while the latter matters considerably in causing most skeletal muscle autoimmune diseases); Next, focus is placed on the control of Treg cells on the phenotypic switch of macrophages, which is the key to the switch of inflammation; Finally, factors regulating the functional process of Treg cells are analyzed, and a regulatory network centered on Treg cells is summarized. The present study summarizes the cell-mediated interactions in skeletal muscle repair over the past decade, and elucidates the central role of regulatory T cells in this process, so that other researchers can more quickly and comprehensively understand the development and direction of this very field. It is believed that the hereby proposed viewpoints and problems can provide fresh visions for the latecomers.
Collapse
|
36
|
Chen J, Tao Q, Lang Z, Jin Y, Chen G, Li X, Yu Z, Li Y. Development and validation of a novel necroptosis-related score to improve the outcomes of clear cell renal cell carcinoma. Front Genet 2022; 13:967613. [PMID: 36171882 PMCID: PMC9510770 DOI: 10.3389/fgene.2022.967613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/17/2022] [Indexed: 12/05/2022] Open
Abstract
Necroptosis has been indicated as a key regulator of tumor progression. However, the prognostic regulatory role of necroptosis in clear cell renal cell carcinoma (ccRCC) needs to be further investigated. In this study, necroptosis-related subtypes were identified by mining the public cohort (n = 530) obtained from The Cancer Genome Atlas. By applying Principal Component Analysis (PCA), the necroptosis-related scores (N-Score) were developed to assess the prognosis procession of ccRCC. The results were further validated by an external clinical cohort (n = 116) obtained from the First Affiliated Hospital of Wenzhou Medical University. It has been found that N-Score could precisely distinguish the prognostic outcomes of patients as an independent risk factor (Hazard ratio = 4.990, 95% confidence interval (CI) = 2.007–12.403, p < 0.001). In addition, changes in N-Score were associated with differences in tumor mutational burden as well as immune infiltration characterization. Moreover, higher N-Scores were also correlated significantly molecular drug sensitivity and stronger immune checkpoint activity. Notably, the prognosis of ccRCC could be effectively guided by combining the N-Scores and external clinical indicators. In conclusion, N-Scores could be served as a robust and effective biomarker to improve the prognosis outcomes and targeted therapy of ccRCC.
Collapse
Affiliation(s)
- Ji Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Tao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhichao Lang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Jin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanqi Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinling Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhixian Yu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Zhixian Yu, ; Yeping Li,
| | - Yeping Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Zhixian Yu, ; Yeping Li,
| |
Collapse
|
37
|
Chen D, Chen X, Xie HT, Hatton MP, Liu X, Liu Y. Expression of extracellular matrix components in the meibomian gland. Front Med (Lausanne) 2022; 9:981610. [PMID: 36148459 PMCID: PMC9486096 DOI: 10.3389/fmed.2022.981610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Extracellular matrix (ECM) is a key component of the stem cell local microenvironment. Our study aims to explore the periglandular distribution of major components of ECM in the Meibomian gland (MG). Methods Human eyelids and mouse eyelids were collected and processed for immunofluorescence staining. Results Human MG tissues stained positive for collagen IV α1, collagen IV α2, collagen IV α5, and collagen IV α6 around the acini and duct, but negative for collagen IV α3 and collagen IV α4. The mouse MG were stained positive for the same collagen IV subunits as early as postnatal day 15. Laminin α2, laminin β1 and perlecan stained the regions surrounding the acini and the acinar/ductal junction in the human MG, but not the region around the duct. Tenascin-C was found specifically located at the junctions between the acini and the central ducts. Neither agrin nor endostatin was found in the human MG tissues. Conclusion The ECM expresses specific components in different regions around the MG, which may play a role in MG stem cell regulation, renewal, and regeneration.
Collapse
Affiliation(s)
- Di Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaomin Chen
- Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hua-Tao Xie
- Department of Ophthalmology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Mark P. Hatton
- Ophthalmic Consultants of Boston, Boston, MA, United States
| | - Xiaowei Liu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xiaowei Liu
| | - Yang Liu
- Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Yang Liu
| |
Collapse
|
38
|
Chehade L, Deguise MO, De Repentigny Y, Yaworski R, Beauvais A, Gagnon S, Hensel N, Kothary R. Suppression of the necroptotic cell death pathways improves survival in Smn2B/− mice. Front Cell Neurosci 2022; 16:972029. [PMID: 35990890 PMCID: PMC9381707 DOI: 10.3389/fncel.2022.972029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a monogenic neuromuscular disease caused by low levels of the Survival Motor Neuron (SMN) protein. Motor neuron degeneration is the central hallmark of the disease. However, the SMN protein is ubiquitously expressed and depletion of the protein in peripheral tissues results in intrinsic disease manifestations, including muscle defects, independent of neurodegeneration. The approved SMN-restoring therapies have led to remarkable clinical improvements in SMA patients. Yet, the presence of a significant number of non-responders stresses the need for complementary therapeutic strategies targeting processes which do not rely solely on restoring SMN. Dysregulated cell death pathways are candidates for SMN-independent pathomechanisms in SMA. Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 have been widely recognized as critical therapeutic targets of necroptosis, an important form of programmed cell death. In addition, Caspase-1 plays a fundamental role in inflammation and cell death. In this study, we evaluate the role of necroptosis, particularly RIPK3 and Caspase-1, in the Smn2B/− mouse model of SMA. We have generated a triple mutant (TKO), the Smn2B/−; Ripk3−/−; Casp1−/− mouse. TKO mice displayed a robust increase in survival and improved motor function compared to Smn2B/− mice. While there was no protection against motor neuron loss or neuromuscular junction pathology, larger muscle fibers were observed in TKO mice compared to Smn2B/− mice. Our study shows that necroptosis modulates survival, motor behavior and muscle fiber size independent of SMN levels and independent of neurodegeneration. Thus, small-molecule inhibitors of necroptosis as a combinatorial approach together with SMN-restoring drugs could be a future strategy for the treatment of SMA.
Collapse
Affiliation(s)
- Lucia Chehade
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Center for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Marc-Olivier Deguise
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Center for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rebecca Yaworski
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ariane Beauvais
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Niko Hensel
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Center for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Rashmi Kothary
| |
Collapse
|
39
|
Fukada SI, Higashimoto T, Kaneshige A. Differences in muscle satellite cell dynamics during muscle hypertrophy and regeneration. Skelet Muscle 2022; 12:17. [PMID: 35794679 PMCID: PMC9258228 DOI: 10.1186/s13395-022-00300-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/29/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle homeostasis and function are ensured by orchestrated cellular interactions among several types of cells. A noticeable aspect of skeletal muscle biology is the drastic cell-cell communication changes that occur in multiple scenarios. The process of recovering from an injury, which is known as regeneration, has been relatively well investigated. However, the cellular interplay that occurs in response to mechanical loading, such as during resistance training, is poorly understood compared to regeneration. During muscle regeneration, muscle satellite cells (MuSCs) rebuild multinuclear myofibers through a stepwise process of proliferation, differentiation, fusion, and maturation, whereas during mechanical loading-dependent muscle hypertrophy, MuSCs do not undergo such stepwise processes (except in rare injuries) because the nuclei of MuSCs become directly incorporated into the mature myonuclei. In this review, six specific examples of such differences in MuSC dynamics between regeneration and hypertrophy processes are discussed.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Tatsuyoshi Higashimoto
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Akihiro Kaneshige
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| |
Collapse
|
40
|
Guo R, Jia X, Ding Z, Wang G, Jiang M, Li B, Chen S, Xia B, Zhang Q, Liu J, Zheng R, Gao Z, Xie X. Loss of MLKL ameliorates liver fibrosis by inhibiting hepatocyte necroptosis and hepatic stellate cell activation. Am J Cancer Res 2022; 12:5220-5236. [PMID: 35836819 PMCID: PMC9274737 DOI: 10.7150/thno.71400] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Liver fibrosis affects millions of people worldwide without an effective treatment. Although multiple cell types in the liver contribute to the fibrogenic process, hepatocyte death is considered to be the trigger. Multiple forms of cell death, including necrosis, apoptosis, and necroptosis, have been reported to co-exist in liver diseases. Mixed lineage kinase domain-like protein (MLKL) is the terminal effector in necroptosis pathway. Although necroptosis has been reported to play an important role in a number of liver diseases, the function of MLKL in liver fibrosis has yet to be unraveled. Methods and Results: Here we report that MLKL level is positively correlated with a number of fibrotic markers in liver samples from both patients with liver fibrosis and animal models. Mlkl deletion in mice significantly reduces clinical symptoms of CCl4- and bile duct ligation (BDL) -induced liver injury and fibrosis. Further studies indicate that Mlkl-/- blocks liver fibrosis by reducing hepatocyte necroptosis and hepatic stellate cell (HSC) activation. AAV8-mediated specific knockdown of Mlkl in hepatocytes remarkably alleviates CCl4-induced liver fibrosis in both preventative and therapeutic ways. Conclusion: Our results show that MLKL-mediated signaling plays an important role in liver damage and fibrosis, and targeting MLKL might be an effective way to treat liver fibrosis.
Collapse
Affiliation(s)
- Ren Guo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohui Jia
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Zhenbin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200031, China,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200031, China,Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China
| | - Gang Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mengmeng Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bing Li
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Shanshan Chen
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qing Zhang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jian Liu
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ruting Zheng
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China,CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,✉ Corresponding author: Dr. Xin Xie, 189 Guo Shou Jing Road, Shanghai 201203, China; Tel: (86) 186-0211-0377; Fax: 0086-21-50800721; E-mail:
| |
Collapse
|
41
|
Chen W, Chen Y, Liu Y, Wang X. Autophagy in muscle regeneration: potential therapies for myopathies. J Cachexia Sarcopenia Muscle 2022; 13:1673-1685. [PMID: 35434959 PMCID: PMC9178153 DOI: 10.1002/jcsm.13000] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022] Open
Abstract
Autophagy classically functions as a physiological process to degrade cytoplasmic components, protein aggregates, and/or organelles, as a mechanism for nutrient breakdown, and as a regulator of cellular architecture. Its biological functions include metabolic stress adaptation, stem cell differentiation, immunomodulation and diseases regulation, and so on. Current researches have proved that autophagy dysfunction may contribute to the pathogenesis of some myopathies through impairment of myofibres regeneration. Studies of autophagy inhibition also indicate the importance of autophagy in muscle regeneration, while activation of autophagy can restore muscle function in some myopathies. In this review, we aim to report the mechanisms of action of autophagy on muscle regeneration to provide relevant references for the treatment of regenerating defective myopathies by regulating autophagy. Results have shown that one key mechanism of autophagy regulating the muscle regeneration is to affect the differentiation fate of muscle stem cells (MuSCs), including quiescence maintenance, activation and differentiation. The roles of autophagy (organelle/protein degradation, energy facilitation, and/or other) vary at different myogenic stages of the repair process. When the muscle is in homeostasis, basal autophagy can maintain the quiescence state and stemness of MuSCs by renewing organelle and protein. After injury, the increased autophagy flux contributes to meet biological energy demand of MuSCs during activation and proliferation. By mitochondrial remodelling, autophagy during differentiation can promote the metabolic transformation and balance mitochondrial-mediated apoptosis signals in myoblasts. Autophagy in mature myofibres is also essential for the degradation of necrotic myofibres, and may affect the dynamics of MuSCs by affecting the secretion spectrum of myofibres or the recruitment of supporting cells. Except for myogenic cells, autophagy also plays an important role in regulating the function of non-myogenic cells in the muscle microenvironment, which is also essential for successful muscle recovery. Autophagy can regulate the immune microenvironment during muscle regeneration through the recruitment and polarization of macrophages, while autophagy in endothelial cells can regulate muscle regeneration in an angiogenic or angiogenesis-independent manner. Drug or nutrition targeted autophagy has been preliminarily proved to restore muscle function in myopathies by promoting muscle regeneration, and further understanding the role and mechanism of autophagy in various cell types during muscle regeneration will enable more effective combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuxi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
42
|
He S, Li R, Peng Y, Wang Z, Huang J, Meng H, Min J, Wang F, Ma Q. ACSL4 contributes to ferroptosis-mediated rhabdomyolysis in exertional heat stroke. J Cachexia Sarcopenia Muscle 2022; 13:1717-1730. [PMID: 35243801 PMCID: PMC9178366 DOI: 10.1002/jcsm.12953] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Rhabdomyolysis (RM) is a common complication of exertional heat stroke (EHS) and constitutes a direct cause of death. However, the mechanism underlying RM following EHS remains unclear. METHODS The murine EHS model was prepared by our previous protocol. RNA sequencing is applied to identify the pathological pathways that contribute to RM following EHS. Inhibition of the acyl-CoA synthetase long-chain family member 4 (ACSL4) was achieved by RNA silencing in vitro prior to ionomycin plus heat stress exposure or pharmacological inhibitors in vivo prior to heat and exertion exposure. The histological changes, the iron accumulation, oxidized phosphatidylethanolamines species, as well as histological evaluation and levels of lipid metabolites in skeletal muscle tissues were measured. RESULTS We demonstrated that ferroptosis contributes to RM development following EHS. Ferroptosis inhibitor ferrostatin-1 administration once EHS onset significantly ameliorated the survival rate of EHS mice from 35.357% to 52.288% within 24 h after EHS (P = 0.0028 compared with control) and markedly inhibited RM development induced by EHS. By comparing gene expression of between sham heat rest (SHR) (n = 3) and EHS (n = 3) mice in the gastrocnemius (Gas) muscle tissue, we identified that Acsl4 mRNA expression is elevated in Gas muscle tissue of EHS mice (P = 0.0038 compared with SHR), so as to its protein levels (P = 0.0001 compared with SHR). Followed by increase in creatine kinase (CK) and myoglobin (MB) levels, the labile iron accumulation, decrease in glutathione peroxidase 4 (GPX4) expression, and elevation of lipid peroxidation products. From in vivo and in vitro experiments, inhibition of Acsl4 significantly improves muscle cell death caused by EHS, thereby ameliorating RM development, followed by reduction in CK and MB levels by 30-40% (P < 0.0001; n = 8-10) and 40% (P < 0.0001; n = 8-10), restoration of GPX4 expression, and decrease in lipid peroxidation products. Mechanistically, ACSL4-mediated RM seems to be Yes-associated protein (YAP) dependent via TEA domain transcription factor1/TEA domain transcription factor4. CONCLUSIONS These findings demonstrate an important role of ACSL4 in mediating ferroptosis activation in the development of RM following EHS and suggest that targeting ACSL4 may represent a novel therapeutic strategy to limit the skeletal muscle cell death and prevent RM after EHS.
Collapse
Affiliation(s)
- Sixiao He
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Ru Li
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yanmei Peng
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ziqing Wang
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Junhao Huang
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Hongen Meng
- The Fourth Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Junxia Min
- The Fourth Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The Fourth Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.,The First Affiliated Hospital, The Second Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Qiang Ma
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Gao B, Jiang B, Xing W, Xie Z, Luo Z, Zou W. Discovery and Application of Postnatal Nucleus Pulposus Progenitors Essential for Intervertebral Disc Homeostasis and Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104888. [PMID: 35195356 PMCID: PMC9069184 DOI: 10.1002/advs.202104888] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/16/2022] [Indexed: 05/15/2023]
Abstract
Intervertebral disc degeneration (IDD) results from the dysfunction of nucleus pulposus (NP) cells and the exhaustion of NP progenitors (ProNPs). The cellular applications of NP cells during IDD are currently limited due to the lack of in vivo studies showing whether NP cells are heterogeneous and contain ProNPs throughout postnatal stages. In this study, single-cell RNA sequencing of purified NP cells is used to map four molecularly defined populations and urotensin II receptor (UTS2R)-expressing postnatal ProNPs is identified, which are markedly exhausted during IDD, in mouse and human specimens. The lineage tracing shows that UTS2R+ ProNPs preferentially resides in the NP periphery with its niche factor tenascin-C and give rise to functional NP cells. It is also demonstrated that transplanting UTS2R+ ProNPs with tenascin-C into injured intervertebral discs attenuate the progression of IDD. The study provides a novel NP cell atlas, identified resident ProNPs with regenerative potential, and revealed promising diagnostic and therapeutic targets for IDD.
Collapse
Affiliation(s)
- Bo Gao
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Institute of Orthopaedic SurgeryXijing HospitalAir Force Military Medical UniversityXi'anShaanxiChina
| | - Bo Jiang
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Wenhui Xing
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Zaiqi Xie
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Zhuojing Luo
- Institute of Orthopaedic SurgeryXijing HospitalAir Force Military Medical UniversityXi'anShaanxiChina
| | - Weiguo Zou
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| |
Collapse
|
44
|
Tian C, Liu Y, Li Z, Zhu P, Zhao M. Mitochondria Related Cell Death Modalities and Disease. Front Cell Dev Biol 2022; 10:832356. [PMID: 35321239 PMCID: PMC8935059 DOI: 10.3389/fcell.2022.832356] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are well known as the centre of energy metabolism in eukaryotic cells. However, they can not only generate ATP through the tricarboxylic acid cycle and oxidative phosphorylation but also control the mode of cell death through various mechanisms, especially regulated cell death (RCD), such as apoptosis, mitophagy, NETosis, pyroptosis, necroptosis, entosis, parthanatos, ferroptosis, alkaliptosis, autosis, clockophagy and oxeiptosis. These mitochondria-associated modes of cell death can lead to a variety of diseases. During cell growth, these modes of cell death are programmed, meaning that they can be induced or predicted. Mitochondria-based treatments have been shown to be effective in many trials. Therefore, mitochondria have great potential for the treatment of many diseases. In this review, we discuss how mitochondria are involved in modes of cell death, as well as basic research and the latest clinical progress in related fields. We also detail a variety of organ system diseases related to mitochondria, including nervous system diseases, cardiovascular diseases, digestive system diseases, respiratory diseases, endocrine diseases, urinary system diseases and cancer. We highlight the role that mitochondria play in these diseases and suggest possible therapeutic directions as well as pressing issues that need to be addressed today. Because of the key role of mitochondria in cell death, a comprehensive understanding of mitochondria can help provide more effective strategies for clinical treatment.
Collapse
Affiliation(s)
- Chuwen Tian
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yifan Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhuoshu Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Ping Zhu, ; Mingyi Zhao,
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ping Zhu, ; Mingyi Zhao,
| |
Collapse
|
45
|
Yan M, Liu S, Zhang M, Lai L, Xie Q, Hao CM. Mesangial Cell-Derived Tenascin-C Contributes to Mesangial Cell Proliferation and Matrix Protein Production in IgA Nephropathy. Nephrology (Carlton) 2022; 27:458-466. [PMID: 35213087 DOI: 10.1111/nep.14031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
AIM Tenascin-C (TNC), a non-structural extracellular matrix glycoprotein, is transiently expressed during development or after injury, playing an important role in injury and repair process. The potential role of TNC in the pathogenesis of IgA nephropathy (IgAN) remains to be clarified. METHODS Immunohistochemistry staining for TNC was conducted on paraffin-embedded slices from renal biopsies of 107 IgAN patients, and correlation analysis was made between mesangial TNC expression and clinic-pathological parameters. In situ hybridization for TNC mRNA was further performed to figure out the cells that express TNC within glomeruli. In vitro experiments were also carried out on mouse mesangial cells (SV40 MES13) to elucidate the effect of TNC on mesangial cells. RESULTS TNC was expressed in the mesangial area of IgAN, as well as in fibrotic regions. Correlation analysis showed that higher mesangial TNC was associated with higher level of proteinuria, lower eGFR and more serious pathological lesions (MEST score). In situ hybridization revealed that abundant TNC mRNA expression was observed in the affected glomeruli of IgAN, but not in minimal change disease (MCD). Moreover, TNC mRNA co-localized with PDGFRβ mRNA, but not with PODXL mRNA, suggesting that TNC mRNA was expressed in the mesangial cells within glomeruli in IgAN. In vitro experiments showed that exogenous TNC promoted matrix protein production and mesangial cell proliferation, which was attenuated by an EGFR inhibitor. CONCLUSION Taken together, these results suggest that mesangial cell-derived TNC contributes to mesangial matrix expansion and mesangial cell proliferation, which is a potential therapeutic target in IgAN.
Collapse
Affiliation(s)
- Minhua Yan
- Division of Nephrology, Huashan Hospital, Fudan University, 12 Wulumuqi Road (middle), Shanghai, China
| | - Shaojun Liu
- Division of Nephrology, Huashan Hospital, Fudan University, 12 Wulumuqi Road (middle), Shanghai, China
| | - Min Zhang
- Division of Nephrology, Huashan Hospital, Fudan University, 12 Wulumuqi Road (middle), Shanghai, China
| | - Lingyun Lai
- Division of Nephrology, Huashan Hospital, Fudan University, 12 Wulumuqi Road (middle), Shanghai, China
| | - Qionghong Xie
- Division of Nephrology, Huashan Hospital, Fudan University, 12 Wulumuqi Road (middle), Shanghai, China
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, 12 Wulumuqi Road (middle), Shanghai, China
| |
Collapse
|
46
|
Loreti M, Sacco A. The jam session between muscle stem cells and the extracellular matrix in the tissue microenvironment. NPJ Regen Med 2022; 7:16. [PMID: 35177651 PMCID: PMC8854427 DOI: 10.1038/s41536-022-00204-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle requires a highly orchestrated coordination between multiple cell types and their microenvironment to exert its function and to maintain its homeostasis and regenerative capacity. Over the past decades, significant advances, including lineage tracing and single-cell RNA sequencing, have contributed to identifying multiple muscle resident cell populations participating in muscle maintenance and repair. Among these populations, muscle stem cells (MuSC), also known as satellite cells, in response to stress or injury, are able to proliferate, fuse, and form new myofibers to repair the damaged tissue. These cells reside adjacent to the myofiber and are surrounded by a specific and complex microenvironment, the stem cell niche. Major components of the niche are extracellular matrix (ECM) proteins, able to instruct MuSC behavior. However, during aging and muscle-associated diseases, muscle progressively loses its regenerative ability, in part due to a dysregulation of ECM components. This review provides an overview of the composition and importance of the MuSC microenvironment. We discuss relevant ECM proteins and how their mutations or dysregulation impact young and aged muscle tissue or contribute to diseases. Recent discoveries have improved our knowledge about the ECM composition of skeletal muscle, which has helped to mimic the architecture of the stem cell niche and improved the regenerative capacity of MuSC. Further understanding about extrinsic signals from the microenvironment controlling MuSC function and innovative technologies are still required to develop new therapies to improve muscle repair.
Collapse
Affiliation(s)
- Mafalda Loreti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
47
|
Fu X, He Q, Tao Y, Wang M, Wang W, Wang Y, Yu QC, Zhang F, Zhang X, Chen YG, Gao D, Hu P, Hui L, Wang X, Zeng YA. Recent advances in tissue stem cells. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1998-2029. [PMID: 34865207 DOI: 10.1007/s11427-021-2007-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Stem cells are undifferentiated cells capable of self-renewal and differentiation, giving rise to specialized functional cells. Stem cells are of pivotal importance for organ and tissue development, homeostasis, and injury and disease repair. Tissue-specific stem cells are a rare population residing in specific tissues and present powerful potential for regeneration when required. They are usually named based on the resident tissue, such as hematopoietic stem cells and germline stem cells. This review discusses the recent advances in stem cells of various tissues, including neural stem cells, muscle stem cells, liver progenitors, pancreatic islet stem/progenitor cells, intestinal stem cells, and prostate stem cells, and the future perspectives for tissue stem cell research.
Collapse
Affiliation(s)
- Xin Fu
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China
| | - Qiang He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Tao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qing Cissy Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
48
|
Li J, Zeng YA. Preface to the special topic on tissue stem cell research. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1995-1997. [PMID: 34874497 DOI: 10.1007/s11427-021-2012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
49
|
Fang J, Feng C, Chen W, Hou P, Liu Z, Zuo M, Han Y, Xu C, Melino G, Verkhratsky A, Wang Y, Shao C, Shi Y. Redressing the interactions between stem cells and immune system in tissue regeneration. Biol Direct 2021; 16:18. [PMID: 34670590 PMCID: PMC8527311 DOI: 10.1186/s13062-021-00306-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle has an extraordinary regenerative capacity reflecting the rapid activation and effective differentiation of muscle stem cells (MuSCs). In the course of muscle regeneration, MuSCs are reprogrammed by immune cells. In turn, MuSCs confer immune cells anti-inflammatory properties to resolve inflammation and facilitate tissue repair. Indeed, MuSCs can exert therapeutic effects on various degenerative and inflammatory disorders based on their immunoregulatory ability, including effects primed by interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). At the molecular level, the tryptophan metabolites, kynurenine or kynurenic acid, produced by indoleamine 2,3-dioxygenase (IDO), augment the expression of TNF-stimulated gene 6 (TSG6) through the activation of the aryl hydrocarbon receptor (AHR). In addition, insulin growth factor 2 (IGF2) produced by MuSCs can endow maturing macrophages oxidative phosphorylation (OXPHOS)-dependent anti-inflammatory functions. Herein, we summarize the current understanding of the immunomodulatory characteristics of MuSCs and the issues related to their potential applications in pathological conditions, including COVID-19.
Collapse
Affiliation(s)
- Jiankai Fang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Chao Feng
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Wangwang Chen
- Laboratory Animal Center, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Pengbo Hou
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Zhanhong Liu
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Muqiu Zuo
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yuyi Han
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Chenchang Xu
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Gerry Melino
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China.
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China.
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China. .,Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China.
| |
Collapse
|
50
|
Genovese P, Patel A, Ziemkiewicz N, Paoli A, Bruns J, Case N, Zustiak SP, Garg K. Co-delivery of fibrin-laminin hydrogel with mesenchymal stem cell spheroids supports skeletal muscle regeneration following trauma. J Tissue Eng Regen Med 2021; 15:1131-1143. [PMID: 34551191 DOI: 10.1002/term.3243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/09/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Volumetric muscle loss (VML) is traumatic or surgical loss of skeletal muscle with resultant functional impairment. Skeletal muscle's innate capacity for regeneration is lost with VML due to a critical loss of stem cells, extracellular matrix, and neuromuscular junctions. Consequences of VML include permanent disability or delayed amputations of the affected limb. Currently, a successful clinical therapy has not been identified. Mesenchymal stem cells (MSCs) possess regenerative and immunomodulatory properties and their three-dimensional aggregation can further enhance therapeutic efficacy. In this study, MSC aggregation into spheroids was optimized in vitro based on cellular viability, spheroid size, and trophic factor secretion. The regenerative potential of the optimized MSC spheroid therapy was then investigated in a murine model of VML injury. Experimental groups included an untreated VML injury control, intramuscular injection of MSC spheroids, and MSC spheroids encapsulated in a fibrin-laminin hydrogel. Compared to the untreated VML group, the spheroid encapsulating hydrogel group enhanced myogenic marker (i.e., MyoD and myogenin) protein expression, improved muscle mass, increased presence of centrally nucleated myofibers as well as small fibers (<500 μm2 ), modulated pro- and anti-inflammatory macrophage marker expression (i.e., iNOS and Arginase), and increased the presence of CD146+ pericytes and CD31+ endothelial cells in the VML injured muscles. Future studies will evaluate the extent of functional recovery with the spheroid encapsulating hydrogel therapy.
Collapse
Affiliation(s)
- Peter Genovese
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Anjali Patel
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Natalia Ziemkiewicz
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Allison Paoli
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Joseph Bruns
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Natasha Case
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Silviya P Zustiak
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Koyal Garg
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|